

Recent Progress on Vector Charmonium(-like) States From BESIII

Aiqiang Guo (IMP)

On behalf of the BESIII collaboration

QWG 2024 - IISER Mohali

The exotic states @ Charmonium sector

QWG 2024 - IISER Mohali

	-	
(4240) 4200) [±]	$Z_{cs}(4220)$	
.055) [±]	$D_s^{*-}D^{*0} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
PC	-	
r 2 ⁺⁺ ? +		
_ _ +	-	0
nodel)3	-	K. Gu
	I=1/2	from F

- Since the new century, a series of new particles have been discovered experimentally above the opencharm threshold.
- Their properties indicate that they are good candidates of exotic states: Hybrid states, Hadron molecule, Compact tetra-quark, etc.
- They can be classified to 3 categories (roughly):
- X: Iso-spin I=0 with quantum number other than 1^{--}
- Y: Iso-spin I=0, vector states
- Z: Iso-spin larger than 0

Discovery of Y States

> Y(4260), discovered in ISR process at BaBai

- Confirmed by CLEO and Belle
- Mass > 4 GeV, above $D\overline{D}$ threshold
- Not observed in inclusive hadron cross section.
- > Interpratation
- Is Y(4260) hybrid?
- Strongly couple to the low-lying charmonium.
- According to lattice QCD simulation, both the ' charmonium lie around 4.26 GeV
- > Family members
 - Later, Y(4360) was discovered at BaBar, Y(4660) at Belle, both in $e^+e^- \rightarrow \gamma_{\rm ISR}\pi^+\pi^-\psi(2S)$ process
 - More measurements is necessary to pin down it

r,
$$e^+e^- \rightarrow \gamma_{\rm ISR}\pi^+\pi^-J/\psi$$

, disfavor charmonium state
1⁻⁻ and 1⁻⁺ hybrid
1⁻⁻ and 1⁻⁺ hybrid
1⁻⁻ and 1⁻⁺ hybrid
1⁻⁻ and 1⁻⁺ hybrid
ts nature!!

4.8

Rex

4.8 4.9 5.0

Production and decays of Y states at BESIII

Can be produced from electron positron annihilation directly, good opportunity to study Y states at **BESIII**

We can study Y state via various processes:

- Hidden charm final state => disfavored by charmonium state, crucial to reveal their inner structure
- Open charm final state
- Baryon and Light hadron final state

 J/ψ *e* π^{-}

BESIII Data Samples

Can measure $\sigma[e^+e^- \rightarrow h_i]$ (CS) with high precision using direct e^+e^- annihilation data at BESIII

The method to study Y states @ BESII $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ [PRD106, 072001 (2022)]

* Tag event at each cm energy

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ [PRD106, 072001 (2022)] The method to study Y states @ BESIII

- * Calculate the cross section at each \sqrt{s} by: $\sigma = \frac{1009}{L*(1+\delta)*|1+\Pi|^2 Br*\epsilon}$

* Fit to the lineshap of cross section with model, e.g.: $\sigma(s) = |BW1(s) + BW2(s)*e^{i\phi} + BW3(s)*e^{i\phi'}|^2$

Summary of $\sigma(e^+e^- \rightarrow \pi\pi/KK + charmonium)$

Summary of $\sigma(e^+e^- \rightarrow \eta/\gamma/\omega + charmonium)$

Summary of $\sigma(e^+e^- \rightarrow Baryon + (light meson))$

Conclusions from these measurment: 1. Y(4260) \Rightarrow Y(4230)

a 100 ⇒ωχ_{c0}) σ(e⁺e⁻

Update of K^+K^-J/ψ Cross Section

- ML fit with coherent sum of two BWs
- $_{\odot}$ Mass: 4225. 3 \pm 2. 3 \pm 21. 5 MeV
- $_{\odot}\,$ Width: $72.\,9\pm6.\,1\pm30.\,8\,\text{MeV}$
- \circ Significance > 5 σ

Ratio to $\pi\pi J/\psi$

		-
	$K\bar{K}J/\psi$ Sol. I	$Kar{K}J/arphi$
$\pi\pi J/\psi$ Sol. I	0.17 ± 0.02	0.25
$\pi\pi J/\psi$ Sol. II	0.097 ± 0.017	0.14
$\pi\pi J/\psi$ Sol. III	0.035 ± 0.004	0.051
$\pi\pi J/\psi$ Sol. IV	0.020 ± 0.002	0.028

Update of $\eta J/\psi$ Cross Section

arXiv: 2310.03361

• Take Γ_{ee} to be ~0.63-0.66 keV, $\mathcal{B}[\psi(4230) \rightarrow \eta J/\psi) =$ $(6.06 \pm 0.76 \pm 0.17) \times 10^{-3}$ or $(18.89 \pm 1.75 \pm 0.90) \times 10^{-3}$

 $\mathcal{B}[\psi(4040) \rightarrow \gamma \chi_{c2}] = (8.0 - 15.6) \times 10^{-4}$ $\mathcal{B}[\psi(4160) \rightarrow \gamma \chi_{c2}] = (4.4 - 14.2) \times 10^{-4}$ potential model:~ 10^{-7}

• ML fit with $\psi(3686)$, $\psi(3770)$, and coherent sum of three BWs

• Width: 51.1 \pm 17.6 \pm 1.9 MeV

Conclusions from these measurements: 2. new state in [4300 4500] MeV

Mass: 4413.6 ± 9.0 ± 0.8 MeV

• Width: 110.5 ± 15.0 ± 2.9 MeV

Conclusions from these measurements: 3. the Y(4660)

New Structure above 4.7 GeV?

- The three-resonance assumption over two is 5.7σ
- Mass: $4708^{+17}_{-15} \pm 21$ MeV
- Width: $126^{+27}_{-23} \pm 30$ MeV

Theoretical interpretations

- Could have significant hybrid component (N.Brambilla et al. PRD107, 054034 (2023), mass higher, consistent with err.)
- Or excited charmonium (PRD 77, 014033 (2008), PRD 90, 054001 (2014), PRD 95, 034026 (2017), PRD 98, 016010 (2018), EPJA 58, 219 (2022), AHEP 2021, 9991152 (2021))
- Or from charmonia mixing (Z.J.Wang and X. Liu, PRD 107, 054016 (2023))

Future Data Samples

Pentaquark: 4.86 GeV - $p\overline{p}\eta_c$ threshold; 4.97 GeV - $p\overline{p}J/\psi$ threshold

proposed samples	for the remainde	er of the physic	cs program.	The right-
$T_{\rm C}$) and upgraded ($(T_{\rm U})$ machine. T	he machine up	ogrades inclu	ide top-up

urrent data	Expected final data	$T_{\rm C}$ / $T_{\rm U}$
N/A	0.1 fb^{-1} (fine scan)	60/50 days
(20 energy points)	Complete scan (additional points)	250/180 days
p^{-1} (10 billion)	3.2 fb ^{-1} (10 billion)	N/A
$^{-1}$ (0.45 billion)	4.5 fb^{-1} (3.0 billion)	150/90 days
2.9 fb^{-1}	20.0 fb^{-1}	610/360 days
(105 energy points)	No requirement	N/A
3.2 fb^{-1}	6 fb^{-1}	140/50 days
at different \sqrt{s}	30 fb ⁻¹ at different \sqrt{s}	770/310 days
b^{-1} at 4.6 GeV	15 fb ⁻¹ at different \sqrt{s}	1490/600 days
N/A	$1.0 {\rm fb}^{-1}$	100/40 days
N/A	$1.0 {\rm fb}^{-1}$	120/50 days
N/A	$1.0 {\rm fb}^{-1}$	130/50 days

Summary

Properties of vector states have been investigated using various processes, including hidden charm, open charm, and light hadronic final states at BESIII

- can be drawn: are they the same state? And their natures?
- The possible reasons:
 - Due to low statistics
 - The way to extract their parameters from data
- More efforts, e.g. more data, better model, are necessary !

Several resonant structures are found at: ~4220 MeV, 4300~4500 MeV, 4660 MeV and 4700 MeV

• The measured parameters from different processes are different , therefore no clear conclusion