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Quarkonia in the QGP: processes

I Various physical processes leading to suppression of quarkonia

1. Gluo-dissociation, or absorption of energetic gluons [Bhanot,
Peskin (1979)]

2. Screening of the QQ interaction [Matsui, Satz (1986)]
3. Scattering with medium particles, or Landau damping (LD)

[Granchamp, Rapp (2001)]. Can be seen as a complex
potential[Laine et. al. (2007)]

I All these can be consistently incorporated in
pNRQCD [Brambilla et. al. 2008, 2011, 2013]
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pNRQCD

I Energy scales M � 1
r � Eb where r is the bound state size

and Eb is the binding energy

I The lagrangian is

LpNRQCD =

∫
d3r tr

(
S(r)†[i∂0 − hs ]S(r)

+O(r)†[iD0 − ho ]O(r)
)

+O†(r)r · gES(r) +
1

4
{O†(r){r · gE,O(r)}}+ . . .

)
I r is the relative separation between QQ, S is the singlet

wavefunction and O is the octet wavefunction

I E is the chromo-electric field, ho,s = −∇2

M + Vo,s(r)
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Quarkonium in the QGP: a quantum system (S) in an
environment (E)

I The dynamics of the bound state can be described using the
theory of open quantum systems [Akamatsu (2015)]

I The Q̄Q system (S) and the QGP environment (E) interact
with each other. Their combined evolution is unitary

i
dρtot

dt
= i [Htot, ρtot]

I Htot = HS + HE + VI

I QQ̄ pair is in a mixed state described by a density matrix
obtained by tracing out the E: ρS = trE(ρtot)

I A master equation (in the interaction picture) up to O(V 3
I )

dρS

dt
≈ −

∫ t

0
du [VI(t), [VI(u), ρS(t)]]

[Breuer, Petruccione; Brambilla et. al. (2017)]
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Weak-coupling Hamiltonian

I To start, consider QQ̄ is weakly coupled to each other

HS =
p2

M
1− CFαs

r
|s〉〈s|+ αs

2Nc r
|oa〉〈oa|

VI = −gr · Ea
( 1√

2Nc
|s〉〈oa|+

1√
2Nc
|oa〉〈s|+

1

2
dabc |ob〉〈oc |

)
Justified if M � 1/r � Eb,T

I ρs(t) = 〈s|ρS|s〉, ρo(t) = 〈oa|ρS|oa〉
I ρS is diagonal in s, o basis ρS = diag{ρs , ρo}. Similarly,

HS = diag{hs , ho}.
I Mixing between the two sectors comes from VI

5 / 21



The master equation

I The resulting master equation in Schrödinger picture is

i
dρS

dt
= [HS, ρS]− i

∫ t

0
du Γ(u)

n=±,d∑
i=1,3(

V †ni (0)Vni (u)ρS(t)− Vni (u)ρS(t)V †ni (0) + HC
)

I Γ(t) = g2trE

(
E a
i (t, 0)E a

i (0, 0)ρE

)
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The jump operators

I {Vni (t)} are time dependent jump operators corresponding to
s → o, o → s, o → o transitions

I Explicitly,

V+i (t) = e ihs trie
−ihot

√
CF

(
0 0
1 0

)
V−i (t) = e ihotrie

−ihs t
√

1

2Nc

(
0 1
0 0

)

Vdi (t) = e ihotrie
−ihot

√
N2
c − 4

4Nc

(
0 0
0 1

)
.

I Same structure as the NLO calculation of [Brambilla et. al.
(2022, 2023)]. The key difference is the next step
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Expansion in τE/τSys (NLO)

I Γ(t) is substantial only for t < τE ∼ 1
T

I For example, in HTL, τE ∼ 1
gT

I Vni (t) evolves on a time scale of τE ∼ 1
Eb

I If τE � τS then

Vni (t) ∼ e ihαtrie
−ihβt ≈ ri + it(hαr

i − r ihβ) +O
[(τE

τS

)2]
I This gives the Lindblad equation (memoryless) which gives a

very nice description of the LHC data for the suppression of
Υ’s [Brambilla et. al. (2022, 2023)]

I In Lindblad only Γ(ω = 0) required
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Expansion in τE/τSys?
I However, Eb ∼ 500MeV for Υ(1S), a little smaller for Υ(2S).

On the other hand T . 500MeV

I For Υ(1S) in particular, it is worthwhile investigating whether
further corrections in τE/τS can have an effect on quantum
dynamics

I Motivated by our results for finite frequency effects in the
decay rates, [Balbeer, Sharma (2023)]
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Angular momentum basis

I Assuming that the initial state is unpolarized, ρS(t) can be
reduced into block diagonal form in the angular momentum
basis just as in the Lindblad equation

I The blocks are given by

ρlS =
∑
m

〈l ,m|ρS|l ,m〉

I Since Vni are vector operators, use Wigner-Eckart to reduce
the equation
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The reduced equation
I

i
dρlS
dt

= [H l
S, ρl ]− i

∫ t

0
du Γ(u)

n=±,d∑ ∑
l ′

(
T †n (l → l ′, 0)Tn(l → l ′, u)ρls(t)

− Tn(l ′ → l , u)ρl
′
s T
†
n (l ′ → l , 0) + HC

)
I Tn’s are reduced operators of the form

Tn(l → l ′, t) =

√
2l ′ + 1

2l + 1
〈l ′||Vni (t)||l〉 (1)

I Tn’s can be thought of as transition operators that change l
and also s → o, o → s, o

I They also change l by ±1 as the interaction is dipolar

I Decomposition same as NLO but need to track the t
dependence of Vni
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Numerical simulation

I Vni (t) can be evaluated by changing the basis

Vni (u) ∼ e ihαurie
−ihβu = |αn〉〈βm|〈αn|r i |βm〉e iu(ε

α
n −ε

β
m)

Then need to integrate Γ(u)Vni (u) over u from [0, t].

I Include continuum dynamics

I To evolve the density matrix, use the method of quantum
trajectories. Evolve wavefunctions using a stochastic equation
where the wavefunction evolves under Heff , inter spaced with
sudden jumps

I The wavefunction satisfies evolution equation with random
noise. d |ψ(t)〉 = −iHeff |ψ(t)〉dt + F (ψ(t))dW (t)
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Numerical simulation
I The Non-Markovian density matrix equation can also be

solved using quantum trajectories method
I Consider a general master equation

∂ρS

∂t
= A(t)ρS + ρSB

†(t) +
∑
i

Ci (t)ρSD
†
i (t)

I The main new feature is that Ci 6= Di because of the
dependence on u

I The idea is to define a two component wavefunction:

|ψ(t)〉 = (|φ1(t)〉 |φ2(t)〉)
Breuer et. al. (1999)

I Then evolve the wavefunction using Heff inter spaced with
quantum jumps Ji |ψ〉

Heff = diag{A(t), B(t)} Ji = diag{Ci (t), Di (t)}
I Averaging |φ1〉〈φ2| over different jump realisations gives the

density matrix
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Parameters and model assumptions

I In the results I’ll show, we have evolved |ψ〉 with Heff and
without incorporating quantum jumps

I Just Heff evolution can give reasonable estimates for Υ(1S)
[Yao et. al. (2021), Brambilla et. al. (2022)] but not the
higher states

I For this preliminary study the correlation function used

Γ(t) =
κ

2τ
e−|t|/τ

I Motivated by the HTL form of the gluon propagator. In the
limit of τ → 0, goes to the LO Lindblad equation
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Parameters and medium

I We take the medium to be Bjorken expanding

T = T0

( t0
t

)1/3
I We consider central collision geometry

I T0 = 400MeV, t0 = 0.6fm/c

I κ = κ̂
T 3 , κ̂ = 2

I γ̂, which gives the imaginary part of the electric field
correlator, is taken to be 0
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Comparison of evolution

I Υ(1S) [Vyshakh, Sharma (in progress)]
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Comparison of evolution

I Υ(2S) [Vyshakh, Sharma (in progress)]
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Summary

I Forgoing the expansion in τE
τS

leads to a master equation with
memory

I Leads to a weaker suppression than LO

I NLO captures the reduction in suppression but the extent is
quite sensitive to τST
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Backup slides
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Binding energies
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I Binding energy of the states with T
I Model dependence from the choice of Vs , Vo . We take Vs

from [Krouppa, Rothkopf, Strickland (2017); Lafferty,
Rothkopf (2019)]. Slightly weaker Vs in [HOTQCD (2020,
2021)].
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Comparison of all contributions

LD
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I Decay width with T [Sharma, Singh (2023)]
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