

Recent quarkonium results in heavy-ion collisions at STAR

Nihar Ranjan Sahoo (for the STAR Collaboration)

IISER-Tirupati

ENERGY

Quarkonia in heavy-ion collisions

Goal to probe finite temperature and baryon density in QCD medium

- \rightarrow deconfined and chiral symmetric QCD phase: Quark-Gluon Plasma (QGP)
- → pseudo-critical temperature, $T_{pc} = 155-160$ MeV (lattice QCD simulation) JHEP 09:073 (2010); PRL 113:082001 (2014) $0.2T_c \quad 0.74T_c \quad 1.17$

Quarkonia—bound states of $c\bar{c} (J/\psi)$ and $b\bar{b} (\Upsilon)$

In heavy-ion collisions

 \rightarrow Dissociation of quarkonium

Color screening: quarkonium size > Debye screening length of medium

Dynamical dissociation: inelastic interaction between quarkonium and medium

 \rightarrow Regeneration of quarkonium : Important at high temperature and medium density

 \rightarrow Cold Nuclear Matter (CNM) effect: nPDF modification, Cronin effect, dissociation due to co-mover, etc.

See Md. Nasim's talk on pp: 26 Feb, 5.00 PM

Let's discuss recent results from STAR experiment...

STAR detector

Key detectors for Quarkonia measurements:

- With Inner Time Projection Chamber, (i)TPC $\rightarrow |\eta| < 1.5$ and $p_T > 0.15$ GeV/*c*
- Barrel Electromagnetic Calorimeter (BEMC) $\rightarrow |\eta| < 1$
- Time of flight (TOF) $\rightarrow |\eta| < 1$
- Muon Telescope Detector (MTD) $\rightarrow |\eta| < 0.5$

Charmonium and its excited states in QGP

J/ψ suppression at different collision energy

 \rightarrow Similar J/ ψ suppression for similar <N_{part}> at RHIC energies in Au+Au collisions

J/ψ suppression at different collision energy

No collision energy dependence of R_{AA} at RHIC

Interplay of dissociation and regeneration effects at RHIC energies

What about in p+Au collisions?

J/ψ in hot-dense vs. cold QCD medium

 \rightarrow Au+Au: strong evidence of the QGP formation

 \rightarrow p+Au: at high-p_T (> 3 GeV/*c*) no suppression; low-p_T suppression due to CNM effects \rightarrow p+Au data help to quantify the CNM effect in Au+Au collisions

Collision system size dependence of J/ψ suppression

p+Au, Cu+Cu, Zr+Zr, Ru+Ru and Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Same $J/\psi R_{AA}$ with similar N_{part} , independent of collision system

Charmonium excited states in QGP

Charmonium $\psi(2S)$ suppression at RHIC in Zr+Zr and Ru+Ru collisions

PHENIX: PRL 111 (2013); PHENIX: PRD, 85,092004 (2012) NA50: EPJC 48, (2006); E772: PRL 66 (1991) 133

- \rightarrow First observation of charmonium sequential suppression in A+A at RHIC (3.5 σ , 0-80%)
- \rightarrow Double ratio is smaller in A+A than that in p+A collisions

Nihar Sahoo, QWG 2024, IISER Mohali

Collectivity and spin coupling of J/ψ in QGP

Nihar Sahoo, QWG 2024, IISER Mohali

10 - 17

J/ψ flow in QGP at RHIC

Using TPC event plane method:

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} (1 + \sum_{n=1}^{\infty} 2v_{n}cos[n(\phi - \Psi_{n})])$$

- → At low J/ ψ p_T (0.3-4 GeV/*c*): zero elliptic flow coefficient
- → Hinting smaller regeneration effect or/and charm flow in QGP at RHIC

QGP global angular momentum and J/ ψ spin coupling

 ρ_{00} lower than 1/3 with a significance of 3.5 σ in 0-80% centrality No significant centrality dependence within uncertainty

STAR

Bottomonium and its excited states in QGP

Bottomonium states in QGP

 $\Upsilon(1S+2S+3S)$ suppression measurement in STAR Au+Au and d+Au $\sqrt{s}_{NN} = 200 \text{ GeV}$ STAR: PLB 735 (2014) 127 **2** П Ύ**(1S+2S+3S) R_{AA,dA}** (a) 1.8 STAR Au+Au, Centrality Integrated STAR Au+Au Using dielectron channel Strickland-Bazow Model 1.6 STAR d+Au Emerick-Zhao-Rapp Model p+p Stat.+Fit Uncertainty 1.4 Common Normalization Syst. \rightarrow p+Au collisions: R_{pA} = 0.79 \pm 0.22 1.2 indicting CNM effect 1 0.8 \rightarrow 0-10% central Au+Au collisions 0.6 0.4 $R_{AA} < R_{pA}$ implying hot nuclear matter STAR Y(1S+2S+3S) 0.2 effect s_{nn} = 200 GeV **اy**_ا<1.0 0 350 200 250 300 150 400 50 100 0 N_{part} $\langle N_{\rm part} \rangle$

Need precision measurement to observe sequential suppression of excited states

Quarkonium states in QGP

b

Bottomonium $\Upsilon(nS)$ suppression in Au+Au collisions

→ Sequential suppression pattern R_{AA}, $\Upsilon(1S) > \Upsilon(2S) > \Upsilon(3S)$

 \rightarrow Sufficiently high QGP temperature to strongly suppress excited Υ states

Quarkonium states in QGP

Bottomonium $\Upsilon(nS)$ suppression in Au+Au and Isobar collisions

STAR, PRL 130 (2023) 112301

b

Same $\Upsilon(1S)$ R_{AA} with similar N_{part}, independent of collision system

Summary and outlook

- Quarkonia—J/ ψ , ψ (2s), Υ (nS)—sequential suppression in heavy-ion collisions
 - \rightarrow Informing QGP thermal properties at RHIC
 - \rightarrow Interplay of dissociation and regeneration effects at RHIC energies
 - \rightarrow Same R_{AA} with similar N_{part}, independent of collision system and energy

STAR 2023-2025 data taking plan for precision quarkonia measurements

Nihar Sahoo, QWG 2024, IISER Mohali