Thresholds effects on charmonium spectrum

16th International Workshop on Heavy Quarkonium (QWG 2024) IISER Mohali, India, 26th Feb - 1st Mar

Tommaso Scirpa (TU Munich)

in collaboration with Nora Brambilla, Abhishek Mohapatra, Antonio Vairo

Outline

- Physical Picture vs. Lattice Picture
- BOEFT Lagrangian
- Coupled system approach
- Self-energy approach
- Comparison of the results
- Conclusions

Physical Picture vs. Lattice Picture

SESAM (2005)

lattice data taken from Phys.Rev.D 71 (2005)

BOEFT Lagrangian Effective Physical Irr. Reps. D_{wh} : Λ_n^{σ} (LDF) F Field 0 Theories Quarkonium mc QCD \sum_{σ}^{+} LDF NRQCD $\Lambda_{\rm QCD} \sim m_{\rm c} v$ Meson-Antimeson threshold ō Static energies K^{PC} $K^P_{ar{a}}\otimes K^P_a$ mc v² pNRQCD\BOEFT + $D_{\infty h}$ $(1/2)^- \otimes (1/2)^+$ 0^{-+} $\{\Sigma_u^-\}$ $\{\Sigma_a^+, \Pi_a\}$ 1--- 0^{++} $\{\Sigma_q^+\}$ $(1/2)^- \otimes (1/2)^-$ 1+- $\{\Sigma_u^-, \Pi_u\}$ $\mathcal{L}_{tot} = \int d^3 \boldsymbol{r} \left\{ \Psi^{\dagger}(\boldsymbol{r},t) \left(i \partial_t + \frac{ abla_r^2}{m_c} - V_{\Psi} ight) \Psi(\boldsymbol{r},t) - \sum_{M=D,D} V_{\Psi M} \left(M^{\dagger}(\boldsymbol{r},t) \Psi(\boldsymbol{r},t) + h.c. ight) ight\}$ $\{\Sigma_u^-, \Pi_u\}$ $(1/2)^- \otimes (3/2)^-$ 1+- $\{\Sigma_q^+, \Pi_g, \Delta_g\}$ 2++ $(1/2)^+ \otimes (1/2)^ 0^{-+}$ $\{\Sigma_u^-\}$ $+\sum_{M=D,D_s} \boldsymbol{M}^{\dagger}(\boldsymbol{r},t) \left(i\partial_t + \boldsymbol{P}_{10}^{\dagger} \frac{\nabla_r^2}{m_c} \boldsymbol{P}_{10} - V_M \right) \boldsymbol{M}(\boldsymbol{r},t) \bigg\}$ $\{\Sigma_q^+, \Pi_q\}$ 1--- $\{\Sigma_q^+, \Pi_q\}$ $(1/2)^+ \otimes (3/2)^-$ 1---2-+ $\{\Sigma_u^-, \Pi_u, \Delta_u\}$ Model parameters Charmonium potential $(3/2)^+ \otimes (3/2)^ 0^{-+}$ $\{\Sigma_u^-\}$ 1--- $\{\Sigma_q^+, \Pi_q\}$ $\sigma = 0.190 \ GeV^2$ $\gamma = -0.432$ $m_c = 1.59 \ GeV$ $V_{\Psi} = \frac{\gamma}{r} + \sigma r + 2m_c + \beta$ 2^{-+} $\{\Sigma_u^-, \Pi_u, \Delta_u\}$ $\{\Sigma_a^+, \Pi_a, \Delta_a, \Phi_a\}$ $V_D = 3.826 \ GeV$ $V_{D_s} = 3.957 \ GeV$ $\beta = -0.130 \ GeV$ 3---

BOEFT Lagrangian

Charmonium spectrum

charmonium SESAM (2005) Gaussian parametr. $nL \mid E_{exp}(MeV) \mid \mid E_{th}(MeV)$ parameters fixed from preliminary results 3068 1s3095 of 'Bulava, F. Knechtli, V. Koch, C. Morningstar, M. Peardon' (2024) 2s3674 3686 35 4039 4128 0.00 0.05 $V_{DD}(r)$ 4s4421 4507 • $V_{DD}(r)$ -0.05 $V_{D_sD_s}(r)$ 55 4848 0.04 1p3525 3502 -0.102p3927 3967 -0.15 V_{mixing}(GeV) 0.03 3p4359V_{mix}[GeV] fit function from -0.20 4p4711 Phys.Rev.D 106 (2022) 5p5033 -0.25 1d3823 3794 -0.30 0.01 2d4202 -0.35 3d4565 0.00 4d4896 -0.400.2 1.2 0.0 0.4 0.6 0.8 1.0 1.4 1.6 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 5d5204 r (fm) r (fm)

Mixing potentials

Experimental values taken from R.L. Workman *et al.* (Particle Data Group)

BOEFT Lagrangian: mixing potentials SESAM (2005)

 $V_{\Psi D}^{SESAM} = s(r) \left(c_1 r + c_2 r^3 \right) + l(r) \frac{c_3}{r^3}$

fit function from Phys.Rev.D 106 (2022)

$$s(r) = \left(\frac{r_0}{r+r_0}\right)^n \quad l(r) = \left(\frac{r}{r+r_0}\right)^n \quad c_1 = -0.723 \ GeV^2 \quad c_2 = -15.251 \ GeV^4 \quad c_3 = -13.991 \ GeV^{-2}$$
$$r_0 = 0.25 \ fm \quad n = 7$$

$$V_{\Psi D_s}^{SESAM} = \frac{1}{\sqrt{2}} V_{\Psi D}^{SESAM}$$

Gaussian

$$V_{\Psi D}^{gauss} = g_1 \exp^{-\left(\frac{(r-r_c)^2}{\delta^2}\right)}$$
$$V_{\Psi D_s}^{gauss} = g_2 \exp^{-\left(\frac{(r-r_c)^2}{\delta^2}\right)}$$

parameters fixed from preliminary results of 'Bulava, F. Knechtli, V. Koch, C. Morningstar, M. Peardon' (2024)

$$g_1 = 0.049 \; GeV \quad g_2 = 0.018 \; GeV \quad r_{min} = 1 \; fm \quad r_{max} = 1.4 \; fm$$

 $r_c = (r_{min} + r_{max})/2 \quad \delta = (r_{max} - r_{min})/2$

Coupled system approach

Coupled system approach

Thresholds corrections in STA

nL	$\Delta E^{gauss}_{D\bar{D}}(MeV)$	$\Delta E_{D\bar{D}}^{flat}(MeV)$	$\Delta E_{D\bar{D}}^{SESAM}(MeV)$
1s		-2	-30
2s	-1	-6	-15
1p		-3	-22
1d	-1	-6	-15

nL	$\Delta E^{gauss}_{D_s\bar{D}_s}(MeV)$	$\Delta E^{flat}_{D_s\bar{D}_s}(MeV)$	$\Delta E^{SESAM}_{D_s\bar{D}_s}(MeV)$
1s			-14
2s		-1	-6
1p			-10
1d		$^{-1}$	-6

Full thresholds corrections

nL	$\Delta E_{tot}^{gauss}(MeV)$	$\Delta E_{tot}^{flat}(MeV)$	$\Delta E_{tot}^{SESAM}(MeV)$
1s		-2	-43
2s	-1	-6	-20
1p		-3	-32
1d	-1	-6	-20

Self-energy approach

Exact charmonium propagator

$$\int dt e^{iEt} \langle 0|T \left\{ \Psi(t, r) \Psi^{\dagger}(t, r') \right\} |0 \rangle_{exact} = \sum_{nl} i \frac{\psi_{nl}(r) \psi_{nl}^{*}(r')}{E - E_{nl} - \Sigma_{nl}(E)} \xrightarrow{\text{similar methods in Phys.Rev.D 106 (2022)}}$$
Charmonium bound states
$$|a\bar{c}\rangle_{nl} = \int d^{3}r \psi_{nl}(r) \Psi^{\dagger}(r) |0\rangle \xrightarrow{\text{Diagrams resummation}} \xrightarrow{\text{Meson-Antimeson states}} + \underbrace{1}_{i=lL-1|} \underbrace{4\pi i^{-1} j_{l}(kr) C_{im_{lir}}^{Im_{lir}} Y_{l}^{m_{l}}(\bar{r}) P_{l0}^{i}(\bar{r}) M^{\dagger}(r,t)|0\rangle}_{\text{Self-energy term}} + \underbrace{1}_{i=lL-1|} \underbrace{2}_{i=lL-1|} \underbrace{1}_{i=lL-1|} \underbrace{4\pi i^{-1} j_{l}(kr) C_{im_{lir}}^{Im_{lir}} Y_{l}^{m_{l}}(\bar{r}) P_{l0}^{i}(\bar{r}) M^{\dagger}(r,t)|0\rangle}_{m_{Q}(E-V_{M}) - k^{2}} \xrightarrow{\text{Above threshold states}} + \underbrace{1}_{i=lL-1|} \underbrace{2}_{i=lL-1|} \underbrace{1}_{i=lL-1|} \underbrace{1}_{i=lL-1|$$

Self-energy approach

Thresholds corrections in STA

nL	$\Delta E^{gauss}_{D\bar{D}}(MeV)$	$\Delta E_{D\bar{D}}^{flat}(MeV)$	$\Delta E_{D\bar{D}}^{SESAM}(MeV)$
1s		-3	-55
2s	-1	-6	-28
1p		-10	-83
1d	-2	-12	-40

nL	$\left \Delta E_{D_s \bar{D}_s}^{gauss}(MeV) \right \Delta E_{D_s \bar{D}_s}^{flat}(MeV)$	$\Delta E^{SESAM}_{D_s\bar{D}_s}(MeV)$
1s		-26
2s	-1	-13
1p	-1	-40
1d	-1	-18

Full thresholds corrections

nL	$\Delta E_{tot}^{gauss}(MeV)$	$\Delta E_{tot}^{flat}(MeV)$	$\Delta E_{tot}^{SESAM}(MeV)$
1s		-3	-80
2s	-1	-6	-40
1p		-11	-120
1d	-2	-13	-57

Self-energy approach

Decay rates for above threshold states

nL	$\Gamma^{gauss}_{D\bar{D}}(MeV)$	$\Gamma^{flat}_{D\bar{D}}(MeV)$	$\Gamma_{D\bar{D}}^{SESAM}(MeV)$
<u>3s</u>		6	11
4s		12	14
5s		10	12
2p	5	44	95
3p		62	103
4p	3	47	75
5p	1	35	55
2d	13	72	79
3d	2	47	62
4d	2	33	48
5d	2	25	37

nL	$\Gamma^{gauss}_{D_s\bar{D}_s}(MeV)$	$\Gamma^{flat}_{D_s\bar{D}_s}(MeV)$	$\Gamma^{SESAM}_{D_s\bar{D}_s}(MeV)$
$\frac{3s}{3}$	1	1	
4s			4
$\frac{5s}{5}$		1	5
2p	1	5	
3p		3	33
4p		5	34
5p		5	28
2d		6	23
3d		7	28
4d		6	25
5d		5	21

Comparison of the results

DD threshold

12

coupl. syst. corr

•

Conclusions

- Different approaches to study the problem
- LQCD inputs needed for the BOEFT lagrangian
- Different predictions for different mixing potentials, SESAM mixing potential predicts:
 - stronger corrections for lowest bound states ($\Delta E_{1s}^{SESAM} > \Delta E_{2s}^{SESAM}$) contrarily to the gaussian one;
 - stronger mixing with of thresholds with charmonium states w.r.t. gaussian one;
- Same predictions from the different methods (coupled system, self-energy) in the weak-coupling limit
- Decay rates key observable to identify the type of mixing potential