Diagrammatic analysis of tetraquark production in B decays

16th International Workshop on Heavy Quarkonium (QWG2024) @ IISER Mohali, India, 2024.02.28

Fu-Sheng Yu Lanzhou University

Outline

- Introduction on tetraquark production in B decays
- Introduction on topological diagrammatic approach
- Successful applications of Topological diagrammatic approach
 - Predictions on charm CP violation
 - Discovery channels of double-charm baryons
- Diagrammatic analysis of tetraquark production in B decays
 - Hidden-charm tetraquarks
 - Open-charm tetraquarks
- Summary

Exotic states observed in B decays

- to their masses and decays.
- •B decays are a good place for the production of exotic states.

$\Lambda_b \to \boldsymbol{J}/\boldsymbol{\psi}\boldsymbol{p}K$	$P_c(4312)/P_c(4440)/P_c(4457)$	$B^+ \rightarrow D_s^{+} \pi^+ D^-$	$T_{c\bar{s}0}(2900)^{++}$
$\Xi_b \to J/\psi \Lambda K$	<i>P_{cs}</i> (4459)	$B^0 \rightarrow D_s^{\ +} \pi^- \overline{D}{}^0$	$T_{c\bar{s}0}(2900)^0$
$B_s \rightarrow J/\psi p \bar{p}$	<i>P_c</i> (4337)	$B^+ \rightarrow D^- K^+ D^+$	$X_0(2900)/X_1(2900)$
$B \rightarrow \boldsymbol{J}/\boldsymbol{\psi}\boldsymbol{\Lambda}\bar{p}$	<i>P_{cs}</i> (4338)	$B^+ \rightarrow D^0 \overline{D}^{*0} K^+$	X(3872)
$B^0 \rightarrow \boldsymbol{J}/\boldsymbol{\psi} \boldsymbol{\pi}^{\mp} K^{\pm}$	Z _c (4200)	$B^+ \rightarrow \boldsymbol{D_s}^+ \boldsymbol{D_s}^- K^+$	X(3960)
$B^+ \rightarrow J/\psi \omega K^+$	X(3915)	$B^+ \rightarrow D_s^{+} \pi^0 \overline{D}{}^0$	<i>D</i> _{s0} (2317)
$B^+ \rightarrow J/\psi\phi K^+$	$X(4140)/Z_{cs}(4000), etc.$	$B^+ \rightarrow D_s^{*+} \pi^0 \overline{D}{}^0$	<i>D</i> _{s1} (2460)
$B^0 \rightarrow \psi' \pi^{\mp} K^{\pm}$	Z _c (4430)	$\Lambda_b o \boldsymbol{D} \boldsymbol{p} \pi$	Λ _c (2940)
$B^0 \rightarrow \chi_{c1} \pi^{\mp} K^{\pm}$	$Z_c(4051)/Z_c(4248)$		

which can help us get more information about tetraquarks?

• Productions are very important to explore the nature of exotic states, complementary

•Question: Does exist general theoretical method to study decays of B into tetraquarks,

Theoretical methods for hadronic weak decays

- QCD-factorization methods are most popular: QCDF, PQCD, SCET.
- They works for energetic final states. First-principle and very predictive.
- Successful for predictions on CPV of B decays.

- However, tetraquarks are usually heavy. Final states in B decays are not energetic enough. No factorization ansatz works.
- Topological diagrammatic approach is helpful to study decays of B into tetraquark.

Topological diagrams

- Decaying amplitudes are classified according to the weak flavour flows
- All the strong interaction effects are included.

Successful prediction on charm CPV

Meson	Mode	Representation	$\mathcal{B}_{\mathrm{exp}}$ (%)	$\mathcal{B}_{ ext{fit}}$ (%)
$\overline{D^0}$	$K^-\pi^+$	$V_{cs}^* V_{ud}(T+E)$	3.91 ± 0.08	3.91 ± 0.17
	$ar{K}^0 \pi^0$	$\frac{1}{\sqrt{2}}V_{cs}^*V_{ud}(C-E)$	2.38 ± 0.09	2.36 ± 0.08
	$ar{K}^0 oldsymbol{\eta}$	$V_{cs}^* V_{ud} \left[\frac{1}{\sqrt{2}} (C + E) \cos \phi - E \sin \phi \right]$	0.96 ± 0.06	0.98 ± 0.05
	$ar{K}^0 m{\eta}'$	$V_{cs}^* V_{ud} \left[\frac{\sqrt{1}^2}{\sqrt{2}} (C+E) \sin \phi + E \cos \phi \right]$	1.90 ± 0.11	1.91 ± 0.09
D^+	$ar{K}^0\pi^+$	$V_{cs}^* V_{ud}(T+C)$	3.07 ± 0.10	3.08 ± 0.36
D_s^+	$ar{K}^0K^+$	$V_{cs}^*V_{ud}(C+A)$	2.98 ± 0.17	2.97 ± 0.32
2	$oldsymbol{\pi}^+ oldsymbol{\pi}^0$	0	< 0.037	0
	$\pi^+\eta$	$V_{cs}^* V_{ud}(\sqrt{2}A\cos\phi - T\sin\phi)$	1.84 ± 0.15	1.82 ± 0.32
	$\pi^+ \eta^\prime$	$V_{cs}^* V_{ud}(\sqrt{2}A\sin\phi + T\cos\phi)$	3.95 ± 0.34	3.82 ± 0.36

 $C = (2.61 \pm 0.08)e^{-i(152 \pm 1)^{\circ}}$, $T = 3.14 \pm 0.06$, $A = (0.39^{+0.13}_{-0.09})e^{i(31^{+20}_{-33})^{\circ}}$ $E = (1.53^{+0.07}_{-0.08})e^{i(122\pm2)^{\circ}},$ Cheng, Chiang,'10

Relate the penguins to the trees, with the known dynamics at 1GeV

6

Successful prediction on charm CPV

Saur, FSY, Sci.Bull.2020

$$\Delta A_{CP} = A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-)$$

Th: the only predictions of O(10⁻³)

CC: topological approach + QCDF H.Y.Cheng, C.W.Chiang, 2012 LLY: factorization-assisted topology (FAT) H.n.Li, C.D.Lu, F.S.Yu, 2012

Exp: LHCb, PRL122, 211803 (2019)

Topological diagrammatic approach successfully predicted the charm CPV !!!

Successful prediction on Ξ_{cc} discovery channel

- What decaying channel to search for double-charm baryons is an important problem before 2017.
- Predictions are required for largest branching fraction.

- Topological diagrammatic approach may help.
- Less data can be used to estimate the order of magnitude of the branching fractions

Relations between topological diagrams

- Hierarchy of topological diagrams in heavy quark expansion
 - SCET: $IC/T \sim IC'/T \sim IE/T \sim O(\Lambda_{QCD}/m_Q)$ Leibovich, Ligeti, Stewart, Wise, 2004
 - charm decay: $IC/TI \sim IC'/TI \sim IE/TI \sim O(\Lambda_{QCD}/m_c) \sim 1$
- BESIII measurements on Λ_c^+ decays are very helpful

BESIII, 2016

Successful prediction on Ξ_{cc} discovery channel

Modes	$Br(first)(\times 10^{-3})$	$Br(final)(\times 10^{-3})$
$p(D^+/D^0\pi^+)$	<u>e</u> 8.	0.2
$p(D_s^+/D^0K^+)$	0.4	0.01
$(pK^{-}\pi^{+}/\Sigma^{+})(D^{+}/D^{0}\pi^{+})$	<u>e</u> 80.	2.
$(pK^{-}\pi^{+}/\Sigma^{+})(D_{s}^{+}/D^{0}K^{+})$	3.	0.1
$(\Lambda_c^+\pi^+)(\pi^+\pi^-)$	3.	0.2
$(\Lambda_c^+\pi^+)(K^+\pi^-)$	0.2	0.008
$(\Lambda_c^+\pi^+)(K^-\pi^+)$	<u>.</u> 50.	3.
$(\Lambda_c^+\pi^+)(K^+K^-)$	2.	0.08
$\Lambda_c^+\pi^+$	30.	1.
$\Lambda_c^+ K^+$	1.	0.06
$(\Lambda_c^+\pi^+K^-/\Xi_c^+)\pi^+$	<u> </u>	20.
$(\Lambda_c^+\pi^+K^-/\Xi_c^+)K^+$	20.	0.9
 discovery channel 	4) Ξ_{cc}^{++} -	
		34

Talk at LHCb in 2016.12

[FSY, Jiang, Li, Lu, Wang, Zhao, '17]

Topological diagrams of decays of B into tetraquarks

- No explicit values of decay amplitudes are given. But provide relations between decay channels.

Processes with identical topological diagrams share analogous branching fractions.

Topological diagrams of decays of B into tetraquarks

Meson	Mode	Amplitudes	$\mathcal{B}_{exp}(imes 10^{-5})$	$\mathcal{B}_{\mathrm{FAT}}(imes 10^{-5})$		
\overline{B}^0		$V_{cb}V_{ud}^*$				Br _{exp}
	$D_s^+K^-$	E $E \to E$	$3.45{\pm}0.32$	$3.0^{+0.4}_{-0.2}\pm0.0\pm0.3$	$B^- \to D^- X_0 (2900)^0$	$(1.23 \pm 0.41) \times 10^{-5}$
	$D_s^{*+}K^-$	$E \propto \chi^E e^{\imath \phi^L}$	2.19 ± 0.30	$2.2^{+0.3}_{-0.1}\pm 0.0\pm 0.3$	$B^- \rightarrow D^- X_1 (2900)^0$	$(6.73 \pm 2.26) \times 10^{-5}$
	$D_{s}^{+}K^{*-}$	E	3.5 ± 1.0	$3.8^{+0.5}_{-0.2}\pm0.0\pm0.6$	$D \rightarrow D = R_1(2000)$	(0.75 ± 2.20) × 10
\overline{B}^0		$V_{cb}V_{us}^*$				
	$D^0 \overline{K}^0$	C	5.2 ± 0.7	$4.0 \pm 0.0 \pm 1.0 \pm 0.0$		\overline{c}
	$D^{*0}\overline{K}^0$	$C \propto \chi^C e^{i\phi^C}$	3.6 ± 1.2	$4.5^{+0.2}_{-0.3}\pm0.9\pm0.5$		D^{-}
	$D^0 \overline{K}^{*0}$	C	4.2 ± 0.6	$3.7 \pm 0.2 \pm 0.7 \pm 0.2$	5	
Meson	Mode	Amplitudes	$\mathcal{B}_{ ext{exp}}(imes 10^{-3})$	$\mathcal{B}_{ m FAT}(imes 10^{-3})$	A A	s
\overline{B}_{s}^{0}		$V_{cb}V_{ud}^{*}$				$\rightarrow c$ $X_{0,1}(2900)$
	$D_s^+\pi^-$	T factorization	3.04 ± 0.23	$3.02\pm 0.00\pm 0.6\pm 0.01$	$B^ \bar{u}$	\bar{u}
	$D_s^{*+}\pi^-$	T	2.0 ± 0.5	$2.71 \pm 0.00 \pm 0.54 \pm 0.01$		T_{2}
	$D_s^+ ho^-$	T	7.0 ± 1.5	$7.86 \pm 0.00 \pm 1.57 \pm 0.79$		- 3

[Zhou, Wei, Qin, Li, FSY, Lu, '15]

 Processes with identical topological diagrams share analogous branching fractions, regardless of what spins and flavor SU(3) representations of the final states.

[Chen, Han, Lu, Wang, **FSY**, '20]

B decays into hidden-charm tetraquarks

Modes	Topological amplitudes	Experimental processes	Experimental processes	
$B^- \to T_{c\bar{c}s\bar{u}}\phi$	$T_2 V_{cb} V_{cs}^*$	$B^- ightarrow D^{(*)0}_s D^{(*)-}_s \phi$	$B^- \rightarrow J/\psi K^- \phi$ [29]	$) \rightarrow B^{-} \qquad \qquad$
$\overline{B}^0 \to T_{c\bar{c}s\bar{d}}\phi$	$T_2 V_{cb} V_{cs}^*$	$\overline{B}^0 \to D^{(*)+} D_s^{(*)-} \phi$	$\overline{B}^0 \to J/\psi \overline{K}^{(*)0} \phi$	$\sqrt{\overline{u}}$ $\overline{\overline{u}}$ $\overline{\overline{u}}$
$\overline{B}^0 \to T_{c\bar{c}u\bar{d}}K^-$	$T_2 V_{cb} V_{cs}^*$	$\overline{B}^0 \to D^{(*)+} \overline{D}^{(*)0} K^-$	$\overline{B}^0 \rightarrow J/\psi \pi^+ K^-$ [24]	7 (4000) = 1 HCb 2021
$B^- \to T_{c\bar{c}d\bar{u}}\overline{K}^{(*)0}$	$T_2 V_{cb} V_{cs}^*$	$B^- \rightarrow D^{(*)0} D^{(*)-} \overline{K}^{(*)0}$	$B^- \to J/\psi \pi^- \overline{K}^{(*)0}$	$Z_{cs}(4000)$, LIICO 2021
$\overline{B}_s^0 \to T_{c\bar{c}d\bar{s}}\overline{K}^{(*)0}$	$(T_2 + E) V_{cb} V_{cs}^*$	$\overline{B}_s^0 \to D_s^{(*)+} D^{(*)-} \overline{K}^{(*)0}$	$\overline{B}_s^0 \to J/\psi K^0 \overline{K}^{(*)0}$	
$\overline{B}_s^0 \to T_{c\bar{c}u\bar{s}}K^-$	$(T_2 + E) V_{cb} V_{cs}^*$	$\overline{B}_s^0 \to D_s^{(*)+} \overline{D}^{(*)0} K^-$	$\overline{B}_s^0 \to J/\psi K^+ K^-$	S
$\overline{B}_{s}^{0} \rightarrow T_{c\bar{c}u\bar{d}}\pi^{-}$	$E V_{cb}V_{cs}^*$	$\overline{B}_s^0 \to D^{(*)+} \overline{D}^{(*)0} \pi^-$	$\overline{B}^0_s \to J/\psi \pi^+ \pi^-$	\overline{u} I
$\overline{B}_{s}^{0} \rightarrow T_{c\bar{c}d\bar{u}}\pi^{+}$	$E V_{cb}V_{cs}^*$	$\overline{B}_s^0 \to D^{(*)0} D^{(*)-} \pi^+$	$\overline{B}_s^0 \to J/\psi \pi^- \pi^+$	
$\overline{B}^0 \to T_{c\bar{c}s\bar{u}}\pi^+$	$T_1 V_{cb} V_{cs}^*$	$\overline{B}^0 \rightarrow D^{(*)0} D_s^{(*)-} \pi^+$	$\overline{B}^0 \to J/\psi K^- \pi^+$	\xrightarrow{b} \xrightarrow{c} \overline{c} T_c
$B^- \rightarrow T_{c\bar{c}s\bar{d}}\pi^-$	$T_1 V_{cb} V_{cs}^*$	$B^- \to D^{(*)+} D_s^{(*)-} \pi^-$	$B^- \rightarrow J/\psi \overline{K}^0 \pi^-$	\overline{B}^0 () \overline{A} \overline{A}
$B^- \to T_{c\bar{c}s\bar{u}}\pi^0$	$\frac{1}{\sqrt{2}}T_1 V_{cb}V_{cs}^*$	$B^- \to D^{(*)0} D_s^{(*)-} \pi^0$	$B^- \to J/\psi K^- \pi^0$	$\begin{array}{c} & a \\ & & T_2 \end{array}$
$\overline{B}^0 \to T_{c\bar{c}s\bar{d}}\pi^0$	$\frac{1}{\sqrt{2}}T_1 V_{cb}V_{cs}^*$	$\overline{B}^0 \rightarrow D^{(*)+} D_s^{(*)-} \pi^0$	$\overline{B}^0 \to J/\psi \overline{K}^0 \pi^0$	Z _c (4200) ⁺ , Belle 2014
$\overline{B}_s^0 \to T_{c\bar{c}s\bar{d}} K^{(*)0}$	$(T_1 + E) V_{cb} V_{cs}^*$	$\overline{B}_{s}^{0} \to D^{(*)+} D_{s}^{(*)-} K^{(*)0}$	$\overline{B}_s^0 \to J/\psi \overline{K}^0 K^{(*)0}$	
$\overline{B}_s^0 \to T_{c\bar{c}s\bar{u}}K^+$	$(T_1 + E) V_{cb} V_{cs}^*$	$\overline{B}_s^0 \to D^{(*)0} D_s^{(*)-} K^+$	$\overline{B}_s^0 \to J/\psi K^- K^+$	

[Qin, Qiu, **FSY**, '23]

S

B decays into hidden-charm tetraquarks

Modes	Topological amplitudes	Experimental processes	Experimental processes
$B^- \to T_{c\bar{c}s\bar{u}}\phi$	$T_2 V_{cb} V_{cs}^*$	$B^- \rightarrow D^{(*)0} D_s^{(*)-} \phi$	$B^- \rightarrow J/\psi K^- \phi$ [29]
$\overline{B}^0 \to T_{c\bar{c}s\bar{d}}\phi$	$T_2 V_{cb} V_{cs}^*$	$\overline{B}^0 ightarrow D^{(*)+} D^{(*)-}_s \phi$	$\overline{B}^0 \to J/\psi \overline{K}^{(*)0} \phi$
$\overline{B}^0 \to T_{c\bar{c}u\bar{d}}K^-$	$T_2 V_{cb} V_{cs}^*$	$\overline{B}^0 \to D^{(*)+} \overline{D}^{(*)0} K^-$	$\overline{B}^0 \rightarrow J/\psi \pi^+ K^-$ [24]
$B^- \to T_{c\bar{c}d\bar{u}}\overline{K}^{(*)0}$	$T_2 V_{cb} V_{cs}^*$	$B^- \rightarrow D^{(*)0} D^{(*)-} \overline{K}^{(*)0}$	$B^- \to J/\psi \pi^- \overline{K}^{(*)0}$
$\overline{B}_{s}^{0} \to T_{c\bar{c}d\bar{s}}\overline{K}^{(*)0}$	$(T_2 + E) V_{cb} V_{cs}^*$	$\overline{B}_s^0 \to D_s^{(*)+} D^{(*)-} \overline{K}^{(*)0}$	$\overline{B}_s^0 \to J/\psi K^0 \overline{K}^{(*)0}$
$\overline{B}_{s}^{0} \rightarrow T_{c\bar{c}u\bar{s}}K^{-}$	$(T_2 + E) V_{cb} V_{cs}^*$	$\overline{B}_s^0 \to D_s^{(*)+} \overline{D}^{(*)0} K^-$	$\overline{B}_s^0 \to J/\psi K^+ K^-$
$\overline{B}_{s}^{0} \rightarrow T_{c\bar{c}u\bar{d}}\pi^{-}$	$E V_{cb}V_{cs}^*$	$\overline{B}_{s}^{0} \rightarrow D^{(*)+}\overline{D}^{(*)0}\pi^{-}$	$\overline{B}_{s}^{0} \rightarrow J/\psi \pi^{+}\pi^{-}$
$\overline{B}_{s}^{0} \rightarrow T_{c\bar{c}d\bar{u}}\pi^{+}$	$E V_{cb}V_{cs}^*$	$\overline{B}_s^0 \rightarrow D^{(*)0} D^{(*)-} \pi^+$	$\overline{B}_s^0 \to J/\psi \pi^- \pi^+$
$\overline{B}^0 \to T_{c\bar{c}s\bar{u}}\pi^+$	$T_1 V_{cb} V_{cs}^*$	$\overline{B}^0 \rightarrow D^{(*)0} D_s^{(*)-} \pi^+$	$\overline{B}^0 \to J/\psi K^- \pi^+$
$B^- \rightarrow T_{c\bar{c}s\bar{d}}\pi^-$	$T_1 V_{cb} V_{cs}^*$	$B^- \to D^{(*)+} D_s^{(*)-} \pi^-$	$B^- ightarrow J/\psi \overline{K}^0 \pi^-$
$B^- \to T_{c\bar{c}s\bar{u}}\pi^0$	$\frac{1}{\sqrt{2}}T_1 V_{cb}V_{cs}^*$	$B^- \to D^{(*)0} D_s^{(*)-} \pi^0$	$B^- \to J/\psi K^- \pi^0$
$\overline{B}^0 \to T_{c\bar{c}s\bar{d}}\pi^0$	$\frac{1}{\sqrt{2}}T_1 V_{cb}V_{cs}^*$	$\overline{B}^0 \rightarrow D^{(*)+} D_s^{(*)-} \pi^0$	$\overline{B}^0 \to J/\psi \overline{K}^0 \pi^0$
$\overline{B}_s^0 \to T_{c\bar{c}s\bar{d}}K^{(*)0}$	$(T_1 + E) V_{cb} V_{cs}^*$	$\overline{B}_s^0 \to D^{(*)+} D_s^{(*)-} K^{(*)0}$	$\overline{B}_s^0 \to J/\psi \overline{K}^0 K^{(*)0}$
$\overline{B}_s^0 \to T_{c\bar{c}s\bar{u}}K^+$	$(T_1 + E) V_{cb} V_{cs}^*$	$\overline{B}_s^0 \to D^{(*)0} D_s^{(*)-} K^+$	$\overline{B}_s^0 \to J/\psi K^- K^+$

[Qin, Qiu, **FSY**, '23]

- Suggest to search for all the processes with T_2 diagrams.
- It is helpful to explore the nature of observed $Z_{cs}(4000)$ and $Z_{c}(4200)$.
- It might be used to • distinguish whether the exotic states are resonances or non-resonant kinematic effects.

 $\overline{B}{}^0 \to T_{c\bar{c}u\bar{d}}K^- \quad v.s. \quad B^- \to T_{c\bar{c}d\bar{u}}\overline{K}^{*0}$

B decays into open-charm tetraquarks

Modes	Topological amplitudes	Experimental processes	E
$B^- \to T_{\bar{c}\bar{u}ds} D^{(*)+}$	$C V_{cb} V_{cs}^*$	$B^- \to D_s^{(*)-} \pi^- D^{(*)+}$ [32,33]	B
$\overline{B}^0 \to T_{\bar{c}\bar{d}us} D^{(*)0}$	$C V_{cb} V_{cs}^*$	$\overline{B}^0 \to D_s^{(*)-} \pi^+ D^{(*)0} $ [32,33]	\overline{B}
$B^- \rightarrow T_{\bar{c}\bar{u}ss} D_s^{(*)+}$	$\sqrt{2}C V_{cb}V_{cs}^*$	$B^- \rightarrow D_s^{(*)-} K^- D_s^{(*)+}$	
$\overline{B}^0 \to T_{\bar{c}\bar{d}ss} D_s^{(*)+}$	$\sqrt{2}C V_{cb}V_{cs}^*$	$\overline{B}^0 \to D_s^{(*)-} \overline{K}^0 D_s^{(*)+}$	
$B^- \rightarrow T_{cs\bar{u}\bar{d}} D^{(*)-}$	$T_3 V_{cb} V_{cs}^*$	$B^- \to D^{(*)+} K^- D^{(*)-}$ [30]	В
$\overline{B}^0 \to T_{cs\bar{u}\bar{d}}\overline{D}^{(*)0}$	$T_3 V_{cb} V_{cs}^*$	$\overline{B}^0 \to D^{(*)+} K^- \overline{D}^{(*)0}$	B
$B^- \to T_{cs\bar{u}\bar{u}}\overline{D}^{(*)0}$	$\sqrt{2}T_3 V_{cb}V_{cs}^*$	$B^- \rightarrow D^{(*)0} K^- \overline{D}^{(*)0}$	
$\overline{B}^0 \to T_{cs\bar{d}\bar{d}} D^{(*)-}$	$\sqrt{2}T_3 V_{cb}V_{cs}^*$	$\overline{B}^0 \to D^{(*)+} \overline{K}^0 D^{(*)-}$	
$\overline{B}_{s}^{0} \rightarrow T_{cd\bar{u}\bar{s}}\pi^{0}$	$\frac{1}{\sqrt{2}}(T_3 - T_2) V_{cb} V_{ud}^*$	$\overline{B}_s^0 \to D_s^{(*)+} \pi^- \pi^0$	\overline{B}
$\overline{B}^0_s \to T_{cd\bar{s}\bar{s}}K^-$	$\sqrt{2}T_3 V_{cb}V_{ud}^*$	$\overline{B}_s^0 \to D_s^{(*)+} K^0 K^-$	
$B^- \rightarrow T_{cd\bar{u}\bar{s}}K^-$	$(T_1 + T_3) V_{cb} V_{ud}^*$	$B^- \rightarrow D_s^{(*)+} \pi^- K^-$	B
$B^- \to T_{cd\bar{u}\bar{u}}\pi^0$	$(T_1 + T_3 - T_2) V_{cb} V_{ud}^*$	$B^- \rightarrow D^{(*)0} \pi^- \pi^0$	
$\overline{B}_s^0 \to T_{cd\bar{u}\bar{u}}K^+$	$\sqrt{2}T_1 V_{cb}V_{ud}^*$	$\overline{B}_s^0 \to D^{(*)0} \pi^- K^+$	
$\overline{B}_{s}^{0} \rightarrow T_{cd\bar{u}\bar{s}}\phi$	$T_1 V_{cb} V_{ud}^*$	$\overline{B}_{s}^{0} ightarrow D_{s}^{(*)+} \pi^{-} \phi$	B
$\overline{B}^0 \to T_{cd\bar{u}\bar{s}}\overline{K}^{(*)0}$	$(E+T_1) V_{cb} V_{ud}^*$	$\overline{B}^0 \to D_s^{(*)+} \pi^- \overline{K}^{(*)0}$	\overline{B}
$\overline{B}^0 \to T_{cd\bar{u}\bar{u}}\pi^+$	$\sqrt{2}(E+T_1) V_{cb} V_{ud}^*$	$\overline{B}^0 \rightarrow D^{(*)0} \pi^- \pi^+$	
$B^- \rightarrow T_{cs\bar{u}\bar{u}}K^{(*)0}$	$\sqrt{2}T_2 V_{cb}V_{ud}^*$	$B^- \to D^{(*)0} K^- K^{(*)0}$	
$\overline{B}^0 \to T_{cs\bar{u}\bar{d}}K^{(*)0}$	$(E+T_2) V_{cb} V_{ud}^*$	$\overline{B}^0 \to D^{(*)+} K^- K^{(*)0}$	B
$\overline{B}^0 \to T_{cs\bar{u}\bar{u}}K^+$	$\sqrt{2} E V_{cb} V_{ud}^*$	$\overline{B}^0 \to D^{(*)0} K^- K^+$	

B decays into open-charm tetraquarks

Modes	Topological amplitudes	Experimental processes	E
$B^- \to T_{\bar{c}\bar{u}ds} D^{(*)+}$	$C V_{cb} V_{cs}^*$	$B^- \to D_s^{(*)-} \pi^- D^{(*)+}$ [32,33]	B
$\overline{B}^0 \to T_{\bar{c}\bar{d}us} D^{(*)0}$	$C V_{cb} V_{cs}^*$	$\overline{B}^0 \to D_s^{(*)-} \pi^+ D^{(*)0} [32,33]$	Ē
$B^- \rightarrow T_{\bar{c}\bar{u}ss} D_s^{(*)+}$	$\sqrt{2}C \ V_{cb}V_{cs}^*$	$B^- \to D_s^{(*)-} K^- D_s^{(*)+}$	
$\overline{B}^0 \to T_{\bar{c}\bar{d}ss} D_s^{(*)+}$	$\sqrt{2}C \ V_{cb} V_{cs}^*$	$\overline{B}^0 \to D_s^{(*)-} \overline{K}^0 D_s^{(*)+}$	
$B^- \rightarrow T_{cs\bar{u}\bar{d}} D^{(*)-}$	$T_3 V_{cb} V_{cs}^*$	$B^- \to D^{(*)+} K^- D^{(*)-}$ [30]	B
$\overline{B}^0 \to T_{cs\bar{u}\bar{d}}\overline{D}^{(*)0}$	$T_3 V_{cb} V_{cs}^*$	$\overline{B}^0 \to D^{(*)+} K^- \overline{D}^{(*)0}$	Ē
$B^- \to T_{cs\bar{u}\bar{u}}\overline{D}^{(*)0}$	$\sqrt{2}T_3 V_{cb}V_{cs}^*$	$B^- \rightarrow D^{(*)0} K^- \overline{D}^{(*)0}$	
$\overline{B}^0 \to T_{cs\bar{d}\bar{d}} D^{(*)-}$	$\sqrt{2}T_3 V_{cb}V_{cs}^*$	$\overline{B}^0 \to D^{(*)+} \overline{K}^0 D^{(*)-}$	
$\overline{B}_{s}^{0} \rightarrow T_{cd\bar{u}\bar{s}}\pi^{0}$	$\frac{1}{\sqrt{2}}(T_3 - T_2) V_{cb} V_{ud}^*$	$\overline{B}_s^0 \to D_s^{(*)+} \pi^- \pi^0$	Ē
$\overline{B}_s^0 \to T_{cd\bar{s}\bar{s}}K^-$	$\sqrt{2}T_3 V_{cb}V_{ud}^*$	$\overline{B}_s^0 \to D_s^{(*)+} K^0 K^-$	
$B^- \to T_{cd\bar{u}\bar{s}}K^-$	$(T_1 + T_3) V_{cb} V_{ud}^*$	$B^- \rightarrow D_s^{(*)+} \pi^- K^-$	B
$B^- \to T_{cd\bar{u}\bar{u}}\pi^0$	$(T_1 + T_3 - T_2) V_{cb} V_{ud}^*$	$B^- \rightarrow D^{(*)0} \pi^- \pi^0$	
$\overline{B}_s^0 \to T_{cd\bar{u}\bar{u}}K^+$	$\sqrt{2}T_1 V_{cb}V_{ud}^*$	$\overline{B}_s^0 \to D^{(*)0} \pi^- K^+$	
$\overline{B}_{s}^{0} \rightarrow T_{cd\bar{u}\bar{s}}\phi$	$T_1 V_{cb} V_{ud}^*$	$\overline{B}_{s}^{0} ightarrow D_{s}^{(*)+} \pi^{-} \phi$	\overline{B}
$\overline{B}^0 \to T_{cd\bar{u}\bar{s}}\overline{K}^{(*)0}$	$(E+T_1) V_{cb} V_{ud}^*$	$\overline{B}^0 \to D_s^{(*)+} \pi^- \overline{K}^{(*)0}$	Ē
$\overline{B}^0 \to T_{cd\bar{u}\bar{u}}\pi^+$	$\sqrt{2}(E+T_1) V_{cb} V_{ud}^*$	$\overline{B}^0 \rightarrow D^{(*)0} \pi^- \pi^+$	
$B^- \rightarrow T_{cs\bar{u}\bar{u}}K^{(*)0}$	$\sqrt{2}T_2 V_{cb}V_{ud}^*$	$B^- \to D^{(*)0} K^- K^{(*)0}$	
$\overline{B}^0 \to T_{cs\bar{u}\bar{d}}K^{(*)0}$	$(E+T_2) V_{cb} V_{ud}^*$	$\overline{B}^0 \to D^{(*)+} K^- K^{(*)0}$	Ē
$\overline{B}^0 \to T_{cs\bar{u}\bar{u}}K^+$	$\sqrt{2} E V_{cb} V_{ud}^*$	$\overline{B}^0 \to D^{(*)0} K^- K^+$	

Experimental processes

 $B^{-} \to D^{(*)-} K^{-} D^{(*)+}$ $\overline{B}^{0} \to \overline{D}^{(*)0} \overline{K}^{0} D^{(*)0}$

 $B^{-} \to D^{(*)0} \overline{K}^{0} D^{(*)-}$ $\overline{B}^{0} \to D^{(*)0} \overline{K}^{0} \overline{D}^{(*)0}$

 $\overline{B}_s^0 \to D^{(*)0} K^0 \pi^0$

 $B^- \rightarrow D^{(*)0} K^0 K^-$

 $\overline{B}_{s}^{0} \to D^{(*)0} K^{0} \phi$ $\overline{B}^{0} \to D^{(*)0} K^{0} \overline{K}^{(*)0}$

 $\overline{B}^0 \to D^{(*)0} \overline{K}^0 K^{(*)0}$

- Suggest to search for all the processes with C or T_3 diagrams.
- It is helpful to explore the nature of observed $T^a_{c\bar{s}0}(2900)$ and $X_{0,1}(2900)$.
- It might be used to distinguish whether the exotic states are resonances or non-resonant kinematic effects.

Summary

- Topological diagrammatic approach has been successfully used in the phenomenological analysis in charm CPV and double-charm baryons.
- Topological diagrammatic approach is applied in the tetraquark production in B decays.
- Some relations are obtained for branching fractions between different channels. Experimental searches can help to distinguish the nature of exotic states for resonances or non-resonant kinematic effects.

Thank you!