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Quarkonia in the QGP: processes

» Various physical processes leading to suppression of quarkonia
1. Gluo-dissociation, or absorption of energetic gluons [Bhanot,
Peskin (1979)]
2. Screening of the QQ interaction [Matsui, Satz (1986)]
3. Scattering with medium particles, or Landau damping (LD)
[Granchamp, Rapp (2001)]. Can be seen as a complex
potential[Laine et. al. (2007)]

P All these can be consistently incorporated in
pNRQCD [Brambilla et. al. 2008, 2011, 2013]
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pNRQCD

» Energy scales M > % > Ep, where r is the bound state size
and Ey is the binding energy

> The lagrangian is
Losngcn = [ e tx(S)1[i% ~ hilS()
+O(1)'[iDo — hoJO(r))
+O1(0)r - gES(r) + 3 {OT(1){r - 6E,O()}} +...)

» r is the relative separation between QQ, S is the singlet
wavefunction and O is the octet wavefunction

» E is the chromo-electric field, h, s = —VVZ + Vos(r)
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Quarkonium in the QGP: a quantum system (S) in an
environment (E)

>

| 4

The dynamics of the bound state can be described using the
theory of open quantum systems [Akamatsu (2015)]

The QQ system (S) and the QGP environment (E) interact

with each other. Their combined evolution is unitary

dptot
dt

Htot = HS + HE + VI

QQ pair is in a mixed state described by a density matrix
obtained by tracing out the E: pg = trg(ptot)

i

= i[Ht0t7 Ptot]

A master equation (in the interaction picture) up to O(V{3)

% . /O " du [VA(e), [Va(w), ps ()]

[Breuer, Petruccione; Brambilla et. al. (2017)]
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Weak-coupling Hamiltonian

» To start, consider QQ is weakly coupled to each other

2 Cra
Hs =yt = = Is)sl + 5 los) (oo
1 1
V:—r-Ea< s){0,| + ——=|05)(s| + =dapc|0O o)
1 g \/m‘ >< a‘ m’ a>< ’ > abc, b>< C‘

Justified if M > 1/r>> Ep, T

> ps(t) = (slpsls), po(t) = (0alps|oa)
> pg is diagonal in s, 0 basis pg = diag{ps, po}. Similarly,
Hs = diag{hs, ho}.

> Mixing between the two sectors comes from V1
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The master equation

» The resulting master equation in Schrodinger picture is

n==+,d

1905 _ 1 ]—i/tdur(u) 3
dt Sy PS o

i=1,3

(VJ,-(O)V,,,-(u)pS(t) - Vni(U)pS(t)VJi(O) + HC)

> T(t) = g2 (E7(t,0)E?(0, 0)pr
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The jump operators
» {V,i(t)} are time dependent jump operators corresponding to

s — 0, 0 — S, 0 — o transitions

> Explicitly,
Vii(t) = eMstrie=hoty/Cp ( (1) 8 )
V_i(t) = eMetriehst 2/1\/C < 8 (1) >
Vii(t) = efotre=hot NA%/\Z:4 ( 8 (1) > .

» Same structure as the NLO calculation of [Brambilla et. al.
(2022, 2023)]. The key difference is the next step

7/21



Expansion in 75 /7sys (NLO)

vVvyyvyy

[(t) is substantial only for t < 75 ~ +

: 1
For example, in HTL, 75 ~ T
V,i(t) evolves on a time scale of 75 ~ E%,
If 75 < 73 then

. . . . 2
Vai(t) ~ €™ trie ™" ~ r; + it(har' — r'hg) + O[(LE> }
TS

This gives the Lindblad equation (memoryless) which gives a
very nice description of the LHC data for the suppression of
T's [Brambilla et. al. (2022, 2023)]

In Lindblad only '(w = 0) required
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Expansion in 75 /7sys?

» However, E, ~ 500MeV for T(1S5), a little smaller for T(25).
On the other hand T < 500MeV

» For T(1S) in particular, it is worthwhile investigating whether
further corrections in 7g/7s can have an effect on quantum
dynamics

» Motivated by our results for finite frequency effects in the
decay rates, [Balbeer, Sharma (2023)]
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Angular momentum basis

» Assuming that the initial state is unpolarized, pg(t) can be
reduced into block diagonal form in the angular momentum
basis just as in the Lindblad equation

» The blocks are given by
pIS = ZU: m‘ps|/, m>

» Since V,,; are vector operators, use Wigner-Eckart to reduce
the equation
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The reduced equation
>
n==+,d

d;;s [Hé,p,]—l/ du I'(u) Z Z(

T = 10)To(l = I, u)pi(2)
T = L)l T = 1,0) + Hc)

» T,'s are reduced operators of the form

2I"+1
2/ +1
» T,'s can be thought of as transition operators that change /
and alsos — 0, 0 —+ s,0

They also change / by £1 as the interaction is dipolar

» Decomposition same as NLO but need to track the t
dependence of V,;

To(l =1 t) = (Vi (E)I11) (1)

v
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Numerical simulation

» V,i(t) can be evaluated by changing the basis
Vii(u) ~ eihaurieiihﬁu = |an></8m|(O‘n‘rimm>eiu(sg7€§)
Then need to integrate I'(u) Vpi(u) over u from [0, t].
» Include continuum dynamics

» To evolve the density matrix, use the method of quantum
trajectories. Evolve wavefunctions using a stochastic equation
where the wavefunction evolves under H.g, inter spaced with
sudden jumps

» The wavefunction satisfies evolution equation with random
noise. d[1(¢)) = —iHut [(£))dt + F(:(£))dW(t)
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Numerical simulation

>

>

The Non-Markovian density matrix equation can also be
solved using quantum trajectories method
Consider a general master equation

0
7S — A(t)ps + psB() +ZC (t)psD (t)

ot

The main new feature is that C; # D; because of the
dependence on u
The idea is to define a two component wavefunction:

[W(1)) = (I62(1)) [¢2(1)))

Breuer et. al. (1999)
Then evolve the wavefunction using H.g inter spaced with
quantum jumps J;|v)

Hefr = diag{A(t)> B(t)} Ji= diag{ci(t)a Di(t)}

Averaging |¢1)(¢2| over different jump realisations gives the

density matrix
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Parameters and model assumptions

» In the results I'll show, we have evolved |¢)) with Heg and
without incorporating quantum jumps

» Just Heg evolution can give reasonable estimates for T(1S)
[Yao et. al. (2021), Brambilla et. al. (2022)] but not the
higher states

» For this preliminary study the correlation function used

Kk _ T
r(t)=5e ltl/

» Motivated by the HTL form of the gluon propagator. In the
limit of 7 — 0, goes to the LO Lindblad equation
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Parameters and medium

> We take the medium to be Bjorken expanding

ron(8)”

We consider central collision geometry
To = 400MeV, ty = 0.6fm/c

=Ly R =2

vvvyYyy

4, which gives the imaginary part of the electric field
correlator, is taken to be 0
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Comparison of evolution

Survival probability
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» T(1S) [Viyshakh, Sharma (in progress)]
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Comparison of evolution
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» T(2S) [Viyshakh, Sharma (in progress)]
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Summary

» Forgoing the expansion in 72 leads to a master equation with
S
memory

» Leads to a weaker suppression than LO

» NLO captures the reduction in suppression but the extent is
quite sensitive to 7g T
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Backup slides
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Binding energies
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» Binding energy of the states with T
» Model dependence from the choice of Vi, V,. We take V;
from [Krouppa, Rothkopf, Strickland (2017); Laftferty,
Rothkopf (2019)]. Slightly weaker Vs in [HOTQCD (2020,
2021)].
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Comparison of all contributions
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» Decay width with T [Sharma, Singh (2023)]
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