

Molecular P_{ψ} pentaquarks from light-meson **exchange saturation**

Mao-Jun Yan

Institute of Theoretical Physics, Chinese Academy of Sciences, China

In collaboration with Z.Y. Yang, F.Z. Peng, M.S. Sanchez and M.P. Valderrama

Feb 26th- Mar 1st, 2024, Mohali

1 [Motivation](#page-1-0)

2 [Model on EFT and light meson saturation](#page-1-0)

3 $P_{c(s)}$ **[spectrum](#page-1-0)**

4 [Extension to the charmed baryon spectrum](#page-1-0)

5 [Summary](#page-1-0)

Motivation: observations on $P_{c(s)}$

LHCb,PRL 115 (2015) 072001;PRL 122 (2019) 222001;Science Bulletin 66(2021)1278 ;PRL 131 (2023) 031901

Mao-Jun Yan (ITP,CAS) Molecular P_{ab} pentaquarks from light-mesor Feb 26th- Mar 1st, 2024, Mohali 3/20

Motivation: observations on $P_{c(s)}$

Pc(s) **masses and widths [MeV]**

•
$$
P_c(4312)
$$
: $M = 4311.9 \pm 0.7^{+6.8}_{-0.6}$, $\Gamma = 9.8 \pm 2.7^{+3.7}_{-4.5}$

•
$$
P_c(4440)
$$
: $M = 4440.3 \pm 1.3^{+4.1}_{-4.7}$, $\Gamma = 20.6 \pm 4.9^{+8.7}_{-10.1}$

•
$$
P_c(4457)
$$
: $M = 4457.3 \pm 0.6^{+4.1}_{-1.7}$, $\Gamma = 6.4 \pm 2.0^{+5.7}_{-1.9}$

•
$$
P_{cs}(4459)
$$
: $M = 4458.8 \pm 2.9^{+4.7}_{-1.1}$, $\Gamma = 17.3 \pm 6.5^{+8.0}_{-5.7}$

 P_{cs} (4338): $M = 4338.2 \pm 0.7$, $\Gamma = 7.0 \pm 1.2$.

Double-peak $P_{cs}(4459)$

- $P_{cs1}: M = 4454.9 \pm 2.7, \quad \Gamma = 7.5 \pm 9.7$
- P_{c52} : $M = 4467.8 \pm 3.7$, $\Gamma = 5.3 \pm 5.3$.

Thresholds

• Σ_c
$$
\bar{D}
$$
 : 4320.7; $\Sigma_c \bar{D}^*$: 4462.0;

 $\Xi_c' \bar{D}$: 4446.0; $\Xi_c \bar{D}^*$: 4478.0; $\Xi_c^* \bar{D}$: 4513.2; $\Xi_c \bar{D}$: 4336.3

Non-molecular state

- **Threshold cusps:** F.K. Guo et al, PRD92(2015);M.Bayar et al, Phys.Rev.D 94 (2016);S.X. Nakamura et al,PRD 103 (2021) 111503;PRD104 (2021) 9; T.J. Burns et al, PLB838(2023)· · ·
- Hadrocharmonium: M.I. Eides et al,MPL A 35(2020)18; J. Ferretti et al, Sci.Bull. 67 (2022) 1209· · ·
- **Compact** P_{c} : Fl. Stancu, PRD 101(2020)9; H. Garcilazo et al, PRD 105 (2022) 11 \cdots

Molecular state

- QCD sum rule: H.X. Chen et al, PRL115(2015)17···
- Cont. EFT: M.Z Liu et al, PRL122(2019);M.L. Du et al, PRL124(2020)7, PRD104(2021)11 · · ·
- **•** Pionful EFT: L. Meng et al, PRD100(2019)1; B. Wang et al, PRD101(2020)3 · · ·
- \bullet $\overline{\mathrm{OBE}}$: R. Chen et al, PRL115(2015)13;F.L. Wang et al, PLB 835 (2022) 137583 \cdots
- Vector-meson Exch.:J.J. Wu et al, PRL105(2010),PRC 84 (2011);C.W. Xiao et al,

PRD88(2013),PRD100(2019);L. Roca et al, PRD92 (2015) 9;X.K. Dong et al, Progr.Phys. 41(2021) 65· · ·

EFT inspired OBE

The S-wave antimeson-baryon interaction in contact-range

$$
\left\langle \vec{p}^{\prime}\left|V_{C}\right|\vec{p}\right\rangle =C_{0}+C_{1}\hat{\vec{S}}_{L1}\cdot\hat{\vec{S}}_{L2},
$$

with C_0 and C_1 their respective couplings, and with $\hat{S}_{Li} = \vec{S}_{Li}/|S_{Li}|$ the normalized light-quark spin operator of hadron $i = 1, 2$

Saturation: $\zeta = +1$ for P_c

• The C_0 and C_1 are saturated by scalar and vector meson exchange.

$$
V_S = -\frac{g_{S1}g_{S2}}{m_S^2 + \vec{q}^2}|_{C_0}
$$

$$
V_V = (\zeta + T_{12}) \left[\frac{g_{V1}g_{V2}}{m_V^2 + \vec{q}^2}|_{C_0} + \frac{f_{V1}f_{V2}}{6M^2} \frac{m_V^2}{m_V^2 + \vec{q}^2} \hat{S}_{L1} \cdot \hat{S}_{L2} \right] + \dots,
$$

Couplings

- $g_S = 3.4$ and 6.8 for the charmed mesons and baryons, respectively.
- $g_V=$ 2.9 and 5.8 for the charmed mesons and $\Sigma_c^{(*)}$ baryons and $g_V = 2.9$ for the $\Xi_c^{(')*)}$ baryons.
- the magnetic-like couplings we define $f_V = \kappa_V g_V$ with $\kappa_V = \frac{3}{2}$ $\frac{3}{2}$ (μ_u/μ_N) for both charmed mesons and baryons (Σ_c, Σ^{*}_c, Ξ'_c, (Ξ_c^*) , with μ_N the nuclear magneton and $\mu_u\simeq 1.9\,\mu_N.$

Mass inputs

- $m_S = 475MeV$ (i.e. the average of its 400 550)MeV.
- $m_V = (m_o + m_\omega)/2 = 775$ MeV.
- The extension to the other molecular configurations can be done by modifying the vector meson masses to the K^* and ϕ vector mesons.
- $M = m_N = 938.9 \,\text{MeV}$ the nucleon mass.

Saturation

•
$$
\sigma
$$
-exchange: $C_0^S (\Lambda \sim m_S) \propto -\frac{g_{S1} g_{S2}}{m_S^2}$, $C_1^S (\Lambda \sim m_S) \propto 0$

• vector-meson Exch.: $C_0^V(\Lambda \sim m_V) \propto \frac{g_{V1}g_{V2}}{m_V^2}$ $\frac{\gamma_1\mathcal{B}\gamma_2}{m_V^2}\left(\zeta+\mathcal{T}_{12}\right),\ C_1^V\left(\Lambda\sim m_V\right)\propto \frac{f_{V1}f_{V2}}{6M^2}\left(\zeta+\mathcal{T}_{12}\right),$ V

RG evolution

 \bullet Owing to $m_S \neq m_V$, the regularization scale for the saturation of the C_0 coupling by mesons is not identical. Considering RGE of V_C .

$$
\frac{d}{d\Lambda}\left\langle \Psi\left| V_{C}(\Lambda)\right| \Psi\right\rangle =0,
$$

If $\Psi(r) \sim r^{\alpha/2}$ at distances $r \sim 1/\Lambda$, $\frac{d}{dt}$ $\frac{d}{d\Lambda}$ $\left[\frac{C(\Lambda)}{\Lambda^{\alpha}} \right]$ $\left[\frac{\zeta(\Lambda)}{\Lambda^\alpha}\right]=0,$ with $\alpha=1.$ $C(\Lambda = m_V) = C_V(m_V) + \left(\frac{m_V}{m_S}\right)$ m_S $\int_0^\alpha C_S(m_S)$

Inputs

\n- $$
V_C = C_{\text{mol}}^{\text{sat}} f\left(\frac{\rho'}{\Lambda}\right) f\left(\frac{\rho}{\Lambda}\right)
$$
 with $f(x) = e^{-x^2}$.
\n- LS Eq.: $1 + 2\mu_{\text{mol}} C_{\text{mol}}^{\text{sat}} \int \frac{d^3 \vec{q}}{(2\pi)^3} \frac{f^2\left(\frac{q}{\Lambda}\right)}{M_{\text{th}} + \frac{q^2}{2\mu_{\text{mol}}}-M_{\text{mol}}}$ = 0, with a ref. $P_{\psi}^N(4312)$, $C_{\text{ref}}^{\text{sat}} = -0.80^{+0.14}_{-0.01} \text{ fm}^2$ for $\Lambda = 1 \text{ GeV}$.
\n

Predictions

Single channel: $1+2\mu_{\mathrm{ref}}\mathcal{C}^{\mathrm{sat}}_{\mathrm{ref}}\mathcal{R}_{\mathrm{mol}}\int \frac{d^3\vec{q}}{(2\pi)}$ $\overline{(2\pi)^3}$ $f^2(\frac{q}{\Lambda})$ $M_{\rm th} + \frac{q^2}{2\mu}$ $\frac{q^2}{2\mu_{\rm mol}} - M_{\rm mol} = 0,$ with the ratio between the relative strength of the coupling:

$$
R_{\rm mol} = \frac{\mu_{\rm mol} C_{\rm mol}^{\rm sat}}{\mu_{\rm ref} C_{\rm ref}^{\rm sat}}
$$

•
$$
R_{\text{mol}} > 0.72^{+0.13}_{-0.01} | B, \quad (R_{\text{mol}} \le 0.72^{+0.13}_{-0.01}) | V
$$

Errors

- The uncertainty of the mass of the $P_\psi^\mathsf{N}(4312)$, $\mathcal{C}_\mathrm{ref}^\mathrm{sat}=-0.80^{+0.14}_{-0.01}\mathrm{fm}^2$
- The uncertainty of the mass of the scalar meson, $m_S = (475 \pm 75) \,\text{MeV}$, i.e., equivalent to the $m_S = (400 - 550) \,\text{MeV}$.
- Choosing the largest of these two sources:

$$
\Delta M_{\text{mol}} = \text{minmax}\{M_{\text{mol}} \left(C_{\text{ref}}^{\text{sat}} \pm \Delta C_{\text{ref}}^{\text{sat}}\right) - M_{\text{mol}},
$$

$$
M_{\text{mol}} \left(m_S \pm \Delta m_S\right) - M_{\text{mol}}\},
$$

"minmax" refers to the maximum (for the positive error) and minimum (for the negative error) number within the list.

Widths of charmed hadrons are not included. i.e. $\mathsf{\Gamma}(\mathsf{\Sigma}_{\mathsf{c}}^*)\approx 15\,\mathrm{MeV}.$

Predictions on $P_{c(s)}$ spectrum

Predictions on $P_{c(s)}$ **spectrum**

Coupled channel scattering

When there are two nearby meson-baryon thresholds with the same quantum numbers, we will use the previous equation in matrix form

$$
\phi_{\mathcal{A}} + 2\mu_{\mathcal{A}} \sum_{\mathcal{B}} \phi_{\mathcal{B}} C_{\mathrm{ref}}^{\mathrm{sat}} \mathcal{R}_{\mathrm{mol}}^{\mathcal{A}\mathcal{B}} \int \frac{d^3 \vec{q}}{(2\pi)^3} \frac{f^2\left(\frac{q}{\Lambda}\right)}{\mathcal{M}_{\mathrm{th(B)}} - \frac{q^2}{2\mu} - \mathcal{M}_{\mathrm{mol}}} = 0.
$$

More predictions on $P_{c(s)}$ spectrum

TABLE II Molecular octet pentaquark states predicted in this work **Mao-Jun Yan (ITP,CAS) Molecular** P_{ψ} pentaquarks from light-mesor Feb 26th- Mar 1st, 2024, Mohali 13 / 20

Couplings

 $a_0\left(\mathsf{\Lambda}\mathsf{N},{}^1\mathsf{S}_0\right)=-3.1\,\text{fm},\; a_0\left(\mathsf{\Lambda}\mathsf{N},{}^3\mathsf{S}_1\right)=-2.9\,\text{fm},\; a_0(\mathsf{\Lambda}\mathsf{\Lambda})=-1.3\,\text{fm}$ obtained with $g_{\sigma \Lambda\Lambda} = 3/4 g_{\sigma NN}$.

• $g_S = 10.2, g_V = 2.9, \mu_u = 1.9$ and $\mu_s = -0.6$.

Predictions on charmed baryons with $\Lambda = 0.75 \,\text{GeV}$

Summary

- The contact range interaction is derived from the combination of the RG evolution and exchange of light-mesons (σ, ρ, ω) .
- Assuming $P_\psi^{\sf N}(4312)$ is a $\bar{D}\Sigma_c$ bound state, we approximately reproduce the masses of the $P_\psi^{\sf{N}}(4440)$ and $P_\psi^{\sf{N}}(4457)$ as $J=\frac{3}{2}$ $\frac{3}{2}$ and $\frac{1}{2}$ $\bar{D}^*\Sigma_c$ bound states, as well as the narrow $P_{\psi}^N(4380).$
- $\overline{D} = c$ and $\overline{D}^* = c$ states with masses of 4327MeV and 4467MeV, respectively, corresponding to the $P_{\psi s}^{\Lambda}(4338)$ and the $P_{\psi s}^{\Lambda}(4459)$.
- The ΣD and ΛD^* bound states corresponding to the $\Xi_c(3055/3123)$.
- ΞD and ΞD^* bound states with masses matching those of the recently observed $\Omega_c(3185)$ and $\Omega_c(3327)$.

Summary

- The contact range interaction is derived from the combination of the RG evolution and exchange of light-mesons (σ, ρ, ω) .
- Assuming $P_\psi^{\sf N}(4312)$ is a $\bar{D}\Sigma_c$ bound state, we approximately reproduce the masses of the $P_\psi^{\sf{N}}(4440)$ and $P_\psi^{\sf{N}}(4457)$ as $J=\frac{3}{2}$ $\frac{3}{2}$ and $\frac{1}{2}$ $\bar{D}^*\Sigma_c$ bound states, as well as the narrow $P_{\psi}^N(4380).$
- $\overline{D} = \overline{D}$ and $\overline{D}^* = c$ states with masses of 4327MeV and 4467MeV, respectively, corresponding to the $P_{\psi s}^{\Lambda}(4338)$ and the $P_{\psi s}^{\Lambda}(4459)$.
- The ΣD and ΛD^* bound states corresponding to the $\Xi_c(3055/3123)$.
- ΞD and ΞD^* bound states with masses matching those of the recently observed $\Omega_c(3185)$ and $\Omega_c(3327)$.

Thanks !

Backup: One-pion-exchange

 \overline{OPE} in $D^*\overline{D}$ scattering, F.Z. Peng et al, PRD 102 (2020)

$$
\bullet \ \ V(\vec{q})=-\tfrac{g^2}{6f^2}\tau\vec{\sigma}_1\cdot\vec{\sigma}_2\left[\tfrac{q^2}{m_\pi^2}-\tfrac{q^4}{m_\pi^4}+\ldots\right]
$$

$$
\bullet \ \ C^{\rm OPE}_0\left(\mu \sim m_\pi\right) \sim 0, \quad C^{\rm OPE}_1\left(\mu \sim m_\pi\right) \sim 0
$$

$$
\bullet \ \ C_0(\mu)+C_1(\mu)\vec{\sigma}_1\cdot\vec{\sigma}_2=-\lambda
$$

Backup: Error from the input

FIG. 1. Dependence of the wave number of a molecule (γ_{mol}) , in MeV) on the molecular ratio R_{mol} (defined in Eq. (20)) when the reference state is the $P_{\psi}^{N}(4312)$. This dependence is calculated by solving Eq. (19) with $\Lambda = 1.0 \,\text{GeV}$, $C_{\text{ref}}^{\text{sat}} = -0.80_{-0.01}^{+0.14} \text{fm}^2$ (given

Analytic loop integral

$$
\bullet\ \int \frac{d^3\vec{q}}{(2\pi)^3}\frac{f^2(\frac{q}{\lambda})}{M_{\rm th}+\frac{q^2}{2\mu_{\rm mol}}-M_{\rm mol}}=\frac{\mu_{\rm mol}}{4\pi^2}\left[\sqrt{2\pi}\Lambda-2e^{2\gamma^2/\Lambda^2}\pi\gamma\, \text{erfc}\left(\frac{\sqrt{2}\gamma}{\Lambda}\right)\right],\\ \text{with}\ \gamma=\sqrt{2\mu\left(M_{\rm th}-M_{\rm mol}\right)}. \text{ Solutions for which } \gamma>0 \text{ and } \gamma<0\\ \text{correspond to bound and virtual states, respectively.}\\ \text{Mao-Jun Yan (ITP, CAS)}\qquad \text{Molecular } P_{\psi}\text{ pentaguarks from light-mesor. Feb 26th-Mar 1st, 2024, Mohali18/20.}
$$

SU(3) **decomposition**

$\bar{H}_c T_c$

$$
\big|\bar D_s\Lambda_c\big>=\frac{1}{\sqrt{3}}|\tilde 1\rangle+\sqrt{\frac{2}{3}}|\tilde 8\rangle,\quad \big|\bar D\Xi_c(0)\big>=\sqrt{\frac{2}{3}}|\tilde 1\rangle-\frac{1}{\sqrt{3}}|\tilde 8\rangle,
$$

$\bar{H}_c S_c$

$$
|\bar{D}_s \Sigma_c\rangle = +\sqrt{\frac{2}{3}} |8\rangle + \frac{1}{\sqrt{3}} |10\rangle, \quad |\bar{D} \Xi_c'(1)\rangle = -\frac{1}{\sqrt{3}} |8\rangle + \sqrt{\frac{2}{3}} |10\rangle
$$

$$
|\bar{D}_s \Xi_c'\rangle = +\frac{1}{\sqrt{3}} |8\rangle + \sqrt{\frac{2}{3}} |10\rangle, \quad |\bar{D}\Omega_c\rangle = -\sqrt{\frac{2}{3}} |8\rangle + \frac{1}{\sqrt{3}} |10\rangle
$$

The octet pieces of the \bar{H}_c T_c and $\bar{H}_c S_c$ pentaquarks generate mixing. This requires the spin-spin / M_1 component of vector meson exchange, and it is expected to be weaker. Yet, the mass difference between the thresholds involved is not particularly large (e.g. the $\bar{D}^* \Xi_c$ channel with the $\bar{D} \Xi_c^\prime$ or $\bar{D}\Xi_c^*$ channels), making this effect more important than naively expected. **Mao-Jun Yan (ITP,CAS) Molecular** P_{ab} pentaquarks from light-mesor Feb 26th- Mar 1st, 2024, Mohali 19 / 20

Backup: coupled channel scattering

• The
$$
J = \frac{1}{2}\bar{D}^*\Lambda_c - \bar{D}\Sigma_c
$$
 potential
\n
$$
V(\bar{D}^*\Lambda_c - \bar{D}\Sigma_c) = \begin{pmatrix} \tilde{V}^O & -W^O \\ -W^O & V^O \end{pmatrix},
$$
\n• The $J = \frac{1}{2}D_s\Lambda_c - D\Xi_c$ potential
\n
$$
V(\bar{D}_s\Lambda_c - \bar{D}_c) = \begin{pmatrix} \frac{1}{3}\tilde{V}^S + \frac{2}{3}\tilde{V}^O & \frac{\sqrt{2}}{3}(\tilde{V}^S - \tilde{V}^O) \\ \frac{\sqrt{2}}{3}(\tilde{V}^S - \tilde{V}^O) & \frac{2}{3}\tilde{V}^S + \frac{1}{3}\tilde{V}^O \end{pmatrix},
$$
\n• The $J = \frac{1}{2}\bar{D}_s^*\Lambda_c - \bar{D}\Xi_c' - \bar{D}^*\Xi_c$ potential
\n
$$
V = \begin{pmatrix} \frac{1}{3}\tilde{V}^S + \frac{2}{3}\tilde{V}^O & -\sqrt{\frac{2}{3}}W^O & \frac{\sqrt{2}}{3}(\tilde{V}^S - \tilde{V}^O) \\ -\sqrt{\frac{2}{3}}W^O & V^O & \frac{1}{\sqrt{3}}W^O \\ \frac{\sqrt{2}}{3}(\tilde{V}^S - \tilde{V}^O) & \frac{1}{\sqrt{3}}W^O & \frac{2}{3}\tilde{V}^S + \frac{1}{3}\tilde{V}^O \end{pmatrix},
$$