Status of Z_{cs} states at BESIII

Kunlin Han University of Chinese Academy of Science (On behalf of the BESIII Collaboration)

QWG 2024 at IISER Mohali

Outline

- Motivation
- BESIII experiment
- Recent results of Z_{cs} states from BESIII
 - Search for Z'_{cs} state in $e^+e^- \rightarrow K^+D_s^{*-}D^{*0} + c \cdot c$.
 - Search for Z_{cs} state in $e^+e^- \to K^+K^-J/\psi$
- Summary

Motivation

- The first observation of $Z_{cs}(3985)^-$ was reported in $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$ by BESIII:
 - Manifestly exotic charged hidden-charm tetraquark candidate with strangeness,
 - With a non-zero charge \rightarrow minimal quark content: $(c\bar{c}s\bar{u})$,
 - Considered to be strange partner of $Z_c(3900)^-$.
- BESIII reported evidence of the neutral $Z_{cs}(3985)^0$ in $e^+e^- \rightarrow K_S^0(D_s^+D^{*-} + D_s^{*+}D^-)$.
- LHCb reported two tetraquark candidates $Z_{cs}(4000)^{-}/Z_{cs}(4220)^{-}$ in $B^{+} \rightarrow K^{+}J/\psi\phi$:
 - Broader width comparing to $Z_{cs}(3985)^{-}$.
- Are they the same state in different decay processes?

	$m_0(Z_{cs})$ (MeV/ c^2)	$\Gamma_0(Z_{cs})$ (MeV)
$e^+e^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$	$3985.2^{+2.1}_{-2.0}\pm1.7$	$13.8^{+8.1}_{-5.2}\pm4.9$
$B^+ \rightarrow J/\psi \phi K^+$	$4003\pm6^{+4}_{-14}$	$131\pm15\pm26$
$e^+e^- \to K^0_s(D^sD^{*+} + D^{*-}_sD^+)$	3992.2 ± 1.7 ± 1.6	$7.7^{+4.1}_{-3.8} \pm 4.3$

3

BESIII experiment

- BEPCII:
 - symmetric electron-positron collider,
 - Energy range $\sqrt{s} = 2.0 \sim 4.9$ GeV,
 - Peak luminosity: $1.1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ @ $\sqrt{s} = 3.77 \text{ GeV}.$

- BESIII:
 - Multi-purpose detector covering 4π solid So angle,
 - Good particle identification,
 - Excellent energy and momentum resolution.

• BESIII has collected rich datasets in the XYZ region $\sqrt{s} > 3.8$ GeV with integrated luminosity of around 22 fb⁻¹.

Chin. Phys. C 47 (2023) 033001

- Heavier partner of $Z_{cs}(3985)^-$, denoted as Z'_{cs} , are expected to decay to $D_s^{*-}D^{*0}$ state with a large rate.
- Many theoretical models has predicted the masses ranging from 4120 to 4200 MeV/c^2 :
 - $D_s^{*-}D^{*0}$ molecule state, or heavy SU(3)_f partner of $Z_{cs}(3985)^{-?}$

$m(Z_{cs}^{-}) \text{ MeV}/c^2$	$\Gamma { m MeV}$	
$4130.7 \pm 2.5 \ (4129.4 \pm 3.3)$	$29.1 \pm 6.4 \ (27.3 \pm 9.2)$	Phys.Rev.D 102 (2020) 11, 111502
4138 ± 6	28 ± 12	Phys.Rev.D 103 (2021) 7, 074029
4130 ± 170		Chin.Phys.C 45 (2021) 9, 093102
$4124.2^{+5.6}_{-3.7}$	$9.8^{+5.2}_{-4.8}$	Phys.Rev.D 103 (2021) 2, L021501
[4140, 4213]		Sci.Bull. 66 (2021), 1288-1295
4190 ± 90		Int.J.Mod.Phys.A 36 (2021) 15, 2150107
4126 ± 3	13 ± 6	Sci.Bull. 66 (2021), 2065-2071

• It is crucial to search for Z'_{cs} state and measure its properties to constraint the theoretical models.

- The excited partner of $Z_{cs}(3985)^-$ are searched in process of $e^+e^- \rightarrow K^+D_s^{*-}D^{*0} + c \cdot c$ at three c.m. energies $\sqrt{s} = 4.661$ GeV, 4.682 GeV and 4.699 GeV.
- A partial reconstruction method is applied to improve the signal efficiency:
 - D_s^- tag: bachelor K^+ and $D_s^-(\to K_S^0 K^-, K^+ K^- \pi^-)$,
 - D^{*0} tag: bachelor K^+ and $D^{*0}(\to D^0\pi^0)$.
- Clear $K^+D_s^{*-}D^{*0}$ structure is observed in the spectrum of the $K^+D_s^{-}$ (K^+D^{*0}) recoil mass, indicated by the blue arrow.

- The combinatorial background:
 - Shape extracted from mixed samples
 - Wrong-sign (WS) events of $K^-D_s^-$ or K^-D^{*0} combinations,
 - D_s^- and D^{*0} mass sideband events.
 - Yields determined by a fit to $RM(K^+D_s^-)$ and $RM(K^-D^{*0})$ spectra.
- Excited charmed mesons $D_{(s)}^{**}$:
 - Same final states as signal: $e^+e^- \rightarrow D_s^{*-}D_s^{**+}(\rightarrow D^{*0}K^+)$ or $D^{*0}D^{**0}(\rightarrow D_s^{*-}K^+)$.
 - Contribution from $e^+e^- \rightarrow D_s^{*-}D_{s1}^+(2536)(\rightarrow D^{*0}K^+)$ estimated by the measured cross section.
 - Other potential $D_{(s)}^{**}$ described by non-resonant signal

Background source	Tag	$4.661 {\rm GeV}$	$4.682~{ m GeV}$	$4.699 {\rm GeV}$
Comb. bkg	D_s^- -tag	27 ± 5	$120\pm\!11$	54 ± 7
	D^{*0} -tag	33 ± 6	216 ± 15	$103{\pm}10$
$D_s^{st-}D_{s1}(2536)^+$	D_s^- -tag	18 ± 7	117 ± 27	52 ± 13
	D^{*0} -tag	$15\!\pm\!6$	$91\!\pm\!21$	33 ± 9

- The enhancement is studied around 4.125 GeV in the recoil mass spectrum of K^+ .
- The Z'_{cs} component is modeled with an Breit-Wigner function convolved with resolution function:
 - S-wave Breit-Wigner function: •

٠

٠

٠

$$\mathcal{F}(M) \propto \left| rac{\sqrt{q \cdot p}}{M^2 - m_0^2 + i m_0 \Gamma(M)}
ight|^2,$$

- The mass of Z'_{cs} is determined to be:
 - $m_0 = 4123.5 \pm 0.7 \pm 4.7 \,\mathrm{MeV}/c^2,$
 - statistical significance of 3.9σ (2.1σ w/ systematic uncertainties).
 - The width Γ_0 is not reported due to limited statistics.

Source	Mass (MeV/c^2)			
Comb. background	0.1			
$D_s^{*-} D_{s1}(2536)^+$	0.1			
$\sigma^{\rm Born}(e^+e^-\!\rightarrow\!K^+Z_{cs}^{\prime-})$ line shape	0.5			
Signal model	0.1			
Mass scaling	0.5			
Resolution	0.8			
Efficiency curve	< 0.1			
Γ_0 assumptions	4.6			
Total	4.7			

Systematic uncertainties

- Local *p*-value scans are preformed under different width assumptions:
 - Minimum *p*-value found at $m_0 = 4124.1 \text{ MeV}/c^2$ and $\Gamma_0 = 10 \text{ MeV}$ with 4.1σ

- Upper limits of $\sigma^{\text{Born}}B$ are at 90% CL are provided: $\mathcal{O}(1)$ pb, under different hypotheses at each energy points.
- More data are needed to establish a clearer picture of the potential Z'_{cs} states.

11

Phys. Rev. Lett. 131 (2023) 211902

- Search for Z_{cs} state in $e^+e^- \to K^+K^-J/\psi$, $J/\psi \to \ell^+\ell^-$, where $\ell = e$ or μ , at c.m. energies from 4.63 GeV to 4.92 GeV.
- Both full and partial reconstruction methods are applied to achieve low background level and improve statistics:
 - 4-track event: $e^+e^- \to K^+K^-\ell^+\ell^-$.
 - 3-track event: $e^+e^- \to K^{\pm}_{\text{miss}}K^{\mp}\ell^+\ell^-$ with only one Kaon identified.
- Background study:
 - $J/\psi \rightarrow e^+e^-$ mode: Bhabha events, suppressed by the event kinematic requirements.
 - $J/\psi \rightarrow \mu^+\mu^-$ mode: μ/π misidentification events, suppressed by penetration depth of muon cuts.
 - Remaining events modeled by the J/ψ sideband regions.

- Partial wave analysis (PWA) is performed to study the intermediate state.
 - No significant Z_{cs} signal detected.
 - $\sqrt{s} < 4.70$ GeV, based on $f_0(980) + f_0(1500)$ assumption.
 - $\sqrt{s} > 4.70$ GeV, based on single $f_0(x)$ with free mass and width.
- A simultaneous fit is performed on the $M_{max}(K^{\pm}J/\psi)$ spectra
 - Z_{cs} component modeled with an Breit-Wigner function convolved with resolution function:

$$\mathcal{F}(M) \propto \Big| \frac{\sqrt{q \cdot p}}{M^2 - m_0^2 + i m_0 \Gamma(M)} \Big|^2,$$

- A small excess of Z_{cs} is observed with statistical significance of 2.3 σ :
 - $m_0 = 4.044 \pm 0.006 \text{ GeV}/c^2$, $\Gamma_0 = 0.036 \pm 0.016 \text{ GeV}$.

- Upper limits at 90% CL on the production of $Z_{cs}(3985)^+$ and $Z_{cs}(4000)^+$ are provided:
 - $\sigma^{\text{Born}}(e^+e^- \to K^- Z_{cs}(3985)^+) \times B(Z_{cs}(3985)^+ \to K^+ J/\psi)$: $\mathcal{O}(1)$ pb,
 - $\sigma^{\text{Born}}(e^+e^- \to K^- Z_{cs}(4000)^+) \times B(Z_{cs}(4000)^+ \to K^+ J/\psi)$: $\mathcal{O}(3)$ pb.

- Disfavors the QCD sum rule calculation under the molecular state assumption¹.
- Supports the $Z_{cs}(3985)^+$ and $Z_{cs}(4000)^+$ as two different states².
- More statistics are necessary to conduct further PWA.

Summary

- BESIII has achieved meaningful progresses on the Z_{cs} states:
 - The Z'_{cs} state is searched in $Z'^{-}_{cs} \rightarrow D^{*-}_{s}D^{*0}$ process:
 - $m_0 = 4123.5 \pm 0.7 \pm 4.7 \,\mathrm{MeV}/c^2$ (2.1 σ).
 - The Z_{cs} states are investigated in the KJ/ψ system, but no significant structure observed:
 - $m_0 = 4.044 \pm 0.006 \text{ GeV}/c^2$, $\Gamma_0 = 0.036 \pm 0.016 \text{ GeV} (2.3\sigma)$.
- Further data taking in the region $\sqrt{s} = 4.6 \sim 4.9$ GeV will improve the studies on the Z_{cs} states.

Thanks for your attention!

Backup