Static energies from lattice QCD

Francesco Knechtli

QWG 2024, IISER Mohali, India, February 27, 2024

Plan of the talk

The quark-mass dependence of the potential energy between static colour sources in the QCD vacuum with light and strange quarks [Bulava, Knechtli, Koch, Morningstar,

Peardon, to appear soon]

The static potential - a probe of QCD at all scales

Potential energy levels (static energies) $V_n(r)$, n = 0, 1, 2, ... of a quark-anti-quark static pair at distance r

Pure gauge theory:

 $r < 0.1 \; {\rm fm}$

asymptotic freedom, confinement, flux tube, perturbation theory effective bosonic string theory

At large distances with dynamical (sea) quarks:

Formation of a pair of static-light mesons: string breaking

String breaking as a mixing phenomenon

String breaking

- Describes the flattening of the potential $V_0(r)$ at large r
- "The ground state potential V₀(r) can therefore be called a static quark potential or a static meson potential" [Sommer, Phys. Rept. 275(1) (1996)]
- Estimate $r_c \approx 1.5$ fm from $V_0(r_c) = 2E_{\bar{Q}l}$ [Alexandrou et al., Nucl.Phys. B414 (1994)]
- It has been observed as a mixing of "string-like" and two-meson operators [Drummond, 9805012; Philipsen and Wittig, 9807020; Knechtli and Sommer, 9807022, 0005021; Bali et al., 0505012, Bulava et al., 1902.04006]

String breaking of the ground state potential

- N_f=2+1 QCD: degenerate up, down (light) quarks and a strange quark
- Two avoided level crossings at $2E_{\bar{Q}l}$ (static-light) and $2E_{\bar{Q}s}$ (static-strange)
- ► First calculation in [Bulava et al., 1902.04006]
- Here: quark-mass dependence and extrapolation to the physical point

CLS ensembles

id	N_{conf}	N^W_{conf}	t_0/a^2	$N_{ m s}$	$N_{ m t}$	$m_{\pi}[{\sf MeV}]$	$m_K [{\sf MeV}]$	$m_{\pi}L$
N203	94	752	5.1433(74)	48	128	340	440	5.4
N200	104	1664	5.1590(76)	48	128	280	460	4.4
D200	209	1117	5.1802(78)	64	128	200	480	4.2

- ► N_f = 2 + 1 ensembles from CLS (Coordinated Lattice Simulations) [M. Bruno et al., 1411.3982; Bali et al. 1606.09039]
- Tree-level O(a²) improved gauge action [Lüscher and Weisz, Comm. Math. Phys. 97 (1985)] and O(a) improved Wilson fermions with non-perterbative C_{sw} [Bulava and Schaefer, 1304.7093]
- Open b.c. in time and twisted-mass reweighting [Lüscher and Schaefer, 1206.2809]

CLS ensembles contd

- lattice spacing a = 0.0633(4)(6) fm [Strassberger et al., 2112.06696]
- quark masses $m_u = m_d = m_l$ and m_s vary along $\sum_{f=u,d,s} m_{bare,f} = \text{constant} \approx \text{physical value}$
- quark-mass parameter

$$\mu_l = \frac{3m_\pi^2}{m_\pi^2 + 2m_K^2} \approx \frac{3m_l}{2m_l + m_s} \propto m_l$$

 $N_{\rm f} = 3$ symmetric point: $\mu_l = 1$ physical point: $\mu_l = 0.1076$ ($m_{\pi} = 134.8$ MeV, $m_K = 494.2$ MeV isospin limit)

• physical units: we use the scale t_0 [Lüscher, 1006.4518] and $\sqrt{t_0} = 0.1443(7)(13)$ fm at the physical point [Strassberger et al., 2112.06696]

Techniques

Smearing

- Temporal gauge links: HYP2 static quark action [Hasenfratz and Knechtli, 0103029; Della Morte, Shindler, Sommer, 0506008; Donnellan et al, 1012.3037]
- Quarks: Distillation projection on a time-slice onto space spanned by lowest eigenmodes of the 3D gauge-covariant Laplace operator [Peardon et al, 0905.2160], stochastic estimation of quark propagators between distillation spaces [Morningstar et al, 1104.3870]

Techniques contd

Generalized Eigenvalue Problem (GEVP)

For fixed inter-quark separation \mathbf{r} solve the GEVP [Lüscher

and Wolff, Nucl.Phys.B 339(1) (1990); Blossier et al., 0902.1265]

 $C(t) v_n(t, t_0) = \lambda_n(t, t_0) C(t_0) v_n(t, t_0), n = 0, 1, 2, t \ge t_0$

We use $t_0 = 5$, solve GEVP at t = 10 and project

$$\hat{C}_{ij} = (v_i(t_0, t_d), C(t)v_j(t_0, t_d))$$

We form the ratios

$$R_n(t) = \frac{\hat{C}_{nn}(t)}{C_{\bar{Q}l}^2(t)}, n = 0, 1, 2$$

C_{Ql} is the correlator of a single static-light meson
 ▶ Correlated single-exponential fit to

 $R_n = \text{const.} \times \exp\left[-t(V_n - 2E_{\bar{Q}l})\right]$

Potential levels

Three lowest potential levels on each gauge ensembles

- Two avoided level crossings at twice the energy of static-light and static-strange mesons
- Off-axis distances to increase the resolution

Model

Model Hamiltonian

$$H(r) = \begin{pmatrix} \hat{V}(r) & \sqrt{2}g_l & g_s \\ \sqrt{2}g_l & \hat{E}_1 & 0 \\ g_s & 0 & \hat{E}_2 \end{pmatrix}, \hat{V}(r) = \hat{V}_0 + \sigma r + \gamma/r$$

- ► 7 fit parameters $\{\hat{E}_1, \hat{E}_2, g_l, g_s, \sigma, \hat{V}_0, \gamma\}$
- $\hat{V}(r)$, \hat{E}_1 , \hat{E}_2 are the asymptotic energy levels for $r \to \infty$ up to $O(r^{-1})$
- Flavour factor $\sqrt{N_l = 2}$ in from of g_l , cf. matrix $C(\mathbf{r}, t)$
- Model parameters by minimization of *correlated* χ^2
- Fit ranges start at 4a (ground state), when gap > 2m_π for excited states, maximal distance is L/2 (or below)
 In the following: Mass extrapolations of fit parameters in units of t₀ to physical point assuming simple linear behaviour in μ_l

Mass extrapolations of the mixing coefficients

 $g_l \sqrt{t_0} = 0.0256(3),$ $g_l = 35.0 \,(5)_{\text{stat}}(3)_{\text{sys}} \,\text{MeV}$ $g_s \sqrt{t_0} = 0.0134(4),$ $g_s = 18.3 \,(6)_{\text{stat}}(2)_{\text{sys}} \,\text{MeV}$

Mixing parameters g_l and g_s differ by \approx factor two Some tension between data and model close to $\mu_l = 1$

Mass extrapolations of the string tension

 $\sigma t_0 = 0.1061(7)(20), \quad \sqrt{\sigma} = 445(3)_{\text{stat}}(6)_{\text{sys}} \text{ MeV}$

String tension has only a mild quark mass dependence Systematic error includes uncertainty from the difference between linear (central value) and constant fit

Potentials at the physical point

Gray region is ground state $+2m_{\pi}$ Crossings of $\hat{V}(r)$ with the asymptotic levels \hat{E}_1 and \hat{E}_2 resp. $r_l^{\star} = 8.39(3)\sqrt{t_0} = 1.211(7)_{\text{stat}}(11)_{\text{sys}}$ fm $r_s^{\star} = 9.26(2)\sqrt{t_0} = 1.336(7)_{\text{stat}}(12)_{\text{sys}}$ fm

Conclusions and Outlook

- Three lowest levels of the static potential up to $r \approx 1.7 \, {\rm fm}$ in QCD with up, down and strange quarks
- Simple model based on Cornell + mixing between string and static-meson states
- Parametrization of the physical potential
- Mixing parameter of light quarks $\approx 2 \times$ of strange quark
- String tension at the physical point

 $\sigma t_0 = 0.1061(7)(20), \quad \sqrt{\sigma} = 445(3)_{\text{stat}}(6)_{\text{sys}} \,\text{MeV}$

For comparison: pure-gauge $\sigma t_0 \in [0.143, 0.159]$ from T_c/σ , cf. [Necco, 0309017] TUMQCD [Brambilla et al., 2206.03156], $N_{\rm f} = 2 + 1 + 1$: $\sqrt{\sigma} = 467(7)$, 482(7) MeV from Cornell fits at r < 1 fm Outlook: hybrid potentials using Laplacian trial states [Höllwieser et al., 2212.08485 and 2401.09453]