Quark mass dependence of T_{cc} using lattice QCD and lhc

M. Padmanath

IMSc Chennai, a CI of HBNI, India

 27^{th} February, 2024 QWG 2024 IISER Mohali

with S. Collins, A. Nefediev and S. Prelovsek. Based on article arXiv:2402.14715

Doubly heavy tetraquarks: T_{cc}^+

✿ The doubly charmed tetraquark T_{cc}^+ , I = 0 and favours $J^P = 1^+$. Nature Phys., Nature Comm. 2022 Striking similarities with the longest known heavy exotic, X(3872).

- No features observed in $D^0 D^+ \pi^+$: possibly not I = 1.
- * Many more exotic tetraquark candidates discovered recently, T_{cs} , $T_{c\bar{s}}$, X(6900). Prospects also for T_{bc} in the near future. See talk by Ivan Polyakov at Hadron 2023
- 2 Doubly heavy tetraquarks: theory proposals date back to 1980s.

c.f. Ader&Richard PRD25(1982)2370

Doubly heavy tetraquarks using lattice QCD, T_{bb} and T_{cc} : $I(J^P) = O(1^+)$

☆ Deeper binding in doubly bottom tetraquarks O(100 MeV). Fig: Hudspith&Mohler 2023 Red box: ILGTI work on QQ tetraquarks: Junnarkar, Mathur, MP PRD 2019

Shallow bound state in doubly charm tetraquarks $\mathcal{O}(100 keV)$.Fig: Lyu et al.PRL 2023Red box: T_{cc} (RQCD) [PRL 2022] and its quark mass dependence [2402.14715].

✿ Several recent calculations in the bottom-charm tetraquark sector. A summary of different lattice investigations → see review by Pedro Bicudo, 2212.07793 see also talk by Archana Radhakrishnan earlier today.

Finite volume spectrum and infinite volume physics

✿ On a finite volume Euclidean lattice : Discrete energy spectrum Cannot constrain infinite volume scattering amplitude.

Maiani-Testa 1990

Non-interacting two-hadron levels are given by $E(L) = \sqrt{m_1^2 + \mathbf{p}_1^2} + \sqrt{m_2^2 + \mathbf{p}_2^2} \text{ where } \mathbf{p}_{1,2} = \frac{2\pi}{L}(n_x, n_y, n_z).$

- **\$** Switching on the interaction: $p_{1,2} \neq \frac{2\pi}{L}(n_x, n_y, n_z)$. e.g. in 1D $p_{1,2} = \frac{2\pi}{L}n + \frac{2}{L}\delta(k)$.

✿ Generalizations of Lüscher's formalism: c.f. Briceño 2014 Quite complex problem: inelastic resonances $(R \rightarrow H_1H_2, H_3H_4)$

 T_{cc} on the lattice and lhc M. Padmanath The Institute of Mathematical Sciences Chennai (4 of 21)

Scattering amplitude parametrization

\$ Scattering amplitude: $S = 1 + i \frac{4p}{E_{cm}}T$

 \clubsuit For an elastic scattering, and assuming only S-wave,

$$T^{-1} = \frac{2\tilde{K}^{-1}}{E_{cm}} - i\frac{2p}{E_{cm}}, \text{ with } \tilde{K}^{-1} = p.cot\delta(p)$$

(virtual/bound) state constraint below threshold: $p.cot\delta(p) = (+/-)\sqrt{-p^2}$

Lüscher's prescription: $p.cot\delta(p) = \mathcal{F}(p)$, where $\mathcal{F}(p)$ is a known mathematical function. p^2 is determined from each extracted finite volume energy splittings.

☆ Parametrize $p.cot\delta(p)$ as different functions of p. Effective Range Expansion (ERE): $p.cot\delta(p) = a_0^{-1} + 0.5r_0p^2 + \beta_i p^{2i+4}$. The best fits and fit estimates determined to represent the energy dependence of the amplitude.

DD^* scattering in $l = 0, 1 @ m_c^{(h)}$ with an ERE

+/g refers to positive parity, -/u refers to negative parity.

 T_{cc} on the lattice and lhc

M. Padmanath

The Institute of Mathematical Sciences Chennai (6 of 21)

Results and inferences with ERE approach

÷.	Α	shallow	virtual	bound	state	pole	$_{in}$	s-wave	related	to	T_{cc} .
----	---	---------	---------	-------	------------------------	------	---------	--------	---------	---------------------	------------

	$m_D [{\rm MeV}]$	$\delta m_{T_{cc}}$ [MeV]	T_{cc}
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(h)})$	1927(1)	$-9.9^{+3.6}_{-7.2}$	virtual bound st.
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(l)})$	1762(1)	$-15.0(^{+4.6}_{-9.3})$	virtual bound st.
exp.	1864.85(5)	-0.36(4)	bound st.

Observations in line with the expected behaviour of a near-threshold molecular bound state pole in simple Quantum Mechanical potentials.

MP, Prelovsek PRL 2022. See a video demonstration at the end.

- \mathcal{C} $M_{red}(\propto m_c)$ is the reduced mass of the DD^* system.
- ***** The mass of the particle exchanged during the interaction $M_{ex}(\propto m_{u/d})$.

DD^* finite volume spectrum at five different m_c

Heavy quark mass dependence of the interacting DD^* spectrum in the finite volume.

m_c dependence of the T_{cc} pole [ERE]

Collins, Nefediev, MP, Prelovsek 2402:14715

 $m_{\pi} \sim 280 \text{ MeV}$

- **\$** Virtual bound poles at all values of m_c .
- $\hat{\boldsymbol{\pi}}_{D}^{\text{crit}}(\text{ERE}) = 2.71(^{+34}_{-26}) \text{ GeV}$
- ✿ ERE: Questionable [OPE interactions and lhc]

 T_{cc} on the lattice and lhc

M. Padmanath

The Institute of Mathematical Sciences Chennai (9 of 21)

Pion exchange interactions/left-hand cut: ERE and QC

A two fold problem: (Unphysical pion masses used in lattice)

 $m_{\pi} > m_{D^*} - m_D \quad \Rightarrow \quad D^* \to D\pi$ is kinematically forbidden.

 $2 \rightarrow 2$ Generalized LQC: does not subthreshold lhc effects.

Raposo&Hansen 2311.18793, Dawid et al 2303.04394, Hansen et al 2401.06609

ERE convergence fails at the nearest singularity.

Left-hand cut in the DD^* system close below the DD^* threshold.

Du et al 2303.09441[PRL]

✿ Unphysical pion masses $(m_{\pi} > \Delta M = M_{D^*} - M_D$, stable D^* meson):

Figure taken from Du $et~al~2303.09441 [\mathrm{PRL}]$

Long range pion exchange interactions: the origin of left-hand singularity and cut. Fits with a potential that incorporates the one pion exchange:

Virtual bound states \Rightarrow Virtual resonances

One-pion exchange interaction/left-hand cut

 \clubsuit OPE from the lowest order NR Lagrangian

$$\mathcal{L} = \frac{g_c}{2f_{\pi}} \mathbf{D}^{*\dagger} \cdot \nabla \pi^a \tau^a D + h.c. \quad \Rightarrow \quad V_{\pi}(\mathbf{p}, \mathbf{p}') = 3 \left(\frac{g_c}{2f_{\pi}}\right)^2 \frac{(\epsilon \cdot \mathbf{q})(\mathbf{q} \cdot \epsilon'^*)}{u - m_{\pi}^2}$$

Fleming *et al.* hep-ph/0703168, Hu&Mehen hep-ph/0511321

 \therefore Upon S-wave projection, we have

$$V_{\pi}^{S}(p,p) = \frac{g_{c}^{2}}{4f_{\pi}^{2}} \left[\frac{m_{\pi}^{2} - q_{0}^{2}}{4p^{2}} \ln \left(1 + \frac{4p^{2}}{m_{\pi}^{2} - q_{0}^{2}} \right) - 1 \right]$$

Logarithmic function branch cut \rightarrow infinite set of Riemann sheets

\$ With the finite branch point at

$$p_{
m lhc}^2 = rac{1}{4}(q_0^2-m_\pi^2) < 0$$
 for all lattice setups.

with $q_0 \simeq m_{D^*} - m_D$, where the $D^{(*)}$ -meson recoil terms are ignored.

Du et al. 2303.09441[PRL]

\$ Consequences:

Complex phase shifts below the lhc. Modified near-threshold energy dependence.

Solving Lippmann-Schwinger Equation for the DD^* amplitude

$$D^{*} = \mathbf{T} = D^{*} = D^{*} = \mathbf{V} = D^{*} = \mathbf{V} = D^{*} = \mathbf{V} = \mathbf{T} = D^{*}$$
$$D^{*} = D^{*} = D^$$

\$ The potential: a sum of short range and long range interactions

$$V(\boldsymbol{p}, \boldsymbol{p}') = V_{\mathrm{CT}}(p, p') + V_{\pi}^{S}(p, p') \quad \text{with} \quad V_{\mathrm{CT}}(p, p') = 2c_0 + 2c_2(p^2 + {p'}^2) + \mathcal{O}(p^4, {p'}^4)$$

- ***** The scattering amplitude $T^{-1} \propto p \cot \delta_0 ip$
- The pion decay constant f_{π} and $DD^*\pi$ coupling g_c at $m_{\pi} \sim 280$ MeV following the 1-loop χ PT.

Du et al 2303.09441[PRL]

Collins, Nefediev, MP, Prelovsek 2402:14715

The Institute of Mathematical Sciences Chennai (12 of 21)

m_c dependence of the T_{cc} pole [EFT]

Collins, Nefediev, MP, Prelovsek 2402:14715

- ***** Resonance poles below threshold at all values of m_c except the heaviest.
- At the heaviest m_c : virtual bound poles
- Counter terms: Short range attraction
 Weak long range repulsion from OPE.
- Weak m_c dependence in $V(\boldsymbol{p}, \boldsymbol{p}')$.

 $m_{\pi} \sim 280 \text{ MeV}$

 T_{cc} on the lattice and lhc

M. Padmanath

The Institute of Mathematical Sciences Chennai (13 of 21)

Pole positions and scattering rate [EFT]

* Subthreshold resonance pole pair moving towards the real axis with increasing m_c .

- Collide on the real axis below threshold and turn back-to-back. At the heaviest m_c : virtual bound poles [in Red]
- ***** With increasing m_c , subthreshold resonance poles evolves to become a pair of virtual bound poles.
- Enhancement in the DD^* scattering rate $(p|T_0|^2)$.

Collins, Nefediev, MP, Prelovsek 2402:14715

Pole trajectory of T_{cc}^+ : ERE Vs EFT

 T_{cc} on the lattice and lhc

M. Padmanath

The Institute of Mathematical Sciences Chennai (15 of 21)

m_{π} dependence of the T_{cc} pole [EFT]

- **\therefore** Qualitative study of m_{π} dependence using $V_{CT}(p, p') = 2c_0 + 2c_2(p^2 + p'^2)$
- Two parameter fit (c_0, c_2) [left] and ✿. a single parameter fit $(c_0, \text{ with } c_2 = 0)$ [right].
- **Proof** Resonance poles at $m_{\pi} \sim 348$ and ~ 280 MeV. Shallow virtual bound poles at $m_{\pi} = 146$ MeV.
- \$\$ Stronger attraction for lighter m_{π} . [c_{eff}] stronger binding in T_{cc} for lighter pions.
- $m_{\pi} = 146$ MeV: HALQCD procedure.

 T_{cc} on the lattice and lhc

M. Padmanath

The Institute of Mathematical Sciences Chennai (16 of 21)

The HALQCD DD^* potential and EFT fits

M. Padmanath The Institute of Mathematical Sciences Chennai (17 of 21)

 T_{cc} on the lattice and lhc M. Padmana

Alternatives: A plane-wave approach and modified LQC

* An effective field theory incorporating OPE with a plane wave basis expansion.

Lu Meng et al arXiv:2312.01930

Virtual bound states \Rightarrow Virtual resonances $[m_{\pi} \sim 280 \text{ MeV}]$

🏟 Modified 3-particle (Lüscher) Quantization Condition:

Hansen, Romero-Lopez, Sharpe, 2401.06609, Raposo, Hansen, 2311.18793

See a recent talk by Romero-Lopez here

A rigorous procedure, but demands multiple lattice inputs.

- $D\pi$ finite volume spectrum up to the $D\pi\pi$ threshold.
- Isovector DD finite volume spectrum up to the $DD\pi$ threshold.
- Isoscalar $DD\pi$ finite volume spectrum up to the $DD\pi\pi$ threshold.

Summary

- $rac{1}{2}$ T_{cc} on the lattice, long range pion exchange interactions and left-hand cuts
- \clubsuit Analysis using an Effective Range Expansion and an Effective Field Theory.
Trajectory of the T_{cc} pole.

\therefore Either parametrizations of DD^* interactions indicate a possibly bound system for heavier m_c and lighter m_{π} .

☆ The binding of T_{cc}^+ observed in experiments: Possibly a delicate interplay between m_c and m_{π} . Thank you

Quark mass dependence: a QuanMech understanding

$R \propto M_{red} \propto 1/M_{ex}$

 T_{cc} on the lattice and lhc M. Padmanath The Institute of Mathematical Sciences Chennai (21 of 21)