Heavy Quarkonium production at LHCb

Cesar Luiz da Silva for the LHCb Collaboration Los Alamos National Lab

Office of Science

Quarkonia Working Group 2024 – IISER, Mohali, India

Topics to be Covered in this Talk

- Multiplicity Dependence of $\sigma_{\psi(2S)}/\sigma_{J/\psi}$ in *pp* collision at \sqrt{s} =13TeV arXiv:2312.15201
- Measurement of J/ ψ -pair production in *pp* collisions at $\sqrt{s} = 13$ TeV and study of gluon transverse-momentum dependent PDFs arXiv:2311.14085
- Measurement of associated J/ ψ - ψ (2S) production cross-section in *pp* collisions at \sqrt{s} =13TeV arXiv:2311.15921

The LHC beauty detector

- $e, \mu, \pi, K, p, \gamma$, particle jet identification in 1<p<100 GeV/c
- Unique forward instrumentation for heavy ion physics

Multiplicity Dependence of $\sigma_{\psi(2S)}/\sigma_{J/\psi}$ in *pp* collision at \sqrt{s} =13TeV

arXiv:2312.15201

	r(fm)
J/ψ	0.50
Χc	0.72
$\psi(2S)$	0.90
$\Upsilon(1S)$	0.28
χ _b	0.44
Υ(2 <i>S</i>)	0.56
$\chi_b(2P)$	0.68
Υ(3 <i>S</i>)	0.78

Non-Relativistic Potential Theory: Satz, J.Phys.G32:R25 (2006)

Quarkonium states can break by co-moving particles. The breaking depends on

- Event multiplicity
- Size of the quarkonium state
- How fast the quarkonium state moves through other particles

- Prompt $\psi(2S)$ states are broken when particle multiplicities are larger than ~3x the average multiplicity
- $\psi(2S)$ from B-decays, produced away from the early high-density environment are intact

Dependency with multiplicity is stronger when quarkonium states and charged particles are measured at the same rapidity, indicating a dependence with local activity.

Small dependence in the backward multiplicity caused by a correlation btw. Backward and forward multiplicities. Detailed study in the paper.

High p_T (fast) $\psi(2S)$ seems to scape from being broken by co-moving particles.

No dependency with the quarkonium rapidity.

Measurement of J/ ψ -pair and J/ ψ - ψ (2S) production in *pp* collisions at \sqrt{s} =13TeV

 J/ψ pair production : arXiv:2311.14085 J/ ψ - ψ (2S) pair production : arXiv:2311.15921

Separating di- J/ψ from Double Parton Scattering

- Δy distributions between the two J/ ψ mesons have different shapes for the SPS and DPS processes
- DPS component shape obtained by using $m p_{T}$ of single J/ψ and uniformly $\Delta\phi$ between the pair
- According to NRQCD estimations SPS is negligible for 1.8<Δy<2.5, this region is used as a DPS normalization

DPS and effective cross-section

 $p_T < 14 GeV/c \quad 2.0 < y < 4.5$

$$\sigma_{\text{di-}J/\psi}^{\text{DPS}} = 8.6 \pm 1.2 \text{ (stat)} \pm 1.0 \text{ (syst) nb.}$$

The DPS cross-section is related on the profile and correlation between the partons inside the proton.

Quantified by the effective cross-section σ_{eff}

$$\sigma_{Q_1Q_2}^{\text{DPS}} = \frac{1}{1 + \delta_{Q_1Q_2}} \frac{\sigma_{Q_1}\sigma_{Q_2}}{\sigma_{\text{eff}}}$$

$$\sigma_{\text{eff}} = \frac{1}{2} \frac{\sigma_{J/\psi}^2}{\sigma_{\text{di-}J/\psi}^{\text{DPS}}} = 13.1 \pm 1.8 \text{ (stat)} \pm 2.3 \text{ (syst)} \text{ mb} \qquad 0$$

1

SPS and DSP distributions

$$\sigma_{\text{di-}J/\psi}^{\text{SPS}} = 7.9 \pm 1.2 \text{ (stat)} \pm 1.1 \text{ (syst) nb.}$$

Comparison with Color Singlet and NRQCD estimations

NLO+CS :

- PRL111 (2013) 122001
- HELAC-Onia Comp.Phys.Com.184(2013)2562, Comp.Phys. Com. 198 (2016) 238

PRA+NRQCD :

• PRL123 (2019) 162002

Comparison with Color Singlet and NRQCD estimations for $J/\psi + \psi(2S)$ pairs

DPS not subtracted in data

NLO+CS :

- PRL111 (2013) 122001
- HELAC-Onia Comp.Phys.Com.184(2013)2562, Comp.Phys. Com. 198 (2016) 238

PRA+NRQCD :

• PRL123 (2019) 162002

Gluon TMD

- Take the di- J/ψ azimuthal angle in the Collins Soper frame ϕ_{CS}
- The differential SPS cross-section relates with ϕ_{CS} as $a + b \cos(2\phi_{CS}) + c \cos(4\phi_{CS})$ where parameters a, b, c encode information from the gluon TMD [PLB 784(2018)217, PLB791(2019)420]

Gluon TMD

TMD: EPJ.C80(2020)87

 $\mathbf{p}_{\rm T}$ spectrum would broaden with $m_{di-J/\psi}$ according to the prediction

But p_{T} broadening is not observed given the current uncertainties

Take Away

- About 20% of the low $p_T \psi(2S)$ state are broken by co-moving particles when the particle multiplicity is larger than three times the average in *pp* collisions
- Effective cross-section extracted from charmonium pairs consistent with world data
- SPS contribution to di- J/ψ distributions consistent with Color Singlet production, given the large theoretical uncertainties
- Data still not precise to be compared with gluon TMD predictions, Run3+4 may be conclusive