

Indian Institute of Science Education and Research Mohali, India

$X(3872) \rightarrow J/\psi \pi \gamma$ and $X(3872) \rightarrow J/\psi \pi \pi \gamma$ decays

Qi Wu (Henan Normal University) Based on Phys. Rev. D 99, 034022 In collaboration with J.Z. Wang and S.L. Zhu

> QWG 2024, February 29, 2024 IISER Mohali, India

Outline

- Short review of X(3872)
- Theoretical framework
- Results and discussion
- Summary

Short review of X(3872)

The resonance parameters of the *X*(3872) from PDG (in units of MeV) R. L. Workman et al., PRD 108 (2023) 011103

Mass	Width	Threshold	ΔE	
3871.65 ± 0.06	1.19 ± 0.21	$D^+ D^{*-}/D^0 ar{D}^{*0}$	-8/-0.04	

X(3872): $D\overline{D}^*$ hadronic molecule

M.B. Voloshin, PLB 579, 316 (2004); E. S. Swanson, PLB 588, 189 (2004); N.A. Tornqvist, PLB 590, 209 (2004); S. Fleming, M. Kusunoki, T. Mehen, and U. van Kolck, PRD 76, 034006 (2007); Y. R. Liu, X. Liu, W.Z. Deng, and S.L. Zhu, EPJC 56, 63 (2008); N.A. Tornqvist, ZPC 61, 525 (1994).

The pure molecule models meet with difficulties:

- The ratio $\Gamma(B^0 \to K^0 X) / \Gamma(B^+ \to K^+ X)$ is about unity, which is about two times larger than measurements by the BABAR and Belle collaborations;
- The predicted branching ratios of $X(3872) \rightarrow D^0 \overline{D}{}^0 \gamma$ and $X(3872) \rightarrow J/\psi \gamma$ largely deviated from the experimental data;
- It is hard to explain the observed production rate in the high energy $p\bar{p}$ collisions at the Tevatron.

X(3872): $D\overline{D}^*$ hadronic molecule $+c\overline{c}$

M. Suzuki, PRD 72, 114013 (2005); B. Q. Li and K.T. Chao, PRD 79, 094004 (2009).

Short review of X(3872)

The branching ratios (%) of X(3872) from PDG

R. L. Workman et al., PRD 108 (2023) 011103

 Decay channels	Branching ratios		
$\pi^+\pi^- J/\psi$	3.8 ± 1.2		
$\omega J/\psi$	4.3 ± 2.1		
$D^0 ar{D}^0 \pi^0$	49^{+18}_{-20}		
$D^0ar{D}^{*0}$	37 ± 9		
$\pi^0 \chi_{c1}$	3.4 ± 1.6		
$\gamma J/\psi$	0.8 ± 0.4		
$\gamma \psi(2S)$	4.5 ± 2.0		

Check the decay modes of the X(3872) list in PDG

- The dominant decay channel is the open-charm decay;
- The branching ratios of the radiative decays are of the same order as those of the hidden-charm decays;
- Other radiative decays of the *X*(3872)?

- Sizeable ω contribution to $X(3872) \rightarrow J/\psi \pi \pi$ LHCb, PRD 108 (2023) 011103
- Dominant contributions to $X(3872) \rightarrow J/\psi\pi\pi$ and $X(3872) \rightarrow J/\psi\pi\pi\pi$ arise from the diagrams with the X(3872) coupling to the $J/\psi\rho$ and $J/\psi\omega$ H.N. Wang, Q. Wang, and J.J. Xie, PRD 106, 056022 (2022)
- Whether the same scenario still holds in the $X(3872) \rightarrow J/\psi\pi\gamma$ and $X(3872) \rightarrow J/\psi\pi\pi\gamma$?
- More importantly, compare with $X(3872) \rightarrow J/\psi\pi\pi$ and $X(3872) \rightarrow J/\psi\pi\pi\pi$, $X(3872) \rightarrow J/\psi\pi\gamma$ and $X(3872) \rightarrow J/\psi\pi\pi\gamma$ have an advantage in exploring the couplings of X(3872) with $J/\psi\rho$ and $J/\psi\omega$.

Theoretical framework: Feynman diagram and Lagrangian

Theoretical framework: $X(3872) \rightarrow J/\psi \pi \gamma$

$$F_{\rho/\omega}(q^{2}) = \frac{\Lambda_{\rho/\omega}^{4}}{\Lambda_{\rho/\omega}^{4} + (q^{2} - m_{\rho/\omega}^{2})^{2}} \xrightarrow{\qquad (g_{X\varphi\rho}e_{\xie\phi\phi}ip^{\xi}e^{\kappa}(p)p_{1}^{\phi}q) - \frac{g^{\beta\sigma} + q^{\beta}q^{\sigma}/m_{z}^{2}}{D_{\rho}(q^{2})}} \times (g_{\alpha\pi\gamma}e_{\mu\alpha\phi}(p_{3}^{c}g^{\mu\nu} - p_{3}^{\xi}g^{\mu\nu})(q^{\alpha}g^{\mu\rho} - q^{\beta}g^{\alpha})e_{\rho}(p_{3}))} \times (g_{\alpha\pi\gamma}e_{\mu\alpha\phi}(p_{3}^{c}g^{\mu\nu} - p_{3}^{\xi}g^{\mu\nu})(q^{\alpha}g^{\mu\rho} - q^{\beta}g^{\alpha})e_{\rho}(p_{3}))} \times (g_{\alpha\pi\gamma}e_{\mu\alpha\phi}(p_{3}^{c}g^{\mu\nu} - p_{3}^{\xi}g^{\mu\nu})(q^{\alpha}g^{\mu\rho} - q^{\beta}g^{\alpha})e_{\rho}(p_{3}))} \times (\frac{\sqrt{2}g_{\pi_{z},\pi^{2}}}{m_{x}}e_{\xie\phi\phi}ip^{\xi}e^{\kappa}(p)ip_{2}^{0}) - \frac{g^{\beta\mu} + q^{\beta}q^{\mu}/m_{z}^{\kappa}}{D_{z,1}(q^{2})}} \times (\frac{\sqrt{2}g_{x,\alpha^{2}}}{m_{x}}e_{\xie\phi\phi}ip^{\xi}e^{\kappa}(p)ip_{2}^{0}) - \frac{g^{\beta\mu} + q^{\beta}q^{\mu}/m_{z}^{\mu}}{D_{z,1}(q^{2})}} \times (\frac{\sqrt{2}g_{x,\alpha^{2}}}{m_{x}}e_{\xie\phi\phi}ip^{\xi}e^{\kappa}(p)ip_{2}^{0}) - \frac{g^{\beta\mu} + q^{\beta}q^{\mu}/m_{z}^{\mu}}{p_{z,1}(q^{2})}} \times (\frac{\sqrt{2}g_{x,\alpha^{2}}}{m_{x}}e_{\xie\phi\phi}ip_{z}^{0}(p_{z}) + \frac{g^{\beta\mu}}{p_{z,1}(q^{2})}} \times (\frac{g^{2}g_{x,\alpha^{2}}}{m_{x}}e_{\xi\phi\phi}ip_{z}^{0}(p_{x}) + \frac{g^{2}g_{x,\alpha^{2}}}{p_{z}}e_{\phi}ip_{z}^{0}(m_{x}^{2} + m_{\psi^{2}}^{0})} \times (\frac{g^{2}g_{x,\alpha^{2}}}{m_{x}}e_{\phi}ip_{z}^{0}(m_{x}^{2} + m_{\psi^{2}}^{0})} \times (\frac{g^{2}g_{x,\alpha^{2}}}{m_{x}}e_{\phi}ip_{z}^{0}(m_{x}^{2} + m_{\psi^{2}}^{0})} \times (\frac{g^{2}g_{x,\alpha^{2}}}{m_{x}}e_{\phi}ip_{z}^{0}(m_{x}^{2} + m_{\psi^{2}}^{0})} \times (\frac{g^{2}g_{x,\alpha^{2}}}{m_{x}}e_{\phi}ip_{z}^{0}(m_{x}^{2} + m_{\psi^{2}}^{0})} \times (\frac{g^{2}g_{x,\alpha^{2}}}{m_{x}}e_{\phi}ip_{x}^{0}(m_{x}^{2} + m_{\psi^{2}}^{0})} \times (\frac{g^{2}g_{x,\alpha^{2}}}{m_{x}}e_{\phi}ip_{x}^{$$

Results and discussion: $X(3872) \rightarrow J/\psi \pi \gamma$

- ϕ_{ω} : same as in $X(3872) \rightarrow J/\psi \pi \pi$;
- The interference term is not drastically dependent on the $\phi_{\chi_{c1}}$;
- Choose $\phi_{\chi_{c1}} = 223^{\circ}$: the central value of the interference term.

- $X(3872) \rightarrow J/\psi \pi \gamma$ is dominated by the ω meson;
- χ_{c1} : the non-resonance contribution;
- $X(3872) \rightarrow J/\psi \pi \gamma$: clean and ideal process to explore the isospin conservation channel $J/\psi \omega$ of X(3872).

Results and discussion: $X(3872) \rightarrow J/\psi \pi \gamma$

- The $\phi_{\chi_{c1}}$ dependence of the total branching ratio of $X(3872) \rightarrow J/\psi \pi \gamma$ is fairly stable;
- Br[X(3872) → J/ψπγ] = (8.10^{+3.59}_{-2.89}) × 10⁻³, the same order as those of the hidden-charm and radiative decays, which is large enough to be detected experimentally;
- Similar with [E. Braaten and M. Kusunoki, PRD 72, 054022 (2005)]

Results and discussion: $X(3872) \rightarrow J/\psi \pi \pi \gamma$

- $X(3872) \rightarrow J/\psi \pi \pi \pi : g_{\rho \pi \pi} > g_{\omega \pi \pi};$
- $X(3872) \rightarrow J/\psi \pi \pi \gamma$: $g_{\rho \pi \gamma} < g_{\omega \pi \gamma}$;

- $J/\psi\omega$ channel is still larger than $J/\psi\rho$ channel, similar to $X(3872) \rightarrow J/\psi\pi\pi\pi$;
- How about the Br of $X(3872) \rightarrow J/\psi \pi \pi \gamma$ for Fig. a and b?

Narrow width approximation: $\psi(2S)$ $Br[X(3872) \rightarrow \psi(2S)\gamma \rightarrow J/\psi\pi\pi\gamma]$ $= Br[X(3872) \rightarrow \psi(2S)\gamma] \times Br[\psi(2S) \rightarrow J/\psi\pi\pi]$

 ρ is almost on shell with a large width & $J/\psi\rho$ near threshold

$$\begin{split} \Gamma_{X \to J/\psi \rho \to J/\psi \pi \pi \gamma} &= \int_{(2m_{\pi})^2}^{(m_X - m_{J/\psi})^2} ds f(s, m_{\rho}, \Gamma_{\rho}) \\ &\times \frac{|\vec{p}|}{24\pi m_X^2} |\overline{\mathcal{M}_{X \to J/\psi \rho}^{\text{tot}}(m_{\rho} \to \sqrt{s})}|^2 \\ &\times \mathcal{B}[\rho \to \pi \pi \gamma], \end{split}$$

Results and discussion: $X(3872) \rightarrow J/\psi \pi \pi \gamma$

BR	a	b	с	d	Total
$X(3872) \rightarrow J/\psi \pi^0 \pi^0 \gamma$	$(3.84^{+1.90}_{-1.52}) \times 10^{-7}$	$(4.58^{+1.94}_{-1.60}) \times 10^{-6}$	$(0.82 \pm 0.37)\%$	$(2.07 \pm 0.52) \times 10^{-6}$	(2.38 + 1.06)%
$X(3872) \to J/\psi \pi^+\pi^-\gamma$	0	$(9.16^{+3.89}_{-3.20}) \times 10^{-6}$	(1.56 ± 0.69)%	$(4.55 \pm 1.09) \times 10^{-4}$	

The $X(3872) \rightarrow J/\psi \pi \gamma$ and $X(3872) \rightarrow J/\psi \pi \pi \gamma$ decays are very helpful for constraining the coupling constants

 $\mathcal{B}[X \to J/\psi \pi \gamma]$ $= 0.002g_{X\psi\phi}^2 + 0.083g_{X\psi\phi}^2 + 0.004g_{X\psi\phi}g_{X\psi\phi} + 0.012, \quad \text{Extract } g_{X\psi\omega} \text{ in } X \to J/\psi\omega \to J/\psi\pi\gamma$ $\mathcal{B}[X \to J/\psi \pi^0 \pi^0 \gamma],$ $= (3.03 \pm 1.16) \times 10^{-4} g_{X\psi\rho}^2 + (4.77 \times 10^{-5}) g_{X\psi\omega}^2$ Extract $g_{X\psi\rho}$ and $g_{X\psi\omega}$ in $X \to J/\psi \pi^0 \pi^0 \gamma$ $+(0.82\pm0.37)\%$ $\mathcal{B}[X \to J/\psi \pi^+ \pi^- \gamma],$ $= (5.62 \pm 2.22) \times 10^{-2} g_{X\psi\rho}^2 + (9.53 \times 10^{-5}) g_{X\psi\omega}^2$ Extract $g_{X\psi\omega}$ in $X \to J/\psi\pi^+\pi^-\gamma$ $+(1.56\pm0.69)\%.$

Summary

- The $X(3872) \rightarrow J/\psi \pi \gamma$ is dominated by the ω meson. As for the $X(3872) \rightarrow J/\psi \pi \pi \gamma$, the contributions of the cascade decays through the ρ and ω mesons are strongly suppressed with respect to the diagrams which proceed either through the $\psi(2S)$ or the three body decay of ρ ;
- The branching ratios of $X(3872) \rightarrow J/\psi \pi \gamma$ and $X(3872) \rightarrow J/\psi \pi \pi \gamma$ are predicted to be in order $10^{-3} \sim 10^{-2}$, which may be accessible by the BESIII and LHCb collaborations;
- The $X(3872) \rightarrow J/\psi \pi \gamma$ and $X(3872) \rightarrow J/\psi \pi \pi \gamma$ decays can be employed to extract the couplings $g_{X\psi\omega}$ and $g_{X\psi\rho}$, which probe the isoscalar and isovector components of the X(3872) wave function, respectively.

Thank you for your attention!