

J/ψ pair production and J/ψ production in jets in pp collisions

Zhenjun Xiong for the ALICE collaboration University of Science and Technology of China The I6th International Workshop on Heavy Quarkonium (QWG2024) Mohali, India

J/ψ pair production

 J/ψ pair production

- J/ ψ pair production is a golden probe for the production mechanism of heavy quarkonia.
- Exploring the hard energy scale part of Multiple Parton Interactions (MPIs).
- Providing constraints on Long Distance Matrix Elements (LDMEs) appearing in pair production.

Physics Reports Volume 889, Pages 1-106

J/ψ pair production

ATLAS: Eur. Phys. J. C77 (2017) 76 ------Experiment (energy, final state, year) ATLAS ATLAS ($\sqrt{s} = 8$ TeV, $J/\psi + J/\psi$, 2016) ю DØ ($\sqrt{s} = 1.96$ TeV, J/ ψ + J/ ψ , 2014) DØ ($\sqrt{s} = 1.96$ TeV, J/ $\psi + \Upsilon$, 2016) H LHCb ($\sqrt{s} = 7\&8$ TeV, $\Upsilon(1S) + D^{0,+}$, 2015) ₩₩ LHCb ($\sqrt{s} = 7$ TeV, $J/\psi + \Lambda_c^+$, 2012) LHCb ($\sqrt{s} = 7$ TeV, J/ ψ + D⁺_s, 2012) **H+++** LHCb ($\sqrt{s} = 7$ TeV, J/ ψ + D⁺, 2012) LHCb ($\sqrt{s} = 7$ TeV, J/ ψ + D⁰, 2012) ┝━╋╼┥ ATLAS ($\sqrt{s} = 7$ TeV, 4 jets, 2016) CDF ($\sqrt{s} = 1.8$ TeV, 4 jets, 1993) UA2 ($\sqrt{s} = 630$ GeV, 4 jets, 1991) AFS ($\sqrt{s} = 63$ GeV, 4 jets, 1986) DØ ($\sqrt{s} = 1.96$ TeV, $2\gamma + 2$ jets, 2016) DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2014) H☆H DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + b/c + 2$ jets, 2014) H-O-H DØ ($\sqrt{s} = 1.96$ TeV, $\gamma + 3$ jets, 2010) CDF ($\sqrt{s} = 1.8$ TeV, $\gamma + 3$ jets, 1997) ATLAS ($\sqrt{s} = 8$ TeV, $Z + J/\psi$, 2015) CMS ($\sqrt{s} = 7$ TeV, W + 2 jets, 2014) ATLAS ($\sqrt{s} = 7$ TeV, W + 2 jets, 2013) 25 0 5 10 15 20 30

 $\sigma_{\rm eff}$ [mb]

DPS contribution to a final state A + B can be evaluated as:

$$\sigma_{A,B}^{\text{DPS}} = \frac{m}{2} \frac{\widehat{\sigma}^A \,\widehat{\sigma}^B}{\sigma_{\text{eff}}}$$

m = 1 (2) for identical (different) hadron.

 σ_{eff} : effective cross section parameter of DPS.

• Allows the measurements of the effective cross section and the test of its universality.

4

ALICE detector

J/ψ pair production

- 1. Fit the 1D dimuon invariant mass spectrum.
- 2. Model the 2D spectrum.

$$F(m_1, m_2) = N \times S_1(m_1) \times S_2(m_2) + R_{B_1, S_2} \times B_1(m_1) \times S_2(m_2) + R_{S_1, B_2} \times S_1(m_1) \times B_2(m_2) + R_{B_1, B_2} \times B_1(m_1) \times B_2(m_2) ,$$

3. Signal extraction by 2D fitting.

4. Acceptance and efficiency correction.

 J/ψ pair production

	$\sigma(J/\psi J/\psi)$	
ALICE (13 TeV)	10.3 ± 2.3 (stat.) ± 1.3 (syst.) nb	$2.5 < y < 4.0, p_T > 0$
LHCb (13 TeV)	15.2 ± 1.0 (stat.) ± 0.9 (syst.) nb	$2 < y < 4.5, p_T < 10 \text{ GeV/c}$
LHCb (7 TeV)	5.1 ± 1.0 (stat.) ± 1.1 (syst.) nb	$2 < y < 4.5, p_T < 10 \text{ GeV/c}$
D0 (1.96 TeV)	129 ± 11 (stat.) ± 37 (syst.) fb	$ y < 2, p_{\rm T} > 4 { m ~GeV/c}$
CMS (7 TeV)	1.49 ± 0.07 (stat.) ± 0.13 (syst.) nb	$ y < 2.2, p_{\rm T} > 4.5 { m GeV/c}$ (*)
ATLAS (8 TeV)	15.6 ± 1.3 (stat.) ± 1.2 (syst.) pb	$ y < 1.05, p_{\rm T} > 8.5 ~{\rm GeV/c}$
ATLAS (8 TeV)	13.5 ± 1.3 (stat.) ± 1.1 (syst.) pb	$1.05 < y < 2.1, p_{\rm T} > 8.5 {\rm ~GeV/c}$

ALICE (13 TeV): PRC 108, 045203 (2023) LHCb (13 TeV): JHEP 06 (2017) 047 LHCb (7 TeV): PLB 707 (2012), pp. 52-59 D0 (1.96 TeV): PRD 90, 111101(R) (2014) CMS (7 TeV): JHEP 09 (2014) 094 ATLAS (8 TeV): EPJC **77**, 76 (2017)

The cross-section of J/ψ pair production measured by ALICE differs from that of other experiments, but due to their different phase spaces, the differences can be understood.

Effective DPS cross section

J/ψ pair production

	effective DPS cross section
ALICE (13 TeV)	6.7 ± 1.6 (stat.) ± 2.7 (syst.) mb
LHCb (13 TeV)	7.3 ± 0.5 (stat.) ± 1.0 (syst.) mb
D0 (1.96 TeV)	4.8 ± 0.5 (stat.) ± 2.5 (syst.) mb
CMS (7 TeV)	
ATLAS (8 TeV)	$6.3 \pm 1.6 \text{ (stat.)} \pm 1.0 \text{ (syst.)} \pm 0.1 \text{ (BF)} \pm 0.1 \text{ (lumi) mb}$
	ALICE (13 TeV): PRC 108, 045203 (2023)

ALICE (13 TeV): PRC 108, 045203 (2023) LHCb (13 TeV): JHEP 06 (2017) 047 D0 (1.96 TeV): PRD 90, 111101(R) (2014) CMS (7 TeV): JHEP 09 (2014) 094 ATLAS (8 TeV): EPJC **77**, 76 (2017)

• The effective DPS cross-section measured by ALICE also agrees with the results from other experiments.

J/ψ production in jets

 J/ψ production in jets

LHCb: Phys. Rev. Lett. 118, 192001

- Prompt J/ ψ produced with larger jet activity than NRQCD, DPS and SPS predicted.
- The fragmentation function of non-prompt J/ ψ agree with PYTHIA 8 prediction.

 J/ψ production in jets

GFIP: Gluon Fragmentation Improved PYTHIA FJF: Fragmenting Jet Functions

• Models including parton showers describe data.

Analysis strategy

J/ψ production in jets

- 1. Jet reconstruction by using anti-kT algorithm with the FASTJET package.
- 2. Extract J/ ψ signal in jets with different $z(J/\psi)$.
- 3. Separation of prompt and non-prompt J/ψ .
- 4. Acceptance, efficiency and detector effect correction.

Fragmentation function

J/ψ production in jets

• Prompt and non-prompt J/ ψ fragmentation functions similar within uncertainties.

Fragmentation function

- The ALICE results shows the peak between 0.6 to 0.8 differently from the other experiments.
- ALICE explores a lower $p_{\rm T}$ range, enhancing model constraints.
- Model predictions are being preparing.

0.8

0.7

0.3

0.4

0.5

0.6

0.9

J/ψ pair production in pp collisions

- The J/ ψ pair production has been measured in the forward rapidity of pp collisions.
- The cross-section of J/ψ pair production measured by ALICE differs from that of other experiments due to their different phase spaces.
- The effective DPS cross-section measured by ALICE agrees with that of other experiments.

J/ψ production in jets in pp collisions

• Prompt and non-prompt J/ψ fragmentation functions agree within uncertainties.

Outlook

• The upgraded ALICE detectors and increased luminosity in Run 3 data-taking will enhance precision.

It will bring about more precise measurement.

