Resolving negative cross section of quarkonium hadroproduction using soft gluon factorization

An-Ping Chen

Jiangxi Normal University

Based on: Chen, Ma, Meng, Phys.Rev.D 108 (2023) 1, 014003

QWG 2024 :The 16th International Workshop on Heavy Quarkonium IISER Mohali

- I. Introduction
- II. Soft gluon factorization
- III. Phenomenological studies
- **IV. Summary**

I. Introduction

- II. Soft gluon factorization
- III. Phenomenological studies
- **IV. Summary**

Introduction

> NRQCD factorization Bodwin, Braaten, Lepage, PRD, 1995

$$(2\pi)^3 2P_H^0 \frac{d\sigma_H}{d^3 P_H} = \sum_n d\hat{\sigma}_n(P_H) \langle \mathcal{O}_n^H \rangle$$

 $d\hat{\sigma}_n$: production of a heavy quark pair in state $n(^{2S+1}L_J^{[c]})$. $\langle \mathcal{O}_n^H \rangle$: the hadronization of $Q\overline{Q}(n)$ to H;

can be ordered in powers of v;

universality.

> A glory history

- Solved IR divergences in P-wave quarkonium decay
- Explained ψ' surplus
- Explained χ_{c2}/χ_{c1} production ratio

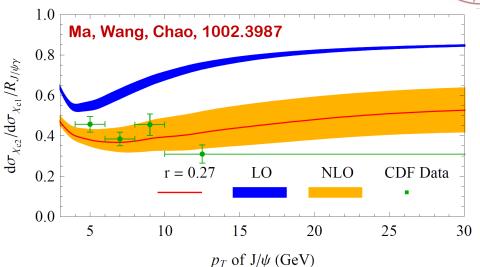
•

Difficulty

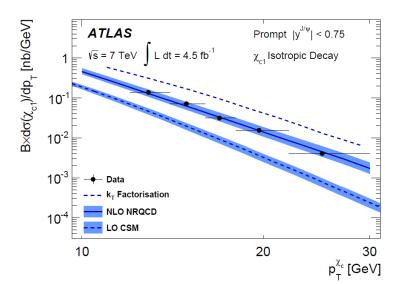
- Polarization puzzle
- Universality problem

> Difficulty: negative cross sections

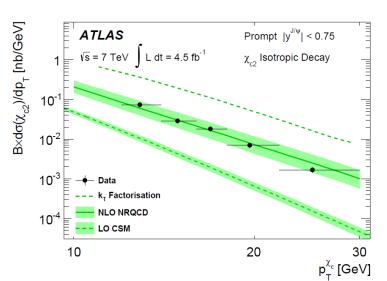
- \square Explain χ_{cI} production
- The ratio $R_{\chi_c} = \sigma_{\chi_{c2}}/\sigma_{\chi_{c1}}$ LO NRQCD: $R_{\chi_c} = 5/3$



The differential cross sections



ATLAS, 1404.7035

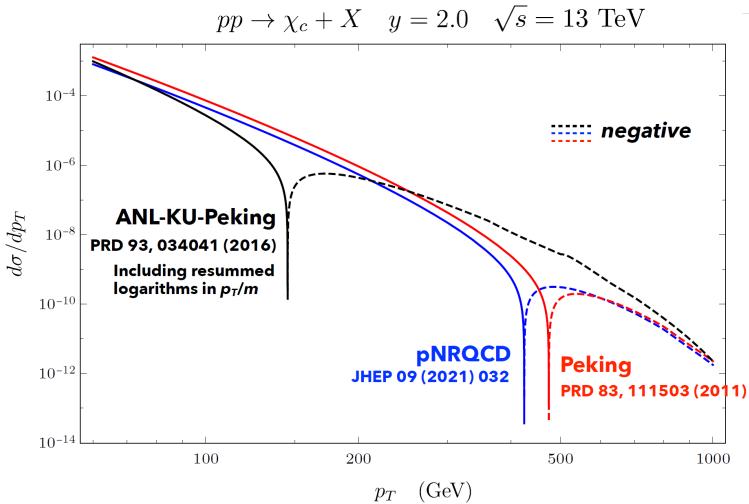


lacktriangle There are substantial cancellations between ${}^3{m S}_1^{[8]}$ and ${}^3{m P}_I^{[1]}$

 $d\sigma(\chi_{cJ}) = (2J+1)d\hat{\sigma}[{}^{3}S_{1}^{[8]}]\langle \mathcal{O}^{\chi_{c0}}({}^{3}S_{1}^{[8]})\rangle + (2J+1)d\hat{\sigma}[{}^{3}P_{J}^{[1]}]\frac{\langle \mathcal{O}^{\chi_{c0}}({}^{3}P_{0}^{[1]})\rangle}{2}$ Positive ~ **Negative** Prompt χ_{c1} nb/GeV 10^{-1} 10^{-2} LP+NLO, LHC |y| < 0.75 10^{-3} $-^3S_1^{(8)}$ $-^3P_1^{(1)}$ Prompt χ_{c2} 10^{-1} 10^{-2} LP+NLO, LHC |y| < 0.75 ${}^3S_1^{(8)}$ ${}^{---}$ $-{}^3P_2^{(1)}$ 15 20 30 $p_T (\text{GeV})$ Bodwin et al., 1509.07904

Perturbation unstable

• Cross sections turn negative at large p_T



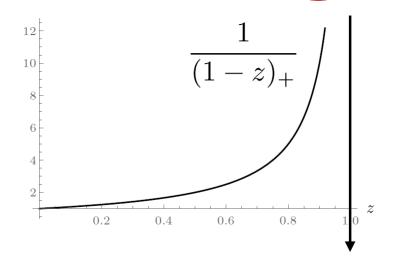
Hee Sok Chung, talk at The 15th International Workshop on Heavy Quarkonium

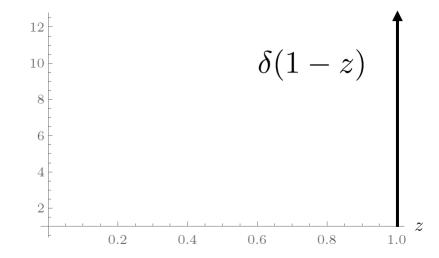
□ Why?

$$d\sigma(\chi_{cJ}) = (2J+1)d\hat{\sigma}[^{3}S_{1}^{[8]}]\langle \mathcal{O}^{\chi_{c0}}(^{3}S_{1}^{[8]})\rangle + (2J+1)d\hat{\sigma}[^{3}P_{J}^{[1]}]\frac{\langle \mathcal{O}^{\chi_{c0}}(^{3}P_{0}^{[1]})\rangle}{m_{c}^{2}}$$

$$d\hat{\sigma}[^{3}P_{J}^{[1]}] = d\hat{\sigma}_{g} \otimes \left\{0 \times \alpha_{s} + \frac{2\alpha_{s}^{2}}{27N_{c}m_{c}^{5}}\left[\left(\frac{Q_{J}}{2J+1} - \log\frac{\Lambda}{2m_{c}}\right)\delta(1-z) + \left(\frac{z}{(1-z)_{+}}\right) + \frac{P_{J}(z)}{2J+1}\right]\right\}$$

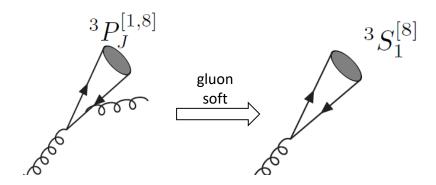
$$d\hat{\sigma}[^{3}S_{1}^{[8]}] = d\hat{\sigma}_{g} \otimes \frac{\pi\alpha_{s}}{24m_{s}^{3}}\delta(1-z)$$





Hee Sok Chung, talk at The 15th International Workshop on Heavy Quarkonium

• Cross section at very large p_T will depend strongly on $z \to 1$ behavior of FFs



- Soft gluon in P-wave: factorized to S-wave matrix element
- Plus functions: remnants of the infrared subtraction in matching the ${}^3P_I^{[1]}$ SDCs
- Subtraction scheme: at <u>zero momentum</u>, which contributes the largest production rate. Over subtracted!
- Solution: soft gluon momentum should be kept during subtraction process, or resum kinematic effects to all powers in v.
- □ Soft gluon factorization: resum a dominant series of power corrections (kinematic effects) and log corrections Ma, Chao, 1703.08402; Chen, Ma, 2005.08786.

I. Introduction

II. Soft gluon factorization

III. Phenomenological studies

IV. Summary

Soft gluon factorization(SGF)

> Factorization

Ma, Chao, 1703.08402; Chen, Jin, Ma, Meng 2103.15121.

$$(2\pi)^3 2P_H^0 \frac{d\sigma_H}{d^3 P_H} = \sum_{n,n'} \int \frac{dz}{z^2} d\hat{\sigma}_{[nn']}(P_H/z, m_Q, \mu_f) F_{[nn'] \to H}(z, M_H, m_Q, \mu_f),$$

- $d\hat{\sigma}_{[nn']}$: perturbatively calculable hard parts
- $F_{[nn'] \rightarrow H}$: nonperturbative soft gluon distributions (SGDs)
- $\bullet \quad n = {}^{2S+1} L_I^{[c]}$
- P_H : momentum of quarkonium
- M_H : mass of quarkonium
- $z = P_H^+/P^+$: the longitudinal momentum fraction with P denoting the total momentum of the intermediate $Q\bar{Q}$ pair

>Soft gluon distributions (SGDs)

Operator definition

Expectation values of bilocal operators in QCD vacuum

$$F_{[nn']\to H}(z, M_H, m_Q, \mu_f) = P_H^+ \int \frac{db^-}{2\pi} e^{-iP_H^+ b^-/z} \langle 0 | [\bar{\Psi} \mathcal{K}_n \Psi]^{\dagger}(0) [a_H^{\dagger} a_H] [\bar{\Psi} \mathcal{K}_{n'} \Psi](b^-) | 0 \rangle_{S},$$

with

$$a_H^{\dagger} a_H = \sum_X \sum_{J_z^H} |H + X\rangle\langle H + X|$$

$$\mathcal{K}_n(rb) = \frac{\sqrt{M_H}}{M_H + 2m} \frac{M_H + \rlap/P_H}{2M_H} \Gamma_n \frac{M_H - \rlap/P_H}{2M_H} \mathcal{C}^{[c]}$$

Spin project operators:

$$\Gamma_n = \sum_{L_z, S_z} \langle L, L_z; S, S_z | J, J_z \rangle \Gamma_{LL_z}^o \Gamma_{SS_z}^s$$

Color project operators:

$$\mathcal{C}^{[1]} = \frac{\mathbf{1}_c}{\sqrt{N_c}}$$
 $\mathcal{C}^{[8]} = \sqrt{2}t^{\bar{a}} \, \Phi_{a\bar{a}}^{(A)}(rb)$

☐ Gauge link

$$\Phi_l(rb^-) = \mathcal{P} \exp\left[-ig_s \int_0^\infty d\xi l \cdot A(rb^- + \xi l)\right],$$

- Evaluated in *small* region
 - Subscript "S": evaluate the matrix element in the region where offshellness of all particles is much smaller than heavy quark mass

FFs in SGF

- $D_{f \rightarrow H}$: single parton FFs
- $\mathcal{D}_{[Qar{Q}(\kappa)] o H}$: double parton
- $\hat{z} = z/x$

$$D_{f\to H}(z,\mu_{0})$$

$$= \sum_{n,n'} \int \frac{\mathrm{d}x}{x} \hat{D}_{f\to Q\bar{Q}[nn']}(\hat{z}; M_{H}/x, m_{Q}, \mu_{0}, \mu_{\Lambda})$$

$$\times F_{[nn']\to H}(x, M_{H}, m_{Q}, \mu_{\Lambda}), \qquad (2a)$$

$$D_{[Q\bar{Q}(\kappa)]\to H}(z, \zeta, \zeta', \mu_{0})$$

$$= \sum_{n,n'} \int \frac{\mathrm{d}x}{x} \hat{D}_{[Q\bar{Q}(\kappa)]\to Q\bar{Q}[nn']}(\hat{z}, \zeta, \zeta'; M_{H}/x, m_{Q}, \mu_{0}, \mu_{\Lambda})$$

$$\times F_{[nn']\to H}(x, M_{H}, m_{Q}, \mu_{\Lambda}), \qquad (2b)$$

Short distance hard parts at LO

$$\hat{D}_{g\to Q\bar{Q}[^{3}S_{1,T}^{[8]}]}^{LO,(0)}(z, M_{H}, \mu_{0}, \mu_{\Lambda}) = \frac{\pi\alpha_{s}}{(N_{c}^{2} - 1)} \frac{8}{M_{H}^{3}} \delta(1 - z), \quad (9a)$$

$$\hat{D}_{g\to Q\bar{Q}[^{1}S_{0}^{[8]}]}^{LO,(0)}(z, M_{H}, \mu_{0}, \mu_{\Lambda})$$

$$= \frac{8\alpha_{s}^{2}}{M_{H}^{3}} \frac{N_{c}^{2} - 4}{2N_{c}(N_{c}^{2} - 1)} \left[(1 - z) \ln[1 - z] - z^{2} + \frac{3}{2}z \right], \quad (9b)$$

$$\hat{D}_{g\to Q\bar{Q}[^{3}P_{0}^{[1]}]}^{LO,(0)}(z; M_{H}, \mu_{0}, \mu_{\Lambda})$$

$$= \frac{32\alpha_{s}^{2}}{M_{H}^{5}N_{c}} \frac{2}{9} \left[\frac{1}{36}z(837 - 162z + 72z^{2} + 40z^{3} + 8z^{4}) + \frac{9}{2}(5 - 3z) \ln(1 - z) \right], \quad (9c)$$

 The P-wave short distance hard parts do not include terms proportional to plus distributions

- I. Introduction
- II. Soft gluon factorization
- III. Phenomenological studies
- **IV. Summary**

Phenomenological studies

NORMAL UNILLE RESULT

>Collinear factorization

lacksquare Heavy quarkonium production at large p_T

$$\begin{split} \mathrm{d}\sigma_{A+B\to H+X}(p) &\approx \sum_{i,j} f_{i/A}(x_1,\mu_F) f_{j/B}(x_2,\mu_F) \bigg\{ \sum_f D_{f\to H}(z,\mu_F) \otimes \mathrm{d}\hat{\sigma}_{i+j\to f+X}(\hat{P}/z,\mu_F) \\ &+ \sum_{\kappa} \mathcal{D}_{[\mathcal{Q}\bar{\mathcal{Q}}(\kappa)]\to H}(z,\zeta,\zeta',\mu_F) \otimes \mathrm{d}\hat{\sigma}_{i+j\to[\mathcal{Q}\bar{\mathcal{Q}}(\kappa)]+X}(\hat{P}(1\pm\zeta)/2z,\hat{P}(1\pm\zeta')/2z,\mu_F) \bigg\}, \end{split}$$
 Kang, Ma, Qiu, Sterman, 1401.0923

- ☐ Factorization of FFs
 - SGF
 - NRQCD factorization
- Nonperturbative model for SGDs

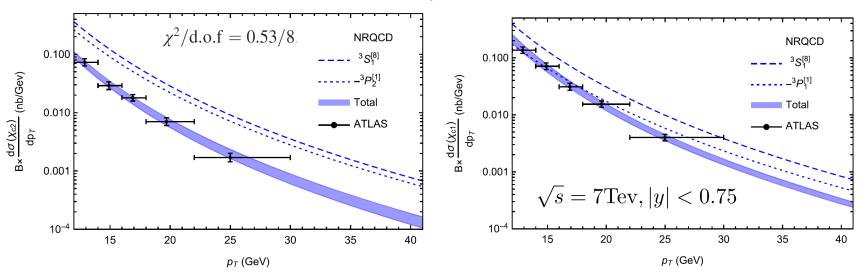
$$F^{\text{mod}}(x) = \frac{N^H \Gamma(M_H b/\bar{\Lambda})(1-x)^{b-1} x^{M_H b/\bar{\Lambda}-b-1}}{\Gamma(M_H b/\bar{\Lambda}-b)\Gamma(b)}$$

- N^H : the normalization, $N^H[n] \approx \langle \mathcal{O}^H(n) \rangle$
- $\overline{\Lambda}$: the average radiated momentum in the hadronization process
- b: related to the second moment of model function

\triangleright Production of χ_{cI}

■ NRQCD factorization

The fitted cross sections compared with ATLAS data



Define the ratio

$$r(\chi_{c0}) \equiv rac{\langle \mathcal{O}^{\chi_{c0}}(^3S_1^{[8]})
angle}{\langle \mathcal{O}^{\chi_{c0}}(^3P_0^{[1]})
angle/m_c^2},$$

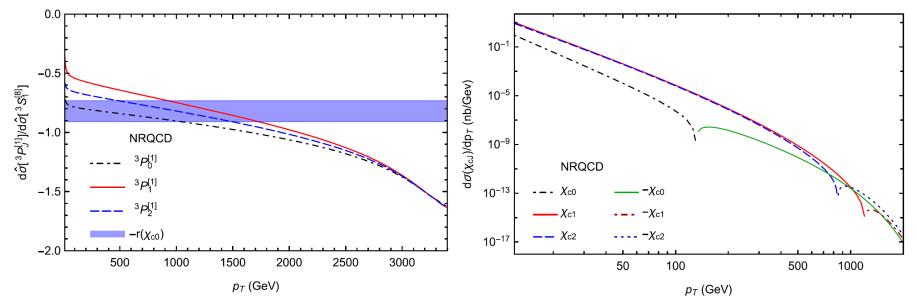
The cross sections

$$d\sigma(\chi_{cJ}) = (2J+1)d\hat{\sigma}[{}^{3}S_{1}^{[8]}] \frac{\langle \mathcal{O}^{\chi_{c0}}({}^{3}P_{0}^{[1]})\rangle}{m_{c}^{2}} \left[r(\chi_{c0}) + \frac{d\hat{\sigma}[{}^{3}P_{J}^{[1]}]}{d\hat{\sigma}[{}^{3}S_{1}^{[8]}]} \right].$$

To achieve a positive cross section, it is necessary to have

$$\frac{d\hat{\sigma}[^{3}P_{J}^{[1]}]}{d\hat{\sigma}[^{3}S_{1}^{[8]}]} > -r(\chi_{c0}).$$

• Left: comparison between the ratios and $-r(\chi_{c0})$ Right: the p_T distributions when the LDMEs take the central values



• The ratios fall below the lower bound of $-r(\chi_{c0})$ at very large p_T

■ SGF

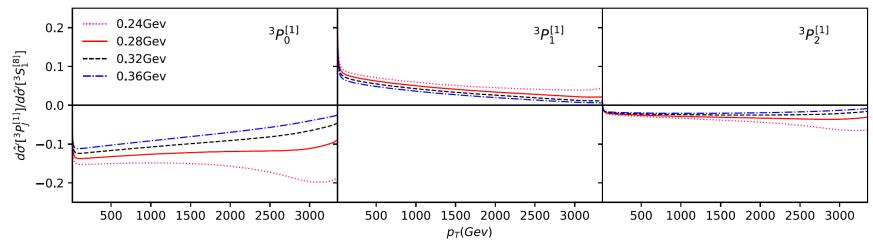
The cross sections

$$d\sigma(\chi_{cJ}) = (2J+1)d\hat{\sigma}'[{}^{3}S_{1}^{[8]}] \frac{N^{\chi_{c0}}[{}^{3}P_{0}^{[1]}]}{m_{c}^{2}} \left[r'(\chi_{c0}) + \frac{d\hat{\sigma}'[{}^{3}P_{J}^{[1]}]}{d\hat{\sigma}'[{}^{3}S_{1}^{[8]}]}\right].$$

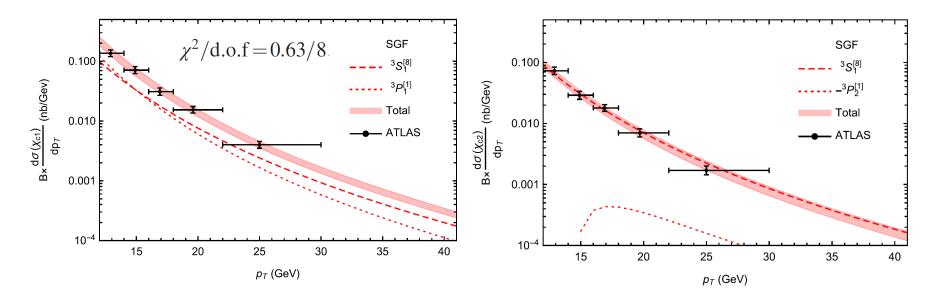
with

$$r'(\chi_{c0}) \equiv \frac{N^{\chi_{c0}}[{}^3S_1^{[8]}]}{N^{\chi_{c0}}[{}^3P_0^{[1]}]/m_c^2}.$$

- $d\hat{\sigma}'[^3P_J^{[1]}]/d\hat{\sigma}'[^3S_1^{[8]}]$ is sensitive to the parameters Λ
- Fix $\bar{\Lambda} \begin{bmatrix} {}^{3}S_{1}^{[8]} \end{bmatrix} = 0.4$ Gev and vary $\bar{\Lambda} \begin{bmatrix} {}^{3}P_{J}^{[1]} \end{bmatrix} = 0.36, 0.32, 0.28, 0.24$ Gev



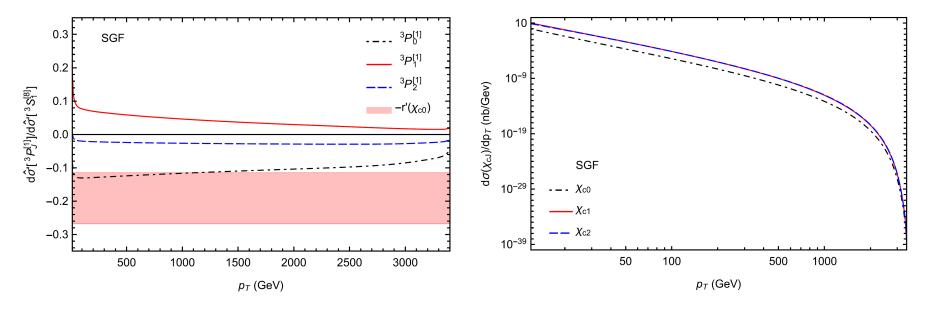
- A constraint relation is suggested: $\bar{\Lambda}[^3P_J^{[1]}] \ge 0.7\bar{\Lambda}[^3S_1^{[8]}]$
- We set $\overline{\Lambda}$ $\begin{bmatrix} {}^{3}S_{1}^{[8]} \end{bmatrix} = 0.4$ Gev and $\overline{\Lambda}$ $\begin{bmatrix} {}^{3}P_{J}^{[1]} \end{bmatrix} = 0.3$ Gev
- The fitted cross sections compared with ATLAS data



The fit to experimental data is as good as that in NRQCD factorization

• Left: comparison between the ratios and $-r'(\chi_{c0})$

Right: the p_T distributions when the parameters take the central values



- There is a wide range of $r'(\chi_{c0})$ in which the ratios is larger than $-r'(\chi_{c0})$
- The negative cross section problem is resolved in SGF

- I. Introduction
- II. Soft gluon factorization
- III. Phenomenological studies

IV. Summary

Summary

- We studied the hadroproduction of χ_{cJ} using the SGF and NRQCD factorization;
- We confirm that the NRQCD predictions for χ_{cJ} production rates at the LHC turn negative at sufficiently large p_T ;
- Our results show that the fit to experimental data in SGF is as good as that in NRQCD factorization;
- Our results show that the negative cross section problem in NRQCD can be resolved in SGF;
- It will be very useful to apply SGF to study the polarizations of ψ (ns) production at LHC in the future.

Thank you!