Temperature and quark mass dependence of the heavy quark diffusion coefficient

Saumen Datta

Tata Institute of Fundamental Research, Mumbai

February 28, 2024

Heavy-light mesons in deconfined plasma

 \blacktriangleright For moderate momenta heavy quarks in a plasma, with $M \gg T$, a Langevin framework can be used.

> dpⁱ $\frac{d\mu_i}{dt} = \xi_i(t) - \eta_D(p)p_i, \qquad \langle \xi_i(t) \xi_j(t') \rangle = \kappa_{ij} \delta(t - t')$

Svetitsky '88; Mustafa et al., '97; Moore & Teaney '05; Rapp & van Hees '05 \blacktriangleright Leads to the Fokker-Planck equation

$$
\frac{\partial f_Q(p,t)}{\partial t} = -\frac{\partial}{\partial p_i} \left[p_i \, \eta_D(p) \, f_Q(p,t) \right] + \frac{\partial^2}{\partial p_i \, \partial p_j} \left[\kappa_{ij}(p) \, f_Q(p,t) \right]
$$

For low momenta, just one coefficient κ . Standard nonrelativistic relations:

$$
\eta_D = \frac{\kappa}{2MT}, \qquad \langle x^2(t) \rangle = 6D_s t, \qquad D_s = \frac{2T^2}{\kappa}
$$

A field theoretic definition of κ can be given from the force-force correlator:

$$
3\kappa = \frac{1}{\chi} \lim_{\omega \to 0} \int_{-\infty}^{\infty} dt \, e^{i\omega t} \int d^3x \left\langle \frac{1}{2} \left\{ F_i(t, x), F_i(0, 0) \right\} \right\rangle
$$

Calculation of κ

Expanding the force term in a series in $1/M$:

$$
F^{i} = M \frac{dJ^{i}}{dt} = \phi^{\dagger} \left\{ -gE^{i} + \frac{[D^{i}, D^{2} + c_{b}g\sigma \cdot B]}{2M} + \ldots \right\} \phi
$$

In leading order in $1/M$ one gets only the gE force.

$$
\kappa = \frac{1}{3\chi} \lim_{\omega \to 0} \int_{-\infty}^{\infty} dt \, e^{i\omega t} \, \langle \text{Tr} \, W(t, -\infty)^{\dagger} \, gE_i(t) \, W(t,0) \, gE_i(0) \, W(0, -\infty) \rangle
$$

J. Casalderrey-Solana & D. Teaney, PRD 74 (2006) 085012; S. Caron-Huot, M. Laine & G. Moore, JHEP 04 (2009) 53; A. Bouttefeux & M. Laine, JHEP 12 (2020) 150

 \triangleright κ_F has been calculated to NLO in HTL PT.

$$
\frac{\kappa_E}{T^3} = \frac{2 g^4}{27 \pi} \left[N_c \left(\ln \frac{2T}{m_D} + \xi \right) + \frac{N_f}{2} \left(\ln \frac{4T}{m_D} + \xi \right) + \frac{N_c m_D}{T} C + \mathcal{O}(g^2) \right]
$$

Series in g rather than in α . NLO corrections very large. Caron-Huot & M[oore](#page-1-0)[, P](#page-3-0)[R](#page-1-0)[L 1](#page-2-0)[0](#page-3-0)[0 \(](#page-0-0)[20](#page-24-0)[08\)](#page-0-0) [05](#page-24-0)[23](#page-0-0)[01](#page-24-0)

Calculation of κ_F

 \blacktriangleright

$$
\kappa_E = \frac{1}{3\chi} \lim_{\omega \to 0} \int_{-\infty}^{\infty} dt \, e^{i\omega t} \, \langle \text{Tr} \, W(t, -\infty)^{\dagger} \, gE_i(t) \, W(t,0) \, gE_i(0) \, W(0, -\infty) \rangle
$$

- \triangleright Nonperturbative evaluation: calculate the EE Matsubara correlator on the lattice.
- \triangleright Connection to the real correlator through the spectral function.

$$
G_{EE}(\tau) = \int_0^\infty \frac{d\omega}{\pi} \ \rho_{EE}(\omega) \ \frac{\cosh\,\omega(\tau - 1/2T)}{\sinh\omega/2T}
$$

 \triangleright κ_F can be extracted from the infrared behavior of $\rho_{EE}(\omega)$:

$$
\rho_{IR} \underset{\omega \to 0}{\approx} \frac{\kappa_E \omega}{2T}
$$

 \triangleright The EE correlator has been investigated for a gluonic plasma by multiple groups, and κ_F extracted in the temperature range $T_c < T \leq 3.5T_c$.

κ_F from lattice

- **Finding continuum extrapolated** $G_{\text{FE}}(\tau)$ **straightforward as the** correlator is ultraviolet finite.
- \triangleright Only a finite renormalization factor $Z_{E}(a)$, known to NLO, or its boosted form, in conjunction with standard signal enhancement methods.

Banerjee, Datta, Gavai, Majumdar, PRD (2012), NP A1038(2023)122721 Francis et al. PRD (2015); Brambilla, et al. (TUMQCD), PRD (2020)

 \triangleright Besides. Gradient flow has been used in some calculations: both operator renormalization and signal enhancement.

Altenkort et al.,PRD103(2021)014511; Brambilla et al,PRD107(2023)054508

Extraction of κ_E from $G_{EE}(\tau)$ not straightforward. We try modelling $\rho_{EE}(\omega)$ in various ways, consistent with the limiting behaviours

$$
\rho_{EE}^{IR}(\omega) \equiv \frac{\kappa \,\omega}{2\,T}, \qquad \rho_{UV}(\omega) \equiv \frac{g^2(\mu)C_f\omega^3}{6\pi}
$$

イロト イ押 トイチ トイチャー

- Results of different groups agree very well.
- The error is dominated by uncertainty in the extraction of $\rho_{EE}(\omega)$.
- Matches well with NLO pert. theory.

 290

κ_F for QCD with $N_f = 2 + 1$

Remarkably, a calculation with $2+1$ flavors of thermal quarks, with $m_{\pi} \approx 320$ MeV, $T_c \approx 180$ MeV, has been carried out.

HotQCD (Altenkort, et al.), PRL 130 (2023) 231902

 $2Q$

κ_F for QCD with $N_f = 2 + 1$

Remarkably, a calculation with $2+1$ flavors of thermal quarks, with $m_{\pi} \approx 320$ MeV, $T_c \approx 180$ MeV, has been carried out.

HotQCD (Altenkort, et al.), PRL 130 (2023) 231902

• The results are consistent with NLO pert. theory.

つへへ

 κ_{ϵ} for QCD with $N_{f} = 2 + 1$

Remarkably, a calculation with $2+1$ flavors of thermal quarks, with $m_{\pi} \approx 320$ MeV, $T_c \approx 180$ MeV, has been carried out.

HotQCD (Altenkort, et al.), PRL 130 (2023) 231902

• Much of the N_f dependence can be attributed to the difference in T_c ($T_c^{N_f=0} \approx 310$ MeV).

つくい

Parametrization of κ_F

An interesting observation: (Altenkort et al., 2402.09337) results for $\kappa_{\mathcal{E}}$ for T near T_c can be parametrized as c $g^4(2\pi T)$ T^3 , with similar c for both the gluonic and the $2+1$ flavor theory.

• This is not perturbative: coefficient N_f dependent in PT.

• Also in this [te](#page-8-0)mperature range g^5 term do[mi](#page-8-0)[na](#page-10-0)te[s](#page-9-0) [in](#page-10-0) [N](#page-0-0)[L](#page-24-0)[O](#page-0-0) [PT](#page-24-0)[.](#page-0-0)

 $1/m_o$ correction

At $\mathcal{O}\left(\frac{1}{N}\right)$ M) the magnetic field force needs to be included. Inder certain assumptions, (Bouttefeux & Laine, JHEP 12 ('20) 150)

$$
\kappa_{Q} \; \approx \; \kappa_{E} \; + \; \frac{2}{3} \, \langle v^{2} \rangle \, \kappa_{B} \, , \qquad \langle \gamma v^{2} \rangle \; = \; \frac{3 \, T}{M_{\rm kin}}
$$

▶
$$
\kappa_B
$$
 is similar to κ_E , for the $B - B$ correlator. The *B* operator has an anomalous dimension. We need to calculate

 $c_B(\mu) G_{BB}(\mu, T; \tau)$

where G_{BB} is the correlator renormalized at scale μ , and c_B is a Wilson coefficient. The μ dependence cancels in the product.

 \blacktriangleright This becomes equivalent to evaluating the \overline{MS} correlator at scale $\mu_{\tau} \approx 19.2 T$.

M. Laine, JHEP 06 ('21) 139

 $2Q$

 \blacktriangleright Renormalize the latice discretized operators, take continuum limit, and calculate $G_{BB}(\mu_{\tau}, \tau)$.

$\kappa_{\rm B}$ for gluonic plasma

Results for κ_B for gluonic plasma in the temperature range 1-3 T_c .

Banerjee, Datta & Laine, JHEP 08 (2022) 128 Brambilla et al., PRD107(2023)074503, Altenkort et al., 2402.09337

Our calculation: nonperturbative

MS

 MS_{γ}

 $G_{BB}^{^{_{\rm WIS}}}\left(\tau,\mu_{_{\rm T}}\right)$

 $\mathbf{Z}_{\text{SF},\, \overline{\text{N}}}$

(τ,μ $_{\rm SF})$

 $\mathbf{G}_{\mathrm{BB}}^{\mathrm{SF}}$ ($\mathrm{\tau},$

 $a \rightarrow 0$

 \mathbf{Z}_{SF}

renormalization of ALPHA. G_{BR} (τ, a)

Calculations using gradient flow.

K ロ ▶ K 御 ▶ K 결 ▶ K 결 ▶ │ 결

 $2Q$

 κ_B for gluonic plasma from BB correlator

The different calculations give consistent results.

 $2Q$

Effect of thermal quarks

The results for the theory with dynamical quarks (with $m_{\pi}=320$ MeV) have come out recently. The calculation uses gradient flow.

Altenkort et al. (HotQCD), PRL 132 (2024) 051902

The discrepancy is largely due to the differe[nce](#page-12-0) [in](#page-14-0) T_c T_c T_c [.](#page-14-0)

 $\kappa_{\rm E}, \kappa_{\rm B}$

 κ_E and κ_B are comparable in magnitude, and both scale approximately like $g^4(2\pi\,T)\,T^3$ in the 1-3 $\,T_c$ range.

 $2Q$

$\overline{\kappa_{\scriptscriptstyle \mathcal{Q}}}$ to $\overline{\mathcal{O}}$ $\sqrt{ }$ $\overline{1}$ M \setminus

\n- ▶ To
$$
\mathcal{O}\left(\frac{1}{M}\right)
$$
 $\kappa_Q \approx \kappa_E + \frac{2}{3} \langle v^2 \rangle \kappa_B$
\n- ▶ With $\kappa_B \lesssim \kappa_E$, $\langle v^2 \rangle$ gives the size of $\mathcal{O}\left(\frac{1}{M}\right)$ correction.
\n- ▶ We obtained $\langle v^2 \rangle$ from the constant part of $\frac{\langle J^i J^j \rangle}{\langle J^0 J^0 \rangle}$. **Burnier & Laine, JHEP 11 (12) 086**
\n

 \blacktriangleright Calculated from the susceptibility in Altenkort et al.

• Correction to the static limit is $\lesssim 10\%$ for bottom near T_c for the gluonic theory, rising to $\approx 15\%$ at 2 T_c . For the three flavor theory it is $< 10\%$ for $T < 1.6T_c$.

• Even for charm the $1/M$ correction is $\approx 25\%$ near T_c for the quenched and $< 20\%$ for the 3-flavor theory.

へのへ

• Correction to the static limit is $\lesssim 10\%$ for bottom near T_c for the gluonic theory, rising to $\approx 15\%$ at 2 T_c . For the three flavor theory it is $< 10\%$ for $T < 1.6T_c$.

• Even for charm the $1/M$ correction is $\approx 25\%$ near T_c for the quenched and $< 20\%$ for the 3-flavor theory.

へのへ

Summary

- \blacktriangleright The heavy quark diffusion coefficient can be calculated on the lattice using a nonrelativistic expansion.
- \blacktriangleright The first two terms in the expansion have been calculated.
- \blacktriangleright For the quenched theory (only thermal gluons), results of different groups agree. The different calculations differ in the renormalization

procedure, but the analysis is similar.

- Results for $N_f = 2 + 1$ thermal quarks have been recently available.
- \blacktriangleright Much of the difference of the quenched and $N_f = 2 + 1$ results can be attributed to the difference in T_c .
- **IF** The temperature dependence of both κ_E and κ_B can be parametrized as $c g^4(2\pi T)$ T^3 , with $c \sim 0.3-0.4.$

イロト イ押 トイチト イチトー

 Ω

遥

EXTRA SLIDE: Behavior of $\kappa_{c,b}/g^4T^3$ in NLO

 \leftarrow \Box Saumen Datta Temperature and quark mass dependence of the heavy quark d

∢ 重→

∢ 伊 ≯ ∢ 唐 ≯

重

 299

EXTRA SLIDE: Behavior of $\kappa_{\rm E}/g^4 T^3$ in NLO

- For the $N_f = 3$ curve we have taken $T_c = 180$ MeV.
- At these temperatures the NLO term $\sim g^5$ dominates.

つへへ

$EXTRA$ SLIDE: $\langle v^2 \rangle / T$

KOX KOX KEX

 \rightarrow

È

 299

EXTRA SLIDE: $\rho(\omega)$ and κ_{ϵ}

 $\rho_{EE}^{IR}(\omega) \equiv \frac{\kappa \omega}{2T},$ $\rho_{UV}(\omega) \equiv \frac{g^2(\mu)C_f\omega^3}{6\pi}$ $\frac{\mu_1 \mu_2 \mu_3}{6 \pi}, \qquad \mu = \max(\omega, \pi T)$ • Model $\rho(\omega)$ as $\rho_1(\omega) \equiv \max(\rho_{EE}^{IR}(\omega), c\rho_{UV}(\omega))$ \blacktriangleright Physically better motivated: Francis et al. '15 $\rho_2(\omega) \equiv \sqrt{(\rho_{EE}^{IR}(\omega))^2\,+\,(\,c\rho_{UV}(\omega))^2}$ \blacktriangleright Also tried adding a Fourier mode (Francis et al. '15)

$$
\rho_{1f,2f}(\omega) \equiv (1+d\sin \pi y) \ \rho_{1,2}^{c=1}(\omega), \qquad y = \frac{\log \left(1+\frac{\omega}{\pi T}\right)}{1+\log \left(1+\frac{\omega}{\pi T}\right)}
$$

- \triangleright At each temperature, calculate the correlator at three lattice spacings and take continuum limit.
- \triangleright took a superset of the values obtained from different forms.
- \blacktriangleright Also looked at the fits for individual lattices.

 $\mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A}$

メロメメ 倒 メメ ミメメ ミメー

 299

目

EXTRA SLIDE: Analysis of $G_{BB}(\tau)$

- \blacktriangleright $G_{BB}(\tau)$ has very different shape from $G_{EE}(\tau)$, in particular at short times.
- Analysis similar to the EE correlator, but subtle differences arise because of the anomalous dimension.

$$
\rho_{EE}^{IR}(\omega) \equiv \frac{\kappa \,\omega}{2\,T}, \qquad \rho_{UV}(\omega) \equiv \frac{g^2(\mu)C_f\omega^3}{6\pi}, \qquad \mu = \max\left(\omega^{1-\frac{\gamma_0}{b_0}}(\pi\,T)^{\gamma_0/b_0}, \pi\,T\right)
$$

