Bottomonium suppression from the 3-loop QCD potential

Tom Magorsch

in collaboration with Nora Brambilla, Michael Strickland,

Antonio Vairo and Peter Vander Griend

QWG

28.02.2024

Quarkonium Suppression from first principles

T. Matsui, H. Satz, Phys. Lett. B 178 (1986) 416

- Matsui & Satz proposed Quarkonium suppression as a signal for the QGP
- Quarkonium dissolves in the QGP
- Measured Quarkonium yields are lower in HIC compared to pp collisions
- We aim to describe this phenomenon from **first principles**

Propagation through QGP $T \approx O(100 \text{MeV})$

- Quantum system not isolated
- Split into System S and Environment E

$$
H = H_S \otimes I_E + I_S \otimes H_E + H_{\text{int}}
$$

- Time evolution by Von-Neumann Equation $\frac{d}{dt}\rho = -i[H,\rho]$
- Not interested in environmental d.o.f.: **Trace out**!

$$
\rho_S = \text{Tr}_E[\rho]
$$

- **Time evolution by Von-Neumann Equation** $\frac{d}{dt}\rho = -i[H,\rho]$
- Environmental d.o.f. not needed Trace out!

 $\rho_S = \text{Tr}_E[\rho]$

● "Master equation" for the System: **Lindblad Equation**

$$
\frac{d\rho_S}{dt} = -i[H_S, \rho_S] + \sum_n \left(C_n \rho_S C_n^{\dagger} - \frac{1}{2} \left\{ C_n^{\dagger} C_n, \rho_S \right\} \right)
$$

- **Time evolution by Von-Neumann Equation** $\frac{d}{dt}\rho = -i[H,\rho]$
- Environmental d.o.f. not needed Trace out!

 $\rho_S = \text{Tr}_E[\rho]$

● "Master equation" for the System: **Lindblad Equation**

$$
\underbrace{\left(\frac{d\rho_S}{dt} = -i[H_S, \rho_S]\right)}_{n} + \sum_{n} \left(C_n \rho_S C_n^{\dagger} - \frac{1}{2} \left\{ C_n^{\dagger} C_n, \rho_S \right\} \right)
$$

- **Time evolution by Von-Neumann Equation** $\frac{d}{dt}\rho = -i[H,\rho]$
- Environmental d.o.f. not needed Trace out!

 $\rho_S = \text{Tr}_E[\rho]$

● "Master equation" for the System: **Lindblad Equationnon-unitary** $\frac{d\rho_S}{dt}=-i[H_S,\rho_S]+\sum\left(C_n\rho_S C_n^\dagger-\frac{1}{2}\left\{C_n^\dagger C_n,\rho_S\right\}\right)$

OQS for quarkonium

- Quarkonium: System S
- QGP: Environment E

Aim to describe Quarkonium Suppression by a master equation for encoding the interaction with the QGP

$$
\frac{d\rho_S}{dt} = -i[H_S, \rho_S] + \sum_n \left(C_n \rho_S C_n^{\dagger} - \frac{1}{2} \left\{ C_n^{\dagger} C_n, \rho_S \right\} \right)
$$

EFTs for Quarkonium Suppression

● Use NREFTs to exploit hierarchy of scales

$$
M \gg 1/a_0 \gg \pi T \gg E
$$

- Inverse radius: $1/a_0 \approx 1.2 \text{GeV}$
- **•** Temperature regime: $250MeV < T < 425MeV$
- **•** Binding Energy:

 $M \,$

 $\,E$

8

pNRQCD

N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Nuclear Physics B 566, 275 (2000)

- We use pNRQCD, an EFT from full QCD
- pNRQCD is obtained by integrating out the hard scale M and soft scale Mv
- Degrees of freedom: Singlet and octet bound states
- Using pNRQCD one can derive a master equation for the quarkonium density matrix

Brambilla, Escobedo, Soto, Vairo: Phys. Rev. D 97 (2018) 7, 074009

 $v \ll 1$: Relative Quark-Antiquark velocity

$$
\frac{d\rho(t)}{dt} = -i[H, \rho(t)] + \sum_{n} \left[C_i^n \rho(t) C_i^{n\dagger} - \frac{1}{2} \left\{ C_i^{n\dagger} C_i^n, \rho(t) \right\} \right],
$$

$$
H = \begin{pmatrix} h_s + \frac{r^2}{2}\gamma & 0\\ 0 & h_o + \frac{N_c^2 - 2}{2(N_c^2 - 1)}\frac{r^2}{2}\gamma \end{pmatrix}
$$

$$
h_{s,o} = \vec{p}^2/M + V_{s,o}
$$

$$
\frac{d\rho(t)}{dt} = -i[H, \rho(t)] + \sum_{n} \left[C_i^n \rho(t) C_i^{n\dagger} - \frac{1}{2} \left\{ C_i^{n\dagger} C_i^n, \rho(t) \right\} \right],
$$

$$
H = \begin{pmatrix} h_s + \frac{r^2}{2}\gamma & 0\\ 0 & h_o + \frac{N_c^2 - 2}{2(N_c^2 - 1)}\frac{r^2}{2}\gamma \end{pmatrix}
$$

$$
h_{s,o} = \vec{p}^2 / M + \boxed{V_{s,o}}
$$

Quarkonium
Potential

$$
\frac{d\rho(t)}{dt} = -i[H, \rho(t)] + \sum_{n} \left[C_i^n \rho(t) C_i^{n\dagger} - \frac{1}{2} \left\{ C_i^{n\dagger} C_i^n, \rho(t) \right\} \right],
$$

$$
H = \begin{pmatrix} h_s + \frac{r^2}{2} \gamma & 0\\ 0 & h_o + \frac{N_c^2 - 2}{2(N_c^2 - 1)} \frac{r^2}{2} \gamma \end{pmatrix} \quad C_i^0 = \sqrt{\frac{\kappa}{N_c^2 - 1}} r_i \begin{pmatrix} 0 & 1\\ \sqrt{N_c^2 - 1} & 0 \end{pmatrix},
$$

$$
C_i^1 = \sqrt{\frac{\kappa(N_c^2 - 4)}{2(N_c^2 - 1)}} r_i \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix}
$$

$$
h_{s,o} = \vec{p}^2 / M + V_{s,o}
$$

$$
\frac{d\rho(t)}{dt} = -i[H, \rho(t)] + \sum_{n} \left[C_i^n \rho(t) C_i^{n\dagger} - \frac{1}{2} \left\{ C_i^{n\dagger} C_i^n, \rho(t) \right\} \right],
$$

- Hilbert Space:
	- Singlet and octet states

$$
\rho = \begin{pmatrix} \rho_s & 0 \\ 0 & \rho_o \end{pmatrix}
$$

- Discretizing radial part of the wavefunction (e.g. 2048 lattice)
- Angular momentum quantum numbers
- **● Very large Hilbert space**

$$
\frac{d\rho_S}{dt}=-i[H_S,\rho_S]+\sum_n\left(C_n\rho_S C_n^\dagger-\frac{1}{2}\left\{C_n^\dagger C_n,\rho_S\right\}\right)
$$

$$
\,\,14
$$

Quantum trajectory algorithm

 J. Dalibard, Y. Castin, and K. Mølmer, Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett. 68 (1992), pp. 580–583.

ldea:

Speedup

- 1. Evolve individual trajectories $|\phi(t)\rangle$
	- stochastically
- Calculate observables by averaging over trajectories $\overline{\langle \phi(t) | A | \phi(t) \rangle}$ can evolve to arbitrary l
	- Averaging over the density matrix $\sigma(t) = |\phi(t)\rangle \langle \phi(t)|$ restores the Lindblad equation

Advantages:

- Evolve vector of size N_H instead N_H^2 density matrix
- Simulation of individual trajectories is **embarrassingly parallel**

15

Previous work

 N. Brambilla, M. A. Escobedo, M. Strickland, A. Vairo, P. Vander Griend and J. H. Weber, Phys. Rev. D 104 (2021) 094049

Previous work

 N. Brambilla, M. A. Escobedo, M. Strickland, A. Vairo, P. Vander Griend and J. H. Weber, Phys. Rev. D 104 (2021) 094049

 $\hat{\kappa} \in {\{\hat{\kappa}_{L}(T),\hat{\kappa}_{C}(T),\hat{\kappa}_{U}(T)\}}, \hat{\gamma} = -1.75$ \bullet ALICE - Y(1S) 5.02 TeV Pb-Pb ALICE: $p_T < 15$ GeV and 2.5 $< y < 4$ \blacksquare ATLAS – Y(1S) $1₀$ ATLAS: $p_T < 15$ GeV and $|y| < 1.5$ \triangle CMS – Y(1S) CMS: $p_T < 30$ GeV and $|y| < 2.4$ O ALICE – $Y(2S)$ QTraj: $p_T < 30$ GeV and y=0 \Box $ATLAS - Y(2S)$ 0.8 \triangle CMS – Y(2S) $QTraj - Y(1S)$ $\boldsymbol{\mathcal{Z}}^{0.6}$ QTraj – Y(2S) $QTraj - Y(3S)$ 0.4 0.2 0.0 100 200 300 400 O 17 N_{part}

● Coulomb potential

 $V_s = -C_f \alpha_s/r$ $V_o = \alpha_s/(2N_c r)$

● Temperature dependent $\hat{\kappa}$

 $\hat{\gamma} = -1.75$

New Potential

J. Segovia, S. Steinbeißer, and A. Vairo, Physical Review D 99 (2019)

● Motivation: Implement a higher order potential with a more realistic spectrum

$$
V_s^{\text{3L+np}}(r) = V_s^{\text{3L}}(r) + V_s^{\text{np}}(r)
$$

$$
V_s^{\text{3L}}(r) = \begin{cases} \sum_{k=0}^3 V_{s,\text{RS}}^{(k)} \alpha_s^{k+1}(1/r) & \text{if } r < \nu_r^{-1} \\ \sum_{k=0}^3 V_{s,\text{RS}}^{(k)} \alpha_s^{k+1}(\nu) & \text{if } r > \nu_r^{-1} \end{cases}
$$
 three loop pNRQCD
Re
$$
[V_s^{\text{np}}(r)] = \frac{\gamma}{2}r^2
$$
 leading non-perturbative correction

New Potential

J. Segovia, S. Steinbeißer, and A. Vairo, Physical Review D 99 (2019)

• Indirectly determine $\hat{\kappa}$ and $\hat{\gamma}$ from lattice measurements of the in medium width Γ and mass shift δm

$$
\smash{\overbrace{\qquad}}\kappa=\hat{\kappa}T^3
$$

no vacuum part

$$
\gamma = \gamma(T = 0) + \hat{\gamma}T^3
$$

• Indirectly determine $\hat{\kappa}$ and $\hat{\gamma}$ from lattice measurements of the in medium width Γ and mass shift δm

• Obtain $\hat{\kappa}$ from fits to 1S and 1P data and average

Coulomb: $\hat{\kappa} = 0.33 \pm 0.04$ **New potential:** $\hat{\kappa} = 1.88 \pm 0.16$

• Indirectly determine $\hat{\kappa}$ and $\hat{\gamma}$ from lattice measurements of the in medium width Γ and mass shift δm

$$
\smash{\overbrace{\qquad}}\kappa=\hat{\kappa}T^3
$$

no vacuum part

$$
\gamma = \gamma(T = 0) + \hat{\gamma}T^3
$$

• Assume simple model for the vacuum part $\gamma(T=0)$

$$
\langle E^a(t)\Omega(t,0)^{ab}E^b(0)\rangle=\langle E^2(0)\rangle {\rm e}^{-i\Lambda_E t {\rm e.s.~Bali~and~A.~Pineda,~Physical~\atop Review~D~69~(2004)~\atop $\Lambda_E=1.25{\rm GeV}$}}
$$

S. Narison, Qcd parameters and sm-high precisions from e+e-→hadrons :Summary(2023),2309.05342

• Indirectly determine $\hat{\kappa}$ and $\hat{\gamma}$ from lattice measurements of the in medium width Γ and mass shift δm

$$
\smash{\overbrace{\qquad}}\kappa=\hat{\kappa}T^3
$$

no vacuum part

$$
\gamma = \gamma(T = 0) + \hat{\gamma}T^3
$$

• Assume simple model for the vacuum part $\gamma(T=0)$ leading to

$$
\gamma(T=0)=0.017{\rm GeV}^3
$$

Nuclear modification factor results

- New potential can describe the experimental data
- **Coulomb potential** with $\hat{\kappa} = 0.33 \pm 0.04$ can not describe the data

Summary and outlook

- We implemented a new potential which gives a realistic spectrum
- We extracted transport coefficient values from lattice data
- Our results agree well with the experimental data
- Future: Extend analysis to NLO description in $E/(\pi T)$ expansion

Thanks!

Backup slides

Non perturbative correction

N. Brambilla, M. A. Escobedo, M. Strickland, A. Vairo, P. Vander Griend, and J. H. Weber, JHEP 05, 136 (2021), 2012.01240

Heavy quark diffusion coefficient

$$
V_s^{\text{non-pert}}(r) = -i \frac{g^2 T_F}{3N_c} r^2 \int_0^\infty dt \langle E^a(t) \Omega(t, 0)^{ab} E^b(0) \rangle
$$

$$
\gamma = \frac{g^2}{3N_c} \text{Im} \int_0^\infty dt \, \langle E^a(t) \Omega(t, 0)^{ab} E^b(0) \rangle
$$

In medium width

● Width given by collapse operators

$$
\Gamma = \sum_{n} C_{n}^{\dagger} C_{n}
$$
\n• At LO in E/T \n
$$
\Gamma = \hat{\kappa} T^{3} r^{2}
$$

Brambilla, Escobedo, Soto, Vairo: Phys. Rev. D 97 (2018) 7, 074009

- In general the master Eq. is not of Lindblad form
- Simplify using hierarchy of scales $T \gg E$

$$
A^{uv}_i=\frac{g^2}{6N_c}\int_0^\infty {\rm d} s e^{-ih_u s} r_i e^{ih_v s}\left\langle \tilde{E}^a_j(0,\overrightarrow{0})\tilde{E}^a_j(s,\overrightarrow{0})\right\rangle
$$

• Expand exponentials in E/T

 \bullet At LO in E/T we get

$$
A_i^{uv} = \frac{g^2}{6N_c} \int_0^\infty ds r_i \left\langle \tilde{E}_j^a(0, \vec{0}) \tilde{E}_j^a(s, \vec{0}) \right\rangle
$$

= $\frac{r_i}{2} (\kappa - i\gamma)$ Transport coefficients