Recent Results on Quarkonium Production from ALICE in Nuclear Collisions

16th International Conference on Heavy Quarkonia 26 Feb – 01 Mar, 2024 IISER Mohali, India

Neelkamal Mallick

Indian Institute of Technology Indore, India (On behalf of the ALICE Collaboration)

Neelkamal.Mallick@cern.ch

Motivation

WHAT

Bound state of heavy quark and antiquark; **charmonia** $(c\bar{c})$ and **bottomonia** ($b\bar{b}$)

- Produced via hard scattering processes (large Q^2) at the initial stage of the collision
- Interacts with the medium throughout its evolution
- Several in-medium mechanisms owing to the production

- HOW
- Production of **charmonia** $(J/\psi, \psi(2S))$ and **bottomonia** $(Y(1S), Y(2S))$
- Measurement of nuclear modification factor (R_{AA}) (Requires a baseline: pp collisions)
- Elliptic flow (v_2)
- Polarization

• Recent results from LHC Run 2 Data, Pb—Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Quarkonia in Heavy-Ion Collisions

- **Quarkonia Suppression:** Quarkonia states are expected to be suppressed in the presence of hot and dense medium due to color screening and dynamic dissociation
- Color screening due to the production of large amount of color charges at higher energies
- **Sequential Melting:** Differences in their binding energy leads to a sequential suppression of various quarkonia states by increasing the temperature of the medium
- **Quarkonia (Re)generation:** Higher production cross section of the $c\bar{c}$ pair at the LHC energies \rightarrow Enhanced quarkonia production through statistical production at the phase boundary or through coalescence of charm quarks in the plasma
- **CNM Effects:** Modification of the parton distribution function in presence of nuclear environment

T. Matsui and H. Satz, PLB 178 (1986) 416 A Rothkopf, Phys. Rept. 858 (2020) 1-117 P. Braun-Munzinger, J. Stachel, PLB 490 (2000) 196 R. Thews et al, Phys. Rev. C 63 (2001) 054905

ALICE Apparatus (Run 2 Configuration)

Transverse Momentum Spectra

ALICE Collaboration, Phys. Lett. B 849 (2024) 138451 SHMc: A. Andronic et al.,Phys. Lett. B 797 (2019) 134836 Transport: P. Zhuang et al., Phys. Rev. C 89 (2014) 054911 Transport: R. Rapp et al., Eur. Phys. J. A 57 (2021) 122

- Includes the entire dataset collected during Run 2 with ALICE \rightarrow Improves precision, extends p_T coverage
- Low p_T yield explained via charm coalescence with transport models and statistical approach
- High p_T yield is explained via both the transport models
- SHMc model underestimates data at higher p_T

Nuclear Modification Factor (R_{AA} **)**

• Defined as the ratio of yields in heavy-ion collisions to that of pp collisions scaled to the number of binary collisions

$$
R_{\rm AA}(p_{\rm T}) = \frac{d^2 N_{\rm AA}/(dy\,dp_{\rm T})}{\langle N_{\rm coll} \rangle d^2 N_{\rm pp}/(dy\,dp_{\rm T})}
$$

- $R_{AA} > 1$: Enhancement
- R_{AA} < 1: Suppression
- $R_{AA} = 1$: No Nuclear effect
- In presence of a medium, the production of quarkonia can alter greatly as compared to pp collisions through sequential suppression, dissociation, regeneration, and CNM effects
- R_{AA} vs. Binding Energy \rightarrow confirms sequential suppression [https://cms-results.web.cern.ch/cms-](https://cms-results.web.cern.ch/cms-results/public-results/publications/HIN-21-007/index.html#Figure-aux_021)

[results/public-results/publications/HIN-21-](https://cms-results.web.cern.ch/cms-results/public-results/publications/HIN-21-007/index.html#Figure-aux_021) [007/index.html#Figure-aux_021](https://cms-results.web.cern.ch/cms-results/public-results/publications/HIN-21-007/index.html#Figure-aux_021)

Nuclear Modification Factor (R_{AA}) **for** J/ψ

- J/ψ suppression observed from semi-central to central collisions
- Almost flat trend→ Interplay between suppression and (re)generation effects
- For $\langle N_{\text{part}} \rangle$ > 100, less suppression for midrapidity case \rightarrow Higher $d\sigma_{c\bar{c}}/dy$ and larger fraction of J/ψ produced via (re)generation

- At low- p_T , recombination of uncorrelated charm quarks counterbalances the suppression \rightarrow Stronger (re)generation effect \rightarrow Strong dependence of R_{AA} on local charm quark density
- At higher p_T : Converge to similar values \rightarrow Weaker dependence on rapidity

Model Comparison

- For $p_T > 10$ GeV/*c*, energy loss model describes the data very well
- Fragmentation of high-energy partons→ Dominant method of hadron production
- Energy loss due to multiple scattering→ Greater suppression at higher p_T

- SHMc model in good agreement with low- $p_T R_{AA}$
- SHMc underestimates data for $p_T > 5$ GeV/*c*

 \rightarrow Missing sources: primordial J/ψ or non-prompt J/ψ from B-hadron

- \rightarrow Underestimated amount of radial flow acquired by charm quarks
- Better quantitative agreement seen for the transport models than the SHMc model

ALICE Collaboration, Phys. Lett. B 849 (2024) 138451 SHMc: A. Andronic et al.,Phys. Lett. B 797 (2019) 134836 Transport: P. Zhuang et al., Phys. Rev. C 89 (2014) 054911 Transport: R. Rapp et al., Eur. Phys. J. A 57 (2021) 122

Nuclear Modification Factor (R_{AA} **) for** $\psi(2S)$

ALICE Collaboration, Phys.Rev.Lett. 132 (2024) 4, 042301 TAMU: R. Rapp et al., Nucl. Phys. A. 943 (2015) 147 SHMc: A. Andronic et al., PLB 797 (2019) 134836

- $\psi(2S)$ is more suppressed than J/ψ due to its larger size and smaller binding energy \rightarrow Sequential melting
	- Flat centrality dependence with slight increasing trend \rightarrow first hint of (re)generation for $\psi(2S)$
	- Larger $\psi(2S)$ -to- J/ψ ratio at the LHC than SPS towards central collisions

ALI-PUB-568299

- TAMU model reproduces R_{AA} for both J/ψ and $\psi(2S)$ and also $\psi(2S)$ -to- J/ψ ratio
- SHMc underestimates ψ (2S) R_{AA} and ψ (2S)-to- J/ψ ratio in central collisions

Polarization

- Polarization is the measurement of a particle's spin alignment in a given direction
- In two-body decays, the spin-alignment will be reflected in the angular distribution of the decay particles
- Polarization can be influenced by:
	- 1. Production of vorticity due to large angular momentum
	- 2. Creation of strong initial magnetic field

$$
W(\cos\theta) \propto \frac{1}{3 + \lambda_{\theta}} \left(1 + \lambda_{\theta} \cos^2\theta\right)
$$

- $\lambda_{\theta} = 1$: Transverse Polarization $\lambda_{\theta} = -1$: Longitudinal Polarization
- $\lambda_{\theta} = 0$: Unpolarized

P.Faccioli et. al., Eur. Phys. J. C 69, 657 (2010) Kharzeev et al., NPA 803 (2008) Becattini et al., PRC 77 (2008) 024906

Polarization of Inclusive *J*/ ψ

 12

$$
W(\cos\theta) \propto \frac{1}{3 + \lambda_{\theta}} \left(1 + \lambda_{\theta} \cos^2\theta\right)
$$

Finite polarization condition $\lambda_{\theta} \neq 0$

ALICE Collaboration, Phys.Rev.Lett. 131 (2023) 042303 P.Faccioli et. al., Eur. Phys. J. C 69, 657 (2010) Kharzeev et al., NPA 803 (2008) STAR Collaboration, Nature 548, 62 (2017) PRC 77 (2008) 024906

- First measurement of inclusive I/ψ polarization with respect to the event plane of the collision
- Small but significant transverse polarization at low p_T in midcentral collisions \rightarrow potential polarization from parent beauty hadrons
- Effect could be connected to large vorticity and/or existence of a strong initial magnetic field

Elliptic Flow (v_2)

- Elliptic flow for J/ψ in midrapidity and forward rapidity compared to π^{\pm} , prompt D meson and $\Upsilon(1S)$
- Increasing trend up to mid $p_T \rightarrow$ flow of charm hadrons confirmed
- Both forward and midrapidity measurements are compatible \rightarrow charm flow is independent of rapidity
- Clear mass hierarchy in low- p_T ($p_T < 6$ GeV/c)
- At high- p_T , all species converge into single curve \rightarrow contribution from path-length dependent effects like energy loss

Summary

- Presented the LHC Run 2 results for Pb—Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV using the ALICE detectors
- **From Nuclear Modification factor**
	- 1. R_{AA} trend as a function of p_T and centrality supports the (re)generation scenario for both J/ψ , ψ (2S)
	- 2. Transport models with temperature dependent dissociation and coalescence terms are in agreement with data within the uncertainties
	- 3. No rapidity dependence of R_{AA} at high p_T
- **From Polarization**
	- 1. First measurement using the Event Plane frame
	- 2. Small but significant transverse polarization for J/ψ at low p_T in midcentral collisions
- **From Elliptic Flow**
	- 1. Possible existence of charm thermalization
	- 2. Finite elliptic flow for D meson and J/ψ , almost zero elliptic flow for $Y(1S)$
	- 3. At higher p_T , particle species independent flow is observed

Thank you

Signal Extraction

Phys. Lett. B 849 (2024) 138451

Anisotropic Flow

$$
E\frac{\mathrm{d}^3 N}{\mathrm{d}p^3} = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_{\mathrm{T}} \mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \left[1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi - \Psi_{\mathrm{EP}})] \right]
$$

$$
v_n(p_{\mathrm{T}}, y) = \langle \cos(n(\phi - \Psi_{\mathrm{EP}})) \rangle
$$

- Initial spatial anisotropy in noncentral heavy-ion collisions creates anisotropic pressure gradients
- In presence of a medium, the pressure gradients get converted into final state momentum anisotropy
- Transverse collective expansion characterized by different flow coefficients (e.g. $n = 2$, v_2 is elliptic flow)
- Depends on the transport coefficients $(\eta/s, \zeta/s)$ and the equation of state of the system

U. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013). CMS Collaboration, JHEP02(2024)106

Theoretical Models

• **Statistical Hadronization Model (SHM):**

- 1. All charm quarks are produced during the initial hard partonic interactions (no feed-down)
- 2. Assumes charm thermalization in QGP
- 3. Yield of charmed hadrons are determined at chemical freeze-out from thermal weights obtained from light-flavored hadrons
- **Transport Model (P. Zhuang et al.):**
	- 1. Real time evolution of J/ψ , $\psi(2S)$, and χ_c production using Boltzmann-type rate equation
	- 2. Includes both dissociation and coalescence terms
	- 3. Includes non-prompt J/ψ with beauty quarks being propagated through QGP using Langevin equation

• **Transport Model (R. Rapp et al.):**

- 1. Similar transport model based on kinetic rate equation for real time evolution of J/ψ , $\psi(2S)$, and χ_c
- 2. Dissociation term employs an inelastic parton scattering cross section (from NLO pQCD)
- 3. Includes effect of in-medium reduced binding energy
- 4. Charmonium dissociation temperature obtained from lattice QCD calculations

SHMc: A. Andronic et al.,Phys. Lett. B 797 (2019) 134836 Transport: P. Zhuang et al., Phys. Rev. C 89 (2014) 054911 Transport: R. Rapp et al., Eur. Phys. J. A 57 (2021) 122