Inclusive Production of Fully Charmed Tetraquarks at the LHC and EIC

Feb 26, 2024

ZHANG Jia-Yue

Jefferson Lab In collaboration with: Feng Feng, Yingsheng Huang, Yu Jia, Wen-Long Sang, and De-Shan Yang. Phys.Rev.D 108 (2023) 5, L051501, 2311.08292

Motivation

NRQCD Factorization

 $pp \rightarrow T_{4c} + X$

 $\gamma p \rightarrow T_{4c} + X$

Summary

Production of T_{4c} ZHANG Jia-Yue Motivation Calculation $\gamma p \rightarrow T_{4c} + X$

Motivation

Discovery of X(6900)

- First fully-charm tetraquark candidate
- Strong decay to two J/ψ , C = +
- Confirmed by both the ATLAS and CMS collaborations

Theoretical Interpretation of X(6900)

- Radial excitation of 0⁺⁺ tetraquark: Z.G. Wang, 2020; Lü et al., 2020; Giron and Lebed 2020; Karliner and Rosner 2020; J.Zhao et al., 2020; R.Zhu, 2020; B.-C. Yang et al., 2020; Z. Zhao et al., 2020; Ke et al., 2021
- P-wave tetraquark: Liu et al., 2020; H.-X.Chen, et al., 2020; R.Zhu, 2020
- ground-state S-wave tetraquark: Gordillo et al., 2020

Production of T_{4c} ZHANG Jia-Yue X(6900)

Theoretical Interpretation of X(6900)

- Radial excitation of 0⁺⁺ tetraquark: Z.G. Wang, 2020; Lü et al., 2020; Giron and Lebed 2020; Karliner and Rosner 2020; J.Zhao et al., 2020; R.Zhu, 2020; B.-C. Yang et al., 2020; Z. Zhao et al., 2020; Ke et al., 2021
- P-wave tetraquark: Liu et al., 2020; H.-X.Chen, et al., 2020; R.Zhu, 2020
- ▶ ground-state S-wave tetraquark: Gordillo et al., 2020
- ▶ 0^{++} hybird: Wan and Qiao, 2020
- Resonance of charmonium scattering: G. Yang et al., 2020; Jin et al., 2020;
- Kinematic cusp of final-state interaction: J.-Z. Wang et al., 2020; X.-K.Dong et al.2021; Guo and Oller, 2021; Gong et al., 2020
- BSM explanation: J.-W.Zhu et al., 2020; Dosch et al., 2020

Motivation x(6900) T_{4Q} NRQCD Factorization Formula NRQCD Operators $pp \rightarrow T_{4C} + X$ Factorization Perturbative Calculation SDCs Phenomenology $\gamma p \rightarrow T_{4C} + X$ Experimente

Production of T_{4c} ZHANG Jia-Yue

SDC Phenomenology

Theoretical Studies of Fully-heavy Tetraquark

Theoretical investigations on the fully heavy tetraquarks date back to late 1970s. *Iwasaki*, 1976; Chao, 1981 X(6900) T_{4Q} NRQCD Factorization Factorization Formula NRQCD Operators

Production of T_{4c} ZHANG Jia-Yue

Factorization Perturbative Calculation SDCs Phenomenolog

 $\gamma p \rightarrow T_{4c} + 2$ Factorization SDC Phenomenology

Summary

Theoretical Studies of Fully-heavy Tetraquark

- Theoretical investigations on the fully heavy tetraquarks date back to late 1970s. *Iwasaki*, 1976; Chao, 1981
- Phenomenological studies of spectra and decay properties: Badalian et al., 1987; et al., 2006; Wang, 2017,2020; W. Chen et al., 2017,2018; Wu et al., 2018; Liu et al., 2019; Wang, Di, 2019; H.-X. Chen et al., 2020; Jin et al., 2020; Guo, Oller, 2020....

Production of T_{4c} ZHANG Jia-Yue

X(6900) T_{4Q} NRQCD

-actorization Factorization Formula NRQCD Operators

 $pp \rightarrow T_{4c} +$ Factorization Perturbative Calculation SDCs Phenomenology

 $\gamma p \rightarrow T_{4c} + 2$ Factorization SDC Phenomenology

Theoretical Studies of Fully-heavy Tetraquark

- Theoretical investigations on the fully heavy tetraquarks date back to late 1970s. *Iwasaki*, 1976; Chao, 1981
- Phenomenological studies of spectra and decay properties: Badalian et al., 1987; et al., 2006; Wang, 2017,2020; W. Chen et al., 2017,2018; Wu et al., 2018; Liu et al., 2019; Wang, Di, 2019; H.-X. Chen et al., 2020; Jin et al., 2020; Guo, Oller, 2020....
- Search for the fully-bottom tetraquark on Lattice NRQCD: found no indication of any states below $2\eta_b$ threshold in the $0^{++}, 1^{+-}$ and 2^{++} channels. *Hughes et al.*, 2018

Production of T_{4c} ZHANG Jia-Yue

Motivation X(6900) T_{4Q}

NRQCD Factorization Factorization Formula NRQCD Operators

 $pp \rightarrow T_{4c} +$ Factorization Perturbative Calculation SDCs Phenomenology

 $\gamma p \rightarrow T_{4c} + 2$ Factorization SDC Phenomenology

- Duality relations: Berezhnoy et al., 2011, 2012; Kaliner et al., 2017
- Color evaporation model: Carvalho et al., 2016; Maciuła et al., 2020

• $\gamma\gamma$ interaction: *Gonçalves*, *Moreira*, 2021

- Duality relations: Berezhnoy et al., 2011, 2012; Kaliner et al., 2017
- Color evaporation model: Carvalho et al., 2016; Maciuła et al., 2020
- NRQCD-inspired: Ma, Zhang, 2020; Feng et al., 2020,2021; Zhu, 2020
- $\gamma\gamma$ interaction: *Gonçalves, Moreira, 2021*

NRQCD Factorization Bodwin, Braaten, Lepage, 1995

► To produce T_{4Q}, one needs to produce two charm quarks and two anti-charm quarks at short distances ~ 1/m_Q before the hadronization. Production of T_{4c} ZHANG Jia-Yue Factorization Formula

- ▶ To produce T_{4Q} , one needs to produce two charm quarks and two anti-charm quarks at short distances $\sim 1/m_Q$ before the hadronization.
- NRQCD factorization formula

$$\sigma(T_{4Q}) = \sum_{n} \frac{F_n(\mu_{\Lambda})}{m_Q^{d_n-4}} \left\langle 0 \left| \mathcal{O}_n^{T_{4Q}}(\mu_{\Lambda}) \right| 0 \right\rangle,$$

NRQCD production operators

$$\mathcal{O}_{n}^{T_{4Q}} = O_{n} \left(\sum_{X} \sum_{m_{J}} |T_{4Q} + X\rangle \langle T_{4Q} + X| \right) O_{n'}^{\dagger}$$

ZHANG Jia-Yue Eactorization Formula

24

Production of T_{4c}

We construct all the NRQCD local operators at leading order of velocity expansion for the S-wave tetraquark with $J^{PC}=0^{++},1^{+-},2^{++}$

$$\begin{split} O_{\overline{\mathbf{3}}\otimes\mathbf{3}}^{(0)} &= -\frac{1}{\sqrt{3}} [\psi_a^t(\mathrm{i}\sigma^2)\sigma^i\psi_b] [\chi_c^\dagger\sigma^i(\mathrm{i}\sigma^2)\chi_d^*] \mathcal{C}_{\overline{\mathbf{3}}\otimes\mathbf{3}}^{ab;cd} \\ O_{\mathbf{6}\otimes\overline{\mathbf{6}}}^{(0)} &= [\psi_a^t(\mathrm{i}\sigma^2)\psi_b] [\chi_c^\dagger(\mathrm{i}\sigma^2)\chi_d^*] \ \mathcal{C}_{\mathbf{6}\otimes\overline{\mathbf{6}}}^{ab;cd}, \\ O_{\overline{\mathbf{3}}\otimes\mathbf{3}}^{i;(1)} &= \frac{\mathrm{i}}{\sqrt{2}} \epsilon^{ijk} \left(\psi_a^\dagger\sigma^j\mathrm{i}\sigma^2\psi_b^*\right) \left(\chi_c^t\mathrm{i}\sigma^2\sigma^k\chi_d\right) \mathcal{C}_{\overline{\mathbf{3}}\otimes\mathbf{3}}^{ab;cd} \\ O_{\overline{\mathbf{3}}\otimes\mathbf{3}}^{\alpha\beta;(2)} &= [\psi_a^t(\mathrm{i}\sigma^2)\sigma^m\psi_b] [\chi_c^\dagger\sigma^n(\mathrm{i}\sigma^2)\chi_d^*] \ \Gamma^{\alpha\beta;mn} \ \mathcal{C}_{\overline{\mathbf{3}}\otimes\mathbf{3}}^{ab;cd}, \\ \mathcal{C}_{\overline{\mathbf{3}}\otimes\mathbf{3}}^{ab;cd} &:= \frac{1}{2\sqrt{3}} (\delta^{ac}\delta^{bd} - \delta^{ad}\delta^{bc}), \quad \mathcal{C}_{\mathbf{6}\otimes\overline{\mathbf{6}}}^{ab;cd} &:= \frac{1}{2\sqrt{6}} (\delta^{ac}\delta^{bd} + \delta^{ad}\delta^{bc}) \\ \Gamma^{kl;mn} &:= \frac{1}{2} (\delta^{km}\delta^{ln} + \delta^{kn}\delta^{lm} - \frac{2}{3}\delta^{kl}\delta^{mn}) \end{split}$$

ZHANG Jia-Yue NRQCD Operators

Production of T_{4c}

The operators manifest the correct C/P-parity under the charge conjugation/parity transformations

$$\psi \to i \left(\chi^{\dagger} \sigma^2\right)^t, \quad \chi \to -i \left(\psi^{\dagger} \sigma^2\right)^t$$

$$\psi(t, \mathbf{r}) \rightarrow \psi(t, -\mathbf{r}), \quad \chi(t, \mathbf{r}) \rightarrow -\chi(t, -\mathbf{r})$$

Production of
$$T_{4c}$$

ZHANG Jia-Yue
Motivation
 $\chi_{(900)}$
 T_{4q}
NRQCD
Factorization
Factorization
Factorization
Porturbative
Calculation
SDCs
Phenomenology
 $\gamma p \rightarrow T_{4c} + X$
Factorization
SDCs
Phenomenology
 $\gamma p \rightarrow T_{4c} + X$
Factorization
SDC
Phenomenology
Summary

The operators manifest the correct C/P-parity under the charge conjugation/parity transformations

$$\psi \to i (\chi^{\dagger} \sigma^2)^t, \quad \chi \to -i (\psi^{\dagger} \sigma^2)^t$$

$$\psi(t, \mathbf{r}) \rightarrow \psi(t, -\mathbf{r}), \quad \chi(t, \mathbf{r}) \rightarrow -\chi(t, -\mathbf{r})$$

We use the basis in which the diquark and anti-diquark in the color-triplet and color-sexet, respectively. The operators can also be constructed from quark-antiquark pairs in the color-singlet and color-octet. Production of T₄ c ZHANG Jia-Yue NRQCD Operators $\gamma p \rightarrow T_{4c} + X$

The operators manifest the correct C/P-parity under the charge conjugation/parity transformations

$$\psi \to i (\chi^{\dagger} \sigma^2)^t, \quad \chi \to -i (\psi^{\dagger} \sigma^2)^t$$

$$\psi(t, \mathbf{r}) \rightarrow \psi(t, -\mathbf{r}), \quad \chi(t, \mathbf{r}) \rightarrow -\chi(t, -\mathbf{r})$$

- We use the basis in which the diquark and anti-diquark in the color-triplet and color-sexet, respectively. The operators can also be constructed from quark-antiquark pairs in the color-singlet and color-octet.
- These NRQCD operators can also be inferred by performing the Foldy-Wouthuysen-Tani transformation from the QCD interpolating currents in QCD sum rules. *H.-X. Chen et al.,2020*

 $\begin{array}{l} \mbox{Motivation} \\ \chi(6900) \\ T_{4q} \\ \mbox{NROCD} \\ \mbox{Factorization} \\ \mbox{Factorization} \\ \mbox{Factorization} \\ \mbox{Pactorization} \\ \mbox{Perturbative} \\ \mbox{Calculation} \\ \mbox{SDCs} \\ \mbox{Penomenology} \\ \mbox{$\gamma p \rightarrow T_{4c} + \lambda$} \\ \mbox{Factorization} \\ \mbox{SDC} \\ \mbox{Penomenology} \\ \mbox{Phenomenology} \\ \mbox{Phenomenology} \\ \mbox{Phenomenology} \\ \end{array}$

Production of T_{4c} ZHANG Jia-Yue

Summary

Inclusive Production of T_{4c} on LHC

QCD factorization:

$$d\sigma (p + p \to T_{4c} + X) = \sum_{i,j=q,g} \int_0^1 dx_1 dx_2 f_{i/p} (x_1, \mu) f_{j/p} (x_2, \mu) \\ \times d\hat{\sigma}_{ij \to T_{4c} + X} (x_1 x_2 s, \mu),$$

Production of T_{4c} ZHANG Jia-Yue

Motivation

 $\begin{array}{l} x(6900) \\ T_{4_Q} \\ \\ \mbox{NRQCD} \\ \mbox{Factorization} \\ \mbox{Factorization Formula} \\ \\ \mbox{NRQCD Operators} \\ pp \rightarrow T_{4_C} + X \\ \mbox{Factorization} \end{array}$

Perturbative Calculation SDCs Phenomenology

10

 $\begin{array}{l} \gamma p \rightarrow \ T_{4\,c} + X \\ \text{Factorization} \\ \text{SDC} \\ \text{Phenomenology} \end{array}$

Summary

Inclusive Production of T_{4c} on LHC

QCD factorization:

$$d\sigma (p + p \to T_{4c} + X) = \sum_{i,j=q,g} \int_0^1 dx_1 dx_2 f_{i/p} (x_1, \mu) f_{j/p} (x_2, \mu) \\ \times d\hat{\sigma}_{ij \to T_{4c} + X} (x_1 x_2 s, \mu),$$

NRQCD factorization formula

$$\frac{\mathrm{d}\hat{\sigma}_{T_{4c}^{n}+X}}{\mathrm{d}\hat{t}} = \frac{2M_{T_{4c}}}{m_{c}^{14}} \left[F_{3,3}^{n} \left\langle \mathcal{O}_{3,3}^{n} \right\rangle + F_{3,6}^{n} \, 2\mathrm{Re} \left\langle \mathcal{O}_{3,6}^{n} \right\rangle + F_{6,6}^{n} \left\langle \mathcal{O}_{6,6}^{n} \right\rangle \right]$$

 \hat{s}, \hat{t} : Mandelstam variables of parton scattering; F_n : SDCs; $\langle \mathcal{O}_n^{T_{4c}} \rangle$: vacuum matrix elements of NRQCD production operators Production of T₄c ZHANG Jia-Yue

 T_{4Q}

NRQCD Factorization Factorization Formula NRQCD Operators

 $pp \rightarrow T_{4c} +$ Factorization

Perturbative Calculation SDCs Phenomenology

 $\gamma p \rightarrow T_{4c} + \lambda$ Factorization SDC Phenomenology

Perturbative Matching

Since the SDCs are insensitive to the long-distance physics, one can use the perturbative matching procedure to determine the SDCs.

- Replace the physical tetraquark state T_{4c}^J with a free 4-quark state
- Calculate both sides of factorization formula in perturbative QCD and perturbative NRQCD
- Solving the factorization formula to determine the SDCs.

E.g.,

$$\begin{aligned} \left| \mathcal{T}^{J,m_j}_{\bar{\mathbf{3}}\otimes\mathbf{3}}(Q) \right\rangle &= \frac{1}{2} \sum_{s_*,\lambda_*} \left\langle \frac{1}{2}\lambda_1 \frac{1}{2}\lambda_2 \left| 1s_1 \right\rangle \left\langle \frac{1}{2}\lambda_3 \frac{1}{2}\lambda_4 \left| 1s_2 \right\rangle \left\langle 1s_1 1s_2 \right| Jm_j \right\rangle \right. \\ \left. \mathcal{C}^{ab;cd}_{\mathbf{3}\otimes\mathbf{3}} \left| c_a^{\lambda_1}(q_1) c_b^{\lambda_2}(P-q_1) \bar{c}_c^{\lambda_3}(q_2) \bar{c}_d^{\lambda_4}(Q-P-q_2) \right\rangle \right. \\ &\Rightarrow \left\langle \mathcal{T}^{J,m_j}_{\bar{\mathbf{3}}\otimes\mathbf{3}}(Q) \left| \varepsilon(m_j) \cdot O^{(J)\dagger}_{\bar{\mathbf{3}}\otimes\mathbf{3}} \right| 0 \right\rangle = 4 \end{aligned}$$

Production of T_{4c} ZHANG Jia-Yue

 $\begin{array}{l} \mbox{Motivation} \\ \chi(6900) \\ T_{4q} \\ \mbox{NRQCD} \\ \mbox{Factorization} \\ \mbox{Factorization Formula} \\ \mbox{NRQCD Operators} \\ \mbox{pp} \rightarrow T_{4c} + X \\ \mbox{Factorization} \\ \mbox{Factorization} \\ \mbox{Perturbative} \\ \mbox{Calculation} \\ \mbox{SDCs} \\ \mbox{Phenomenology} \end{array}$

 $\gamma p \rightarrow T 4_{c} +$ Factorization SDC Phenomenology

Feynman Diagrams

► There are about 600 Feynman diagrams for the partonic process $gg \rightarrow T_{4c} + g$.

SDCs

The full expression of SDCs is too lengthy, here we only present the asymptotic behavior of SDCs at large transverse momentum.

$$\begin{split} F_{3,3}^{0^{++}} &= -\frac{8836\pi^4 m_c^6 \alpha_s^5 \left(\hat{s}\hat{t} + \hat{s}^2 + \hat{t}^2\right)^4}{243\hat{s}^5 \hat{t}^3 \left(\hat{s} + \hat{t}\right)^3} + \mathcal{O}\left(\frac{m_c^7}{p_T^7}\right), \\ F_{3,6}^{0^{++}} &= -\frac{4418\sqrt{\frac{2}{3}}\pi^4 m_c^6 \alpha_s^5 \left(\hat{s}\hat{t} + \hat{s}^2 + \hat{t}^2\right)^4}{81\hat{s}^5 \hat{t}^3 \left(\hat{s} + \hat{t}\right)^3} + \mathcal{O}\left(\frac{m_c^7}{p_T^7}\right), \\ F_{6,6}^{0^{++}} &= -\frac{4418\pi^4 m_c^6 \alpha_s^5 \left(\hat{s}\hat{t} + \hat{s}^2 + \hat{t}^2\right)^4}{81\hat{s}^5 \hat{t}^3 \left(\hat{s} + \hat{t}\right)^3} + \mathcal{O}\left(\frac{m_c^7}{p_T^7}\right), \\ F_{3,3}^{0^{++}} &= \frac{960400\pi^4 m_c^8 \alpha_s^5 \left(\hat{s}\hat{t} + \hat{s}^2 + \hat{t}^2\right)^2}{2187\hat{s}^4 \hat{t}^2 \left(\hat{s} + \hat{t}\right)^2} + \mathcal{O}\left(\frac{m_c^9}{p_T^9}\right), \\ F_{3,3}^{2^{++}} &= -\frac{140936\pi^4 m_c^6 \alpha_s^5 \left(\hat{s}\hat{t} + \hat{s}^2 + \hat{t}^2\right)^4}{1215\hat{s}^5 \hat{t}^3 \left(\hat{s} + \hat{t}\right)^3} + \mathcal{O}\left(\frac{m_c^7}{p_T^7}\right). \end{split}$$

$$\label{eq:constraint} \begin{array}{c} \mathbf{z} \\ \mathbf{ZHANG} \, \mathbf{dia} \cdot \mathbf{Yue} \\ \mathbf{Mission} \\ \mathbf{x}_{(6900)} \\ \mathbf{x}_{(q)} \\ \mathbf{NRQCD} \\ \mathbf{Factorization} \\ \mathbf{Factorization} \\ \mathbf{Factorization} \\ \mathbf{Pp} \rightarrow T_{4c} + X \\ \mathbf{Factorization} \\ \mathbf{SDCs} \\ \mathbf{Phenomenology} \\ \mathbf{\gamma}p \rightarrow T_{4c} + X \\ \mathbf{Factorization} \\ \mathbf{SDCs} \\ \mathbf{Phenomenology} \\ \mathbf{\gamma}p \rightarrow T_{4c} + X \\ \mathbf{Factorization} \\ \mathbf{SDC} \\ \mathbf{Phenomenology} \\ \mathbf{Surmary} \\ \end{array}$$

24

Production of $T_{A,a}$

LDMEs

► Four-body potential models are adopted to estimate the LDMEs. The results are proportional to the wave functions at the origin, where the color structure labels C_1 and C_2 indicate the color configurations $\mathbf{\bar{3}} \otimes \mathbf{3}$ or $\mathbf{6} \otimes \mathbf{\bar{6}}$.

 $\left\langle O_{C_1,C_2}^{(0)} \right\rangle \approx 16\psi_{C_1}(\mathbf{0})\psi_{C_2}^*(\mathbf{0}), \quad \left\langle O_{C_1,C_2}^{(2)} \right\rangle \approx 80\psi_{C_1}(\mathbf{0})\psi_{C_2}^*(\mathbf{0}).$

Numerical results: (GeV⁹)
 Model I: Lü, Chen, Dong, EPJC2020
 Model II: M.-S. Liu, F.-X. Liu, et al., 2020

		0^{++}	1+-	2++	
	$\left\langle O_{3,3}^{(0)} \right\rangle$	$\left\langle O_{3,6}^{(0)} \right\rangle$	$\left\langle O_{6,6}^{(0)} \right\rangle$	$\left\langle O_{3,3}^{(1)} \right\rangle$	$\left\langle O_{3,3}^{(2)} \right\rangle$
Model I	0.0347	0.0211	0.0128	0.0780	0.072
Model II	0.0187	-0.0161	0.0139	0.0480	0.0628

Production of T_{4c} ZHANG Jia-Yue

 $\begin{array}{l} \text{MotiVation} \\ \chi(6900) \\ T_{4Q} \\ \text{Ractorization} \\ \text{Factorization Formula} \\ \text{NROCD Operators} \\ pp \rightarrow T_{4C} + X \\ \text{Factorization} \\ \text{Parturbative} \\ \text{Calculation} \\ \text{SDCs} \\ \textbf{Phenomenology} \\ \gamma p \rightarrow T_{4C} + X \\ \text{Factorization} \\ \text{SDC} \\ \text{SDC} \\ \textbf{SDC} \\ \textbf{SDC}$

Phenomenoi

Summary

Phenomenology - p_T Spectrum

► $\sqrt{s} = 13 \text{ TeV};$ **CTEQ14 PDF sets**; $\mu \in [m_T/2, 2m_T], \quad m_T = \sqrt{m_{T_{4c}}^2 + p_T^2};$ $m_c = 1.5 \text{ GeV};$ $p_T \in [20, 60] \text{ GeV};$ **rapidity cut** $-5 \le y \le 5$

► The p_T spectra of the S-wave T_{4c} at the LHC predicted from two potential models.

Production of T_{4c} ZHANG Jia-Yue Motivation X(6900) T_{4q}

NRQCD Factorization Factorization Formula NRQCD Operators

 $\begin{array}{l} pp \rightarrow T_{4\,c} + \chi \\ \mbox{Factorization} \\ \mbox{Perturbative} \\ \mbox{Calculation} \\ \mbox{SDCs} \end{array} \\ \begin{array}{l} \mbox{Phenomenology} \\ \mbox{Pactorization} \\ \mbox{SDC} \\ \mbox{Phenomenology} \\ \mbox{Phenomenology} \end{array} \end{array}$

Phenomenology - Model Comparison

► Comparison of the *p*_T distributions of the *S*-wave *T*_{4*c*} between two phenomenological potential models.

Contributions from different color configurations

24

Production of T_{4c}

Phenomenology - vs Fragmentation

Comparison of the p_T distributions of the T_{4c} between this work and from the fragmentation mechanism. Feng, et al., PRD2022

Phenomenology

24

Production of T_{4c} ZHANG Jia-Yue

Phenomenology - σ & Event Numbers

- ► The integrated production rates for various S-wave T_{4c} states (6 GeV ≤ p_T ≤ 100 GeV) and the estimated event yields.
- Luminosity: $3000 \, \text{fb}^{-1}$.

	Мо	del I	Model II		
	$\sigma [{\rm nb}]$	$N_{\rm events}/10^9$	$\sigma [{\rm nb}]$	$N_{\rm events}/10^9$	
0++	67 ± 47	200 ± 140	16 ± 11	49 ± 34	
1^{+-}	0.52 ± 0.29	1.6 ± 0.9	0.32 ± 0.18	1.0 ± 0.5	
2^{++}	168 ± 118	504 ± 354	147 ± 103	440 ± 309	

ZHANG Jia-Yue Motivation X(6900) T_{40} NRGCD Factorization Factorization Factorization Factorization $pp \rightarrow T_{4c} + X$ Factorization SDCS Phenomenology $\gamma p \rightarrow T_{4c} + X$ Factorization SDCS Phenomenology

Production of T_{4c}

Filenomenoi

Utilizing the EPA and QCD factorization theorem, the inclusive production cross section of a hadron T_{4c} at the EIC can be written as

$$\frac{d\sigma}{dzdp_T} = \sum_{i} \int_{x_{\gamma}^{\min}}^{1} dx_{\gamma} \frac{2x_i p_T}{z(1-z)} f_{\gamma/e}(x_{\gamma}) f_{i/p}(x_i) \\ \times \frac{\mathrm{d}\hat{\sigma}(\gamma+i \to T_{4c}+X,\mu)}{\mathrm{d}\hat{t}},$$

 $z := P_{T_{4c}} \cdot P_p / P_{\gamma} \cdot P_p$: elasticity parameter x_i : momentum fraction of parton i,

 x_{γ} : momentum fraction carried by the photon relative to the electron

 $\begin{aligned} x_{\gamma}^{\min} &= \frac{M_T^2 - m_H^2 z}{s \, z(1-z)} \\ f_{i/p} \text{: proton PDF} \\ f_{\gamma/e} \text{: photon flux under EPA} \end{aligned}$

CHANG JIA-YUP
Motivation

$$X(6900)$$

 $T_{4,q}$
NRQCD
Factorization
Factorization Formula
NRQCD Operators
 $pp \rightarrow T_{4,c} + X$
Factorization
Perturbative
Calculation
SDCs
Phenomenology
 $\gamma p \rightarrow T_{4,c} + X$
Factorization
SDC
SDC
SDC
Successing Statements
SDC
Successing Statements
St

Production of $T_{A,a}$

► LO partonic channel: $\gamma + g \rightarrow T_{4c} + g$

 $\begin{array}{l} \mbox{Motivation} \\ X(6900) \\ T_{4Q} \\ \mbox{NRQCD} \\ \mbox{Factorization} \\ \mbox{Factorization Formula} \\ \mbox{NRQCD Operators} \\ pp \rightarrow T_{4c} + X \\ \mbox{Factorization} \\ \end{array}$

Production of T_{4c}

ZHANG Jia-Yue

Perturbative Calculation SDCs

 $\gamma p \rightarrow T_{4c}$ Factorization

20

SDC

Summary

- ► LO partonic channel: $\gamma + g \rightarrow T_{4c} + g$
- ► C-parity conservation ~ vector tetraquark state 1⁺⁻

- LO partonic channel: $\gamma + g \rightarrow T_{4c} + g$
- ► C-parity conservation ~ vector tetraquark state 1⁺⁻

$$\frac{\mathrm{d}\hat{\sigma}(\gamma g \to T_{4c}^{(1)} + X)}{\mathrm{d}\hat{t}} = \frac{2M_{T_{4c}}}{m_c^{14}} F_{3,3}^{(1)}(\hat{s}, \hat{t}) \left\langle O_{3,3}^{(1)} \right\rangle$$

Production of T_{4c} ZHANG Jia-Yue Motivation Factorization Summary

- ► LO partonic channel: $\gamma + g \rightarrow T_{4c} + g$
- ► C-parity conservation ~ vector tetraquark state 1⁺⁻

$$\frac{\mathrm{d}\hat{\sigma}(\gamma g \to T_{4c}^{(1)} + X)}{\mathrm{d}\hat{t}} = \frac{2M_{T_{4c}}}{m_c^{14}} F_{3,3}^{(1)}(\hat{s}, \hat{t}) \left\langle O_{3,3}^{(1)} \right\rangle$$

more than 300 tree-level Feynman diagrams

Production of T_{4c} ZHANG Jia-Yue Factorization

 $F_{3,3}^{(1)}(\hat{s},\hat{t}) = \pi^3 e_O^2 \alpha_s^4 r_s^2 \left[72r_t^8 \left(5445 - 5298r_t + 1462r_t^2 - 184r_t^3 + 49r_t^4 \right) - 432r_t^7 \left(-5445 + 9879r_t - 5524r_t^2 \right) \right]$ $+1030r_{i}^{3}-112r_{i}^{4}+42r_{i}^{5}$) $r_{e}+2r_{e}^{6}$ (3332340 - 8427078 $r_{e}+8454303r_{e}^{2}-4101132r_{i}^{3}+1115650r_{e}^{4}$ $-253810r_t^5 + 43627r_t^6)r_s^2 + 2r_t^5(5880600 - 17892198r_t + 25180533r_t^2 - 22035111r_t^3 + 12807704r_t^4)r_t^4$ $-4945126r_t^5 + 1195291r_t^6 - 138533r_t^7$ $r_s^3 + r_t^4$ (14113440 - 49523400 $r_t + 83600442r_t^2 - 101112318r_t^3$ $+94409051r_{t}^{4} - 60657225r_{t}^{5} + 24055510r_{t}^{6} - 5305354r_{t}^{7} + 505879r_{t}^{8})r_{t}^{4} + r_{t}^{3}(11761200 - 49523400r_{t}^{6})r_{t}^{6}$ $+95733756r_{*}^{2}-135804348r_{*}^{3}+164472260r_{*}^{4}-151209848r_{*}^{5}+91395217r_{*}^{6}-33278237r_{*}^{7}+6611864r_{*}^{8}$ $+164091573r_{t}^{6} - 86266517r_{t}^{7} + 27956171r_{t}^{8} - 5016861r_{t}^{9} + 381715r_{t}^{10})r_{t}^{6} + r_{t}(2352240 - 16854156r_{t})r_{t}^{6}$ $+50361066r_{*}^{2}-101112318r_{*}^{3}+164472260r_{*}^{4}-206629419r_{*}^{5}+187216756r_{*}^{6}-119518674r_{*}^{7}+52323094r_{*}^{8}$ $-14762980r_t^9 + 2381419r_t^{10} - 165406r_t^{11})r_s^7 + (392040 - 4267728r_t + 16908606r_t^2 - 44070222r_t^3)r_s^7 + (392040 - 4267728r_t + 16908606r_t^2 - 44070222r_t^3)r_s^7$ $-86266517r_t^6 + 52323094r_t^7 - 20969265r_t^8 + 5682942r_t^9 - 1042547r_t^{10} + 119941r_t^{11} - 6480r_t^{12})r_s^9$ + $(105264 - 444960r_t + 2231300r_t^2 - 9890252r_t^3 + 24055510r_t^4 - 33278237r_t^5 + 27956171r_t^6 - 14762980r_t^7 + 24055510r_t^6 - 14762980r_t^7 + 24055510r_t^7 + 2405570r_t^7 + 2405570r_t^7 + 2405770r_t^7 + 2407770r_t^7 + 2407770r_t^7 + 2407770r_t^7 + 2407770r_t^7 + 240$ $+ 4946107r_{*}^{8} - 1042547r_{*}^{9} + 135646r_{*}^{10} - 10512r_{*}^{11} + 408r_{*}^{12})r_{*}^{10} + (-13248 + 48384r_{*} - 507620r_{*}^{2} + 2390582r_{*}^{3})r_{*}^{10} + (-13248r_{*}^{10} + 10876r_{*}^{10} + 10876r_{*}^{10} + 10876r_{*}^{10} + 10876r_{*}^{10} + 10876r_{*}^{10})r_{*}^{10} + (-13248r_{*}^{10} + 10876r_{*}^{10} +$ $-5305354r_t^4 + 6611864r_t^5 - 5016861r_t^6 + 2381419r_t^7 - 698919r_t^8 + 119941r_t^9 - 10512r_t^{10} + 324r_t^{11})r_s^{11}$ $+\left(2-3r_t+r_t^2\right)^2\left(882-1890r_t+13277r_t^2-21970r_t^3+14354r_t^4-4032r_t^5+408r_t^6\right)r_s^{12}\right]$ $\times \left\{ 331776\left(3-r_{s}\right)^{2}\left(2-r_{s}\right)^{2}\left(1-r_{s}\right)^{2}\left(r_{s}\left(2-r_{t}\right)-2r_{t}\right)^{2}\left(3-r_{t}\right)^{2}\left(2-r_{t}\right)^{2}\left(1-r_{t}\right)^{2}\left(2-r_{t}\right)^{2}\left(1-r_{t}\right)^{2}\left(2-r_{t}\right)^{2}\left(1-r_{t}\right)^{2}\left(2-r_{t}\right)^{2}\left(1-r_{t}\right)^{2}\left(2-r_{t}\right)^{2}\left(1-r_{t}\right)^{2}\left(2-r_{t}\right)^{2}\left(1-r_{t}\right)^{2}\left(2-r_{t}\right)^{2}\left(1-r_{t}\right)^{2}\left(2-r_{t}\right)^{2}\left(1-r_{t}\right)^{2}\left(2-r_{t}\right)^{2}\left(1-r_{t}\right)^{2}\left(2-r_{t}\right)^{2}\left(1-r_{t}\right)^{2}\left(2-r_{t}\right)^{2}\left(2-r_{t}\right)^{2}\left(1-r_{t}\right)^{2}\left(2-r_{$ $\times (r_s + r_t)^2 (r_s (3 - 2r_t) - 3r_t)^2 \Big\}^{-1}$, $r_s := 16m_c^2/\hat{s}$, $r_t := 16m_c^2/\hat{t}$ Asymptotic form of the SDC in large p_T :

$$F_{3,3}^{(1)}(\hat{s},\hat{t}) = \frac{1210\pi^3 \alpha_s^4 e_c^2 m_c^8 \left(\hat{s}^2 + \hat{s}\hat{t} + \hat{t}^2\right)^2}{729\hat{s}^4 \hat{t}^2 (\hat{s} + \hat{t})^2} + \mathcal{O}\left(\frac{m_c^9}{p_T^9}\right)$$

Production of T_{4c} ZHANG Jia-Yue

 $\begin{array}{l} \mathsf{MOrwaldoff}\\ \mathsf{X}((\texttt{G}\texttt{POO})\\ \mathsf{T}_{tq}\\ \mathsf{NRQCD}\\ \mathsf{Factorization}\\ \mathsf{Factorization}\\ \mathsf{Factorization}\\ \mathsf{Factorization}\\ \mathsf{Porturbative}\\ \mathsf{Calculation}\\ \mathsf{SDCs}\\ \mathsf{Phenomenology}\\ \mathsf{Y}p \rightarrow \mathsf{T}_{4\,c} + X\\ \mathsf{Factorization}\\ \mathsf{SDC}\\ \mathsf{Phenomenology}\\ \mathsf{SDC}\\ \mathsf{Phenomenology}\\ \mathsf{Summary}\\ \mathsf{Summary}\\ \end{array}$

Phenomenology

10-11

10-16

Model I

10

Model II

20

• Comparison of p_T distributions with LDMEs estimated from two phenomenological models.

10-11

10-16

50

Model I

10 20

Model II

Production of T_{4c} ZHANG Jia-Yue

Phenomenology

30

p⊤ [GeV]

40

40 50 60

p⊤ [GeV]

Phenomenology

- The p_T -integrated cross section for T_{4c} inclusive production.
- ► Integrated luminosity: 100 fb⁻¹/yr@EIC; 50.5 fb⁻¹/yr@EicC; 468 pb⁻¹@HERA.
- ▶ p_T range: 6 - 20 GeV@EIC&HERA; 6 - 9 GeV@EicC.

	\sqrt{s} [GeV] –	Model I		Model II	
		σ [fb]	N	σ [fb]	N
EIC	44.7	1.0	96	0.59	59
	63.2	3.0	300	1.9	190
	104.9	11	1100	6.7	670
	140.7	20	2000	12	1200
HERA	319	67	31	41	19
EicC	20	0.00066	0.033	0.00041	0.020

Motivation X(6900) T_{4Q} NRQCD Factorization Factorization Formula

Production of T_{4c}

ZHANG Jia-Yue

 $pp \rightarrow T_{4c} +$ Factorization Perturbative Calculation SDCs

 $\gamma p \rightarrow T_{4c} + \lambda$ Factorization SDC

Phenomenology

- We propose a model-independent approach to study the production of fully heavy tetraquark, based on NRQCD factorization.
- The production rates of T_{4c} appears to be significant on the LHC due to the huge luminosity.
- EIC is the most promising ep collider for detecting the vector T_{4c} events.
- Model-independent estimates on the NRQCD matrix elements are required to make more reliable phenomenological predictions.

Production of T_{4c} ZHANG Jia-Yue

X(6900) T_{4Q} IRQCD Factorization Factorization Formula NRQCD Operators

 $pp \rightarrow T_{4c}$ + Factorization Perturbative Calculation SDCs Phenomenology

FP 7 4 c Factorization SDC Phenomenology

24)Summary

Thanks!