Outline 0	Born-Oppenheimer Approximation	Quarkonium Hybrids	Decay Selection Rules		
RB, Phys. Rev. D 109, L031501 (2024), arXiv:2306.17120					

Why Quarkonium Hybrid Coupling to Two S-Wave Heavy-Light Mesons is Not Suppressed

Roberto Bruschini

The Ohio State University

QWG 2024 IISER Mohali, February 27, 2024

Roberto Bruschini

The Ohio State University

Outline •	Born-Oppenheimer Approximation	Quarkonium Hybrids 000	Decay Selection Rules 00	

1 Born-Oppenheimer Approximation

2 Quarkonium Hybrids

3 Decay Selection Rules

Roberto Bruschini

The Ohio State University

Born-Oppenheimer Approximation for QCD K.J. Juge, J. Kuti and C.J. Morningstar 1999

Roberto Bruschini

The Ohio State University

The Born-Oppenheimer Hamiltonian

Expansion in powers of 1/m

$$H_{\mathsf{BO}}(\vec{r},\vec{p}) = H_{\mathsf{static}}(\vec{r}) + \frac{p^2}{m} + \dots$$

Leading order $(m \to \infty)$: the static limit

$$H_{\text{static}}(\vec{r}) = \sum_{n} |\zeta_{n}(\vec{r})\rangle V_{n}(r) \langle \zeta_{n}(\vec{r})|$$

n Born-Oppenheimer quantum numbers $V_n(r)$ energy levels of light QCD with static Q, \bar{Q} at distance r $|\zeta_n(\vec{r}\,)\rangle$ eigenstates of light QCD with static Q, \bar{Q} at $+\vec{r}/2, -\vec{r}/2$

Roberto Bruschini

Matching with Lattice QCD

Correlation matrix in light QCD with static Q, \bar{Q} at $+\vec{r}/2, -\vec{r}/2$ $C_{ij}(r, \tau, \tau_0) = \langle 0 | \mathcal{O}_i(\vec{r}, \tau) U(\tau, \tau_0) \mathcal{O}_j^{\dagger}(\vec{r}, \tau_0) | 0 \rangle$

The correlation matrix \mathbf{C} can be calculated using lattice QCD.

QCD	quantity that is determined	B-O
${f C}$ eigenvalues at large $ au$	static energy levels	$V_n(r)$
${\bf C}$ eigenvectors at large τ	mixing angles	$ \zeta_n(ec{r}) angle$

Truncation to N channels

N eigenvalues and eigenvectors \rightarrow truncated B-O approximation

Roberto Bruschini

The Ohio State University

Diabatic Born-Oppenheimer Approximation W. Lichten 1963; F.T. Smith 1969

Adiabatic Schrödinger equation $-\frac{1}{m} (\vec{\nabla} + \vec{\Pi}(\vec{r}))^2 \Psi(\vec{r}) + \mathbf{V}_{\text{diag}}(r) \Psi(\vec{r}) = E \Psi(\vec{r})$ transitions proceed through nonadiabatic coupling matrix $\vec{\Pi}(\vec{r})$

Diabatic Schrödinger equation

$$-\frac{\nabla^2}{m}\Psi(\vec{r}) + \mathbf{V}(\vec{r})\Psi(\vec{r}) = E\Psi(\vec{r})$$

transitions proceed through diabatic potential matrix $\mathbf{V}(\vec{r})$

Roberto Bruschini

The Ohio State University

From Static Quarks to Quarkonium Hybrids RB 2023

- The static energy levels with Born-Oppenheimer quantum numbers η, λ are the eigenvalues of a matrix G^{η,λ}(r) that solely depends on the distance r between Q and Q̄.
- The diabatic potential matrix that depends on the relative position r
 ⁱ of Q and Q
 ⁱ is a linear combination of the matrices G^{η,λ}(r) for different values of λ,

$$V^{\eta}_{i,\sigma;i',\sigma'}(\vec{r}\,) = \sum_{\lambda} D^{j_i}_{\sigma,\lambda}(\varphi,\theta,\psi) D^{j_{i'}}_{\sigma',\lambda}(\varphi,\theta,\psi)^* G^{\eta,\lambda}_{i,i'}(r),$$

where the angular dependence is governed by Wigner $D\operatorname{-matrix}$ elements.

Roberto Bruschini

The Ohio State University

Static Energy Levels of Pure SU(3) Gauge Theory

K.J. Juge, J. Kuti and C.J. Morningstar 1999

S. Capitani, O. Philipsen, C. Reisinger, C. Riehl and M. Wagner 2019

 Π_u, Σ_u^- : hybrid potentials

•
$$r \rightarrow 0$$
: 1⁺⁻ gluelump

•
$$r \to \infty$$
: $N = 1, 3$ string

 Σ_q^+ : quarkonium potential

•
$$r \rightarrow 0: 0^{++}$$
 vacuum

•
$$r \to \infty$$
: $N = 0$ string

Roberto Bruschini

The Ohio State University

Diabatic Schrödinger Equation for Quarkonium Hybrids

- The quarkonium-hybrid spectrum forms degenerate multiplets of heavy-quark spin symmetry.
- The potential matrix for each hybrid multiplet is given by:
 - angular-momentum coefficients,
 - functions of r calculable using lattice QCD.

Potential matrix for H_1 multiplet: $J^{PC} = 1^{--}, (0, 1, 2)^{-+}$

$$\begin{pmatrix} \frac{1}{3} \begin{bmatrix} 2V_{\Pi u}(r) + V_{\Sigma u}^{-}(r) \end{bmatrix} & \frac{\sqrt{2}}{3} \begin{bmatrix} V_{\Pi u}(r) - V_{\Sigma u}^{-}(r) \end{bmatrix} & \sqrt{\frac{1}{3}}g(r) \\ \frac{\sqrt{2}}{3} \begin{bmatrix} V_{\Pi u}(r) - V_{\Sigma u}^{-}(r) \end{bmatrix} & \frac{1}{3} \begin{bmatrix} V_{\Pi u}(r) + 2V_{\Sigma u}^{-}(r) \end{bmatrix} & -\sqrt{\frac{2}{3}}g(r) \\ \sqrt{\frac{1}{3}}g(r) & -\sqrt{\frac{2}{3}}g(r) & V_{B^{(*)}\bar{B}^{(*)}}(r) \end{pmatrix}$$

Roberto Bruschini

The Ohio State University

Spectrum and Decays of Quarkonium Hybrids

Quarkonium Hybrids

Are associated with poles of the S-matrix for heavy-meson pairs.

S-matrix

Can be calculated nonperturbatively by solving the Schrödinger equation for coupled $Q\bar{Q}$ and heavy-meson-pair channels.

Decay selection rules

Can be determined using Born-Oppenheimer symmetries.

Roberto Bruschini

The Ohio State University

Born-Oppenheimer Selection Rules for Hybrids RB 2024

- **1** The Born-Oppenheimer quantum numbers are:
 - Π_u and Σ_u^- for quarkonium hybrids,
 - ▶ Σ_q^+ , Π_g , and Σ_u^- for pairs of S-wave heavy mesons.
- 2 The Born-Oppenheimer quantum numbers are conserved.
- 3 Decays into pairs of S-wave heavy mesons are:
 - ▶ allowed for pure Σ_u^- or mixed Π_u / Σ_u^- quarkonium hybrids,
 - forbidden for pure Π_u quarkonium hybrids.

Roberto Bruschini

The Ohio State University

Decays of Lowest Hybrids into Two S-Wave Heavy Mesons $_{\mathsf{RB}\ 2024}$

_	Mult	iplet	J^{PC}		Potential
allow	ed H	I_1	1	$(0, 1, 2)^{-+}$	Π_u / Σ_u^-
forbidd	en [H	I_{2}	1^{++}	$(0, 1, 2)^{+-}$	Π_u
allow	H	[₃	0^{++}	1^{+-}	Σ_u^-
	ed H	I_4	2^{++}	$(1, 2, 3)^{+-}$	Π_u / Σ_u^-
forbidd	en []	I ₅	2	$(1, 2, 3)^{-+}$	Π_u

See talk by Chunjiang Shi on Friday about the decays of the lowest 1^{-+} charmoniumlike hybrid in lattice QCD.

Roberto Bruschini

The Ohio State University

Outline 0	Born-Oppenheimer Approximation	Quarkonium Hybrids	Decay Selection Rules	Summary •

- Quarkonium hybrids can be studied *ab initio* using the Born-Oppenheimer approximation for QCD.
- One can derive model-independent selection rules for decays into pairs of heavy mesons.
- The Born-Oppenheimer selection rules allow decays of many quarkonium hybrids into pairs of S-wave heavy mesons.
- This finding contradicts the conventional wisdom of the last 40 years from constituent models that hybrid mesons are forbidden to decay into pairs of S-wave heavy mesons.

Roberto Bruschini

Born-Oppenheimer Symmetries

- The static $Q\bar{Q}$ break
 - rotations,
 - parity,
 - charge-conjugation,

down to

- cylindrical symmetries,
- combined *CP* symmetry.

The quantum numbers are not

J angular momentum,

P parity,

C charge-conjugation,

but rather

- λ angular momentum projection on the $Q\bar{Q}$ axis,
- η (g or u) CP = + or -.

Heavy-quark spin symmetry

Static energy levels are independent of the heavy-quark spins.

Roberto Bruschini

The Ohio State University