Charmonium spectroscopy with optimal distillation profiles

Juan Andrés Urrea-Niño, Roman Höllwieser, Jacob Finkenrath, Francesco Knechtli, Tomasz Korzec, Michael Peardon

QWG 2024, IISER Mohali, India, February 26 to March 1, 2024

▶ ...

FOR5269: Future methods for studying confined gluons in QCD

Spokesperson: Prof. Dr. Francesco Knechtli Collaboration between physics and applied math at BUW, DESY Zeuthen and Trinity College Dublin. Main goals:

- ▶ Disconnected contributions in **charmonium**.
- ▶ Glueballs and mixing in dynamical QCD.
- \triangleright String breaking in hybrid potentials.
- ▶ New schemes for molecular dynamics.
- \triangleright Distillation + Multigrid framework.

https://confluence.desy.de/display/for5269

Charmonium Spectrum

Plot by T. Korzec

Some observed states are not compatible with a $\bar{q}q$ composition. Alternatives [Brambilla et al. (2019)]:

[Motivation](#page-1-0) Lattice QCD [Improved Distillation](#page-10-0) [Charmonium](#page-12-0) [Charmonium + Glueballs](#page-16-0) [Conclusions](#page-19-0)

Lattice QCD

Simulate QCD via Monte-Carlo methods in a Euclidean space-time lattice.

- \blacktriangleright Discretization introduces lattice spacing a.
- \blacktriangleright Quarks ψ live in lattice sites, gluons U live in links between sites.
- \blacktriangleright Lattice Dirac operator D is a **large** but sparse matrix $(10^7 \times 10^7)$
- ▶ Action $S[\bar{\psi}, \psi, U]$ recovers correct $a \rightarrow 0$ limit.

Measure expected values of observables $\mathcal{A}[\bar{\psi}, \psi, U]$:

- $\blacktriangleright \langle A \rangle$ gives physical information, e.g energies.
- ▶ Sample gluon configurations distributed as $\propto e^{-S}$.

1 $\sqrt{\text{# of measurements}}$

▶ Statistical errors [∝]

 $+$ other effects

[Motivation](#page-1-0) [Lattice QCD](#page-4-0) [Improved Distillation](#page-10-0) [Charmonium](#page-12-0) [Charmonium + Glueballs](#page-16-0) [Conclusions](#page-19-0)

Hadron spectroscopy in lattice QCD

Nature: What is the mass of a $J^{PC}=0^{-+}$ $\bar{c}c$ state, e.g η_c ?

- \triangleright SO(3) reduces to cubic group \mathbb{O} : $(0^{\pm \pm}, 1^{\pm \pm}, 2^{\pm \pm}, ...) \rightarrow (A_1^{\pm \pm}, A_2^{\pm \pm}, E^{\pm \pm}, T_1^{\pm \pm}, T_2^{\pm \pm}).$ \blacktriangleright Flavor-singlet channels are **blind** to quark content. Lattice: What is the mass of a A_1^{-+} with dominant $\bar{c}c$ content?
	- 1. Define operator $\mathcal{O}[\bar{\psi}, \psi, U]$ with fixed quantum numbers.
	- 2. Calculate two-point temporal correlation function

$$
\langle \mathcal{O}(t)\bar{\mathcal{O}}(0)\rangle = \frac{1}{Z} \int d\psi d\bar{\psi} dU \mathcal{O}(t) \bar{\mathcal{O}}(0) e^{-S}
$$

$$
\approx \frac{1}{N} \sum_{i} (\dots) \to \text{Monte Carlo for } \int dU
$$

$$
= \sum_{n} |\langle n|\hat{O}^{\dagger}|\Omega\rangle|^{2} e^{-E_{n}t} \stackrel{t \to \infty}{\approx} |\langle 0|\hat{O}^{\dagger}|\Omega\rangle|^{2} e^{-E_{0}t}
$$

[Motivation](#page-1-0) [Lattice QCD](#page-4-0) [Improved Distillation](#page-10-0) [Charmonium](#page-12-0) [Charmonium + Glueballs](#page-16-0) [Conclusions](#page-19-0)

Hadron spectroscopy in lattice QCD

Build correlation matrix between different operators with equal quantum numbers

 $C_{ij}(t) = \langle \mathcal{O}_i(t)\overline{\mathcal{O}}_j(0)\rangle$

and solve a generalized eigenvalue problem (GEVP)

$$
C(t)w_n(t, t_G) = \rho_n(t, t_G)C(t_G)w_n(t, t_G)
$$

to get

 $\rho_n(t,t_G) \stackrel{t\to\infty}{\approx} c_n e^{-E_n t} \to$ Energies of states $\tilde{\mathcal{O}}_n = \sum$ k $w_n^{(k)}(t_1, t_G) \mathcal{O}_k \rightarrow \mathsf{Operator}$ closest to $|n\rangle$

[Lüscher and Wolff (1999), Blossier et al. (2009)]

Charmonium on the lattice

Mesonic operators

$$
\mathcal{O}(t) = \bar{c}(t)\Gamma c(t), \ \Gamma = \{\gamma_5, \gamma_i, \gamma_5\gamma_i, \nabla_i, ...\}
$$

with correlation function

$$
\begin{split} C(t) = & - \left\langle \text{Tr}\left(\Gamma D^{-1}[t,0] \Gamma D^{-1}[0,t] \right) \right\rangle_{\text{gauge}} \text{ Connected} \\ & + \left\langle \text{Tr}\left(\Gamma D^{-1}[t,t] \right) \text{Tr}\left(\Gamma D^{-1}[0,0] \right) \right\rangle_{\text{gauge}} \text{ Disconnected} \end{split}
$$

▶ Inversions D^{-1} are the main computational cost. ▶ Disconnected contribution is the most expensive and noisy, being often neglected (OZI suppression).

Severe signal-to-noise problem in disconnected piece. Why not just work at small times?

Excited-state contamination is significant at small times! $C(t) = |\langle 0|\hat{O}^\dagger|\Omega\rangle|^2 e^{-E_0t} + \sum_{n>0} |\langle n|\hat{O}^\dagger|\Omega\rangle|^2 e^{-E_nt}$

[Motivation](#page-1-0) Lattice OCD **[Improved Distillation](#page-10-0)** [Charmonium](#page-12-0) [Charmonium + Glueballs](#page-16-0) [Conclusions](#page-19-0)

Optimal distillation profiles

Distillation [Peardon et al. (2009)]

- ▶ Project quark fields onto low-dimensional subspace of smooth, gauge-covariant fields \rightarrow Smearing.
- $\blacktriangleright \psi(t) \to V[t] V[t]^{\dagger} \psi(t)$, with $V[t]$ the low modes of the 3D gauge-covariant Laplacian operator.
- ▶ Perambulators: $\tau[t_1, t_2] = V[t_1]^{\dagger} D^{-1} V[t_2]$
- **Elementals:** $\Phi[t] = V[t]^{\dagger} \Gamma V[t]$

 $C(t) = - \langle \textsf{Tr}\left(\Phi[t] \tau[t,0] \Phi[0] \tau[0,t] \right) \rangle_{\sf gauge}$ $+\left\langle \textsf{Tr}\left(\Phi[t] \tau[t,t] \right) \textsf{Tr}\left(\Phi[0] \tau[0,0] \right) \right\rangle_{\textsf{gauge}}$

High inversion cost but matrices have manageable sizes and perambulators are recycled for any choice of Γ .

Improved Distillation Phys. Rev. D 106, 034501 (2022)

- ▶ Exploit further freedom: $V[t]V[t]$ [†] \rightarrow $V[t]J[t]V[t]$ [†] with quark distillation profile $J_k[t]_{ij} = \delta_{ij}g_k\left(\lambda_i[t]\right)$.
- ▶ Build optimal meson profiles solving a GEVP with different quark distillation profiles.

$$
\mathcal{O}^{(\Gamma,n)}(t) = \sum_{k} a_k^{(\Gamma,n)} \bar{\psi}(t) V[t] J_k[t]^{\dagger} V[t]^{\dagger} \Gamma V[t] J_k[t] V[t]^{\dagger} \psi(t)
$$

$$
f^{(\Gamma,n)}(\lambda_i[t], \lambda_j[t]) = \sum_{k} a_k^{(\Gamma,n)} g_k^*(\lambda_i[t]) g_k(\lambda_j[t])
$$

$$
\Phi[t]_{ij}^{(\Gamma,n)} = f^{(\Gamma,n)}(\lambda_i[t], \lambda_j[t]) \Phi[t]_{ij}
$$

One optimal profile per Γ and energy level n .

A close-to-physical setup

 \blacktriangleright $N_f = 3 + 1$ Clover-improved Wilson fermions with mass-dependent improvement for charm quark, $\beta = 3.43$, $\kappa_l = 0.13599$, $\kappa_c = 0.13088$ in a 144×48^3 lattice. [P.

Fritzsch et al. (2018), R. Höllwieser et al. (2020)]

• $a = 0.04292(52)$ fm.

 \triangleright SU(3) light flavor symmetric point + physical charm mass $(n_e \approx 3 \text{ GeV})$.

Advantages:

- \triangleright Charm physics close to physical point and small lattice spacing.
- ▶ Presence of light quarks introduces decay channels.
- \blacktriangleright At SU(3) flavor symmetric point:

$$
m_{\bar{c}c}^{\text{phys.}} = m_{\bar{c}c}^{\text{sym.}} + \sum_{i=u,d,s} \frac{\partial m_{\bar{c}c}}{\partial m_i} \left(m_i^{\text{sym.}} - m_i^{\text{phys.}} \right) + \mathcal{O} \left(\Delta m_i^2 / \sqrt{\frac{m_i^2}{M_i^2}} \right)
$$
\nJ. A. Urrea-Niño, Charmonium spectroscopy with optimal distribution profiles

\n1.2/21

Optimals profiles suppress excited-state contamination. Earlier and longer plateau regions.

Good agreement with nature despite omission of disconnected contributions.

Hyperfine splitting $\Delta m_{\text{HF}} = m_{\text{J/\Psi}} - m_{\eta_c}$

- Experiment: $113.0(5)$ MeV. [R. L. Workman et al., (2022)]
- ▶ Lattice: $118.6(1.1)$, $116.2(1.1)$ MeV [C. DeTar et al. (2019), D. Hatton et al. (2020)]
- \blacktriangleright This work: $111.8(1.4)$ MeV.

Other mass splittings [C. DeTar et al. (2019)]

$$
\Delta m_{\rm SO} = \frac{1}{9} \left(5m_{2^{++}} - 3m_{1^{++}} - 2m_{0^{++}} \right),
$$

$$
\Delta m_{\rm tensor} = \frac{1}{9} \left(3m_{1^{++}} - m_{2^{++}} - 2m_{0^{++}} \right)
$$

$$
\Delta m_{\rm 1P \ HF} = m_{\overline{1P}} - m_{1^{+-}}
$$

Glueballs on the lattice

Bound states of only gluons arising from their self-interaction. Experimental detection is **difficult** due to decays and mixing with mesons.

On the lattice:

- ▶ Correlations are heavily affected by signal-to-noise problem, needing large statistics.
- ▶ Mixing with mesons makes identification difficult.

Popular operators: $\overrightarrow{S}, \overrightarrow{S}, \overrightarrow{A}, \overrightarrow{A}$ \rightarrow 3D Wilson loops.

Quenched lattice QCD [C. Morningstar and M. Peardon, (1999)]: 0^{++} : 1730 \pm 80 MeV \rightarrow $f_0(1710)$? 2^{++} : 2400 ± 120 MeV, 0⁻⁺: 2590 ± 130 MeV Glueballs are unstable in full dynamical QCD!

Start with simplified setup:

- \blacktriangleright $N_f = 2$ QCD, degenerate charm quarks at half the physical charm quark mass.
- ▶ Absence of light quarks restricts mixing to only charmonium.
- \triangleright No decays into light hadrons.

Correlation matrix involves mesonic and gluonic operators:

 $C(t) = \begin{pmatrix} \langle \bar{c}(t) c(t) \cdot \bar{c}(0) c(0) \rangle & \langle \bar{c}(t) c(t) \cdot G(0) \rangle \\ \langle C(t) \cdot \bar{c}(0) c(0) \rangle & \langle C(t) \cdot C(0) \rangle \end{pmatrix}$ $\langle G(t) \cdot \bar{c}(0)c(0) \rangle$ $\langle G(t) \cdot G(0) \rangle$ \setminus

 $\langle \bar{c}(t)c(t) \cdot G(0) \rangle \neq 0$ implies mixing. \rightarrow Optimal operator includes mesonic and gluonic components.

We include multiple profiles and gluonic operators. Ground state is mostly gluonic, first excitation is mostly mesonic (χ_{c0}) .

[Motivation](#page-1-0) Lattice OCD [Improved Distillation](#page-10-0) [Charmonium](#page-12-0) [Charmonium + Glueballs](#page-16-0) **[Conclusions](#page-19-0)**

Conclusions and Outlook

Charmonium spectroscopy with optimal distillation profiles:

- \checkmark Good agreement with nature.
- $\sqrt{\ }$ Significant **improvement** over distillation and other stochastic methods: excited-state contamination, precision, etc...
- \checkmark Facilitates including disconnected contributions, i.e possible light decays/mixing.
- $\sqrt{}$ Facilitates a first study of charmonium-glueball mixing in a simplified setup.

Work in progress within FOR5269:

- ? Better operators for $\bar{c}c$, glueballs, multi-particle states, static-light mesons, static potentials, ...
- ? Better methods to tackle SNR problem, e.g multi-level updates for quenched QCD in 2312.11372.
- ? Better methods to solve $Dx = b$.

[Motivation](#page-1-0) Lattice OCD [Improved Distillation](#page-10-0) [Charmonium](#page-12-0) [Charmonium + Glueballs](#page-16-0) [Conclusions](#page-19-0)

Outlook: Including the light quarks

 $N_f = 3 + 1$ at SU(3) flavor-symmetric point $+$ 800 MeV pions

2 (heavy) pion threshold for scalar glueball ≈ 1.6 GeV. Need 2-particle operators! (See 2312.16740 for other details.)

Thank you for your attention!

Significant improvement on previous study of the same setup. [R. Höllwieser et al. (2020)]

Optimal meson distillation profiles of ground state of local Γ operators.

Optimal meson distillation profiles of first excitation of local Γ operators.

Spatial profile for $\Gamma = \gamma_5 \ (0^{-+})$

- \blacktriangleright S-wave behavior.
- ▶ Node-like structure in first excitation.
- ▶ Lattice size provides high resolution.
- ▶ Finite-volume effects under control.