

Review of bottomonium decay results at Belle

Baoshang Gao Nankai University, China (on behalf of the Belle & Belle II Collaborations)

16th International Workshop on Heavy Quarkonium – QWG 2024 February 26, 2024-March 1, 2024 IISER, Mohali, India

Bottomonium at Belle

Alternative explanation is that the transitions $\Upsilon(nS) \rightarrow \Upsilon(ms)$ proceed via exotic admixture

2/29/2024

Selected Topics

* Search for $h_b(2P) \rightarrow \gamma \chi_{bJ}(1P)$ [NEW];

* Evidence for $h_b(2P) \rightarrow \Upsilon(1S)\eta$ and search for $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$ [NEW];

The study of $\Upsilon(2S) \rightarrow D_s^{()+} + D_{sJ}^- + c. c. [PRD 108, 112015 (2023)].$

Search for $h_b(2P) \rightarrow \gamma \chi_{bJ}(1P)$

2/29/2024

Motivation

The production of $b\bar{b}$ spin singlets is generally rare in e^+e^- collisions because it requires the spin flip of a heavy quark in a hadronic or radiative transition.

^{GP} The $h_b(2P)$ is produced via the Υ(10860) $\rightarrow h_b(2P)\pi^+\pi^-$ transition with a surprisingly large rate^[1].

^{IGF} $h_b(2P) \rightarrow \chi_{b1} \gamma$ decay is suppressed due to heavy quark spin symmetry. Relativized Quark Model (RQM) predicts $\mathcal{B}[h_b(2P) \rightarrow \gamma \chi_{bJ}(1P)] = 10^{-6} - 10^{-5}$ [2].

^{IPP} There could be enhancement due to hadron admixture in $h_b(2P)$. The coupledchannel model predicts $\mathcal{B}[h_b(2P) \rightarrow \gamma \chi_{bJ}(1P)] = 10^{-2} - 10^{-1}$ [3][4].

PRL 108, 032001 (2012), Belle collaboration.
PRD 32, 189 (1985), Stephen Godfrey et al.
PLB 760, 417 (2016), Feng-Kun Guo et al.
https://arxiv.org/abs/physics/9711021

Search for $h_b(2P) \rightarrow \gamma \chi_{bJ}(1P)$

The Results for $h_b(2P) \rightarrow \gamma \chi_{bJ}(1P)$

We set upper limits below :

ſ	Channel	${\mathcal B}$	The results is consistent
Ge-	$h_b(2P) \to \gamma \chi_{b2}(1P)$	$< 1.2 \times 10^{-2}$	with the RQM expectations and excludes the results from the coupled-channel model.
	$h_b(2P) \to \gamma \chi_{b1}(1P)$	$< 5.4 \times 10^{-3}$	
	$h_b(2P) \to \gamma \chi_{b0}(1P)$	$< 2.7 \times 10^{-1}$	

2/29/2024

Evidence for $h_b(2P) \rightarrow \Upsilon(1S)\eta$ and search for $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$

2/29/2024

IF $h_b(2P) \rightarrow \Upsilon(1S)\eta$ decay is suppressed due to heavy quark spin symmetry.

^{IFF} Hadronic transitions between heavy quarkonium states can be mostly described with the QCD multiple expansion model (*QCDME*)^[1], including $h_b(1P, 2P)$ are expected to have decay properties similar to $\chi_b(1P, 2P)^{[2]}$.

Theoretical prediction: the $R_{h_b}(R_{\chi_{b1}})$ is the ratio of the annihilation rates for the $h_b(1P, 2P)(\chi_b(1P, 2P))$, the predicted value of $R_{h_b}/R_{\chi_{b1}}=1$ ^[3].

Based on recent results, the $R_{h_b}/R_{\chi_{b1}}$ is 0.24 with 1.5 σ discrepancy from unity and the discrepancy would further increase if the rate of $h_b(2P) \rightarrow \Upsilon(1S)\eta$ is as large as 10%.

NPB 154, 365 (1979) M. B. Voloshin.
PRD 66, 014012 (2002) Stephen Godfrey.
PRD 86, 094013 (2012) Xin Li et al.

The study of $h_b(2P) \rightarrow \Upsilon(1S)\eta$ and $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$

2/29/2024

The Results of $h_b(2P) \rightarrow \Upsilon(1S)\eta$ and $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$

$$\begin{split} & \cong \mathcal{B}[h_b(2P) \to \Upsilon(1S)\eta] = (7.1^{+3.7}_{-3.2} \pm 0.8) \times 10^{-3} \ 3.5\sigma \\ & \cong \mathcal{B}[h_b(2P) \to \Upsilon(1S)\pi^0] < 1.8 \times 10^{-3} \ \text{at } 90\% \ \text{confidence level}. \\ & \boxplus \mathcal{B}[h_b(1P) \to \Upsilon(1S)\pi^0] < 1.8 \times 10^{-3} \ \text{at } 90\% \ \text{confidence level}. \end{split}$$

The hindered M1 decays between P-wave bottomonium state $h_b(2P) \rightarrow \chi_{bJ}(1P)\gamma$ with J = 0,1,2.

2/29/2024

Results discussion

We see evidence of the $h_b(2P) \rightarrow \Upsilon(1S)\eta$ transition with significance of the signal is 3.5 σ .

The obtained $\mathcal{B}[h_b(2P) \to \Upsilon(1S)\eta] = (7.1^{+3.7}_{-3.2} \pm 0.8) \times 10^{-3}$ noticeably differs from the expectation of 10% and the updated value of $R_{h_b}/R_{\chi_{b1}}$ is around 0.23.

We do not observe any signal for the isospin violating decays $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$ and the upper limits are found to be $\mathcal{B}[h_b(1P) \rightarrow \Upsilon(1S)\pi^0] = 1.8 \times 10^{-3}$ and $\mathcal{B}[h_b(2P) \rightarrow \Upsilon(1S)\pi^0] = 1.8 \times 10^{-3}$.

The study of $\Upsilon(2S) \rightarrow D_s^{(*)+} D_{sJ}^- + c.c.$

2/29/2024

Motivation

□ Rare decays involving $\Upsilon(1S, 2S) \rightarrow c\bar{c}$ due to the OZI suppressed.

^{IBF} Bound states of heavy quarks provide a powerful testing ground for QCD, including the $\mathcal{B}(\Upsilon(1S) \rightarrow D^+D^-) \sim 10^{-5} - 10^{-4}$ [1], $\mathcal{B}(\Upsilon(1S) \rightarrow c\bar{c}) \approx 2.7\%$ [2].

 $\mathfrak{B} \mathcal{B}[\Upsilon(1S) \to D^{*\pm}X]$ measured by BABAR Collaboration^[3].

PRD 74, 094016(2006), Hai-Bo Li et al.
PRD 78, 094017(2008), Yu-Jie Zhang et al.
PRD 81,011102(R)(2010), BaBar collaboration.

2/29/2024

2/29/2024

Review of bottomonium decay results at Belle

14

Distributions of M($\overline{K}\overline{D}^*$)

2/29/2024

Fitting Results

QED+QCD: $R_1 = \mathcal{B}(\Upsilon(2S) \rightarrow D_S^{(*)+} D_{SI}^- + c.c.)/\mathcal{B}(\Upsilon(2S) \rightarrow \mu^+ \mu^-)$

	-		sjr (sj
Final states	$N_{\Upsilon(2S)}^{sig}$	significance(σ)	$\mathcal{B}(\Upsilon(2S) \rightarrow D_s^{(*)} D_{sJ}^-) \mathcal{B}(D_{sJ}^- \rightarrow K D^{(*)}) (10^{-5})$
$D_s^+ D_{s1}(2536)^-$	$43\pm9\pm2$	5.3	$1.6\pm0.3\pm0.2$
$D_s^{*+}D_{s1}(2536)^-$	$43\pm9\pm2$	4.3	$1.4\pm0.4\pm0.2$
$D_s^+ D_{s2}^* (2573)^-$	$43\pm9\pm5$	3.8	$1.4\pm0.4\pm0.2$
$D_s^{*+}D_{s2}^{*}(2573)^{-}$	$43\pm9\pm2$	1.6	$0.9 \pm 0.5 \pm 0.2$

The fitting results of $\mathcal{B}(\Upsilon(2S) \to D_{-}^{(*)+} D_{-}^{-}) \mathcal{B}(D_{-}^{-} \to KD^{(*)}) (K^{-} \text{ mode})$

QED: $R_2 = \sigma^{\text{Born}} \left(e^+ e^- \rightarrow D_s^{(*)+} D_{sl}^- + c.c. \right) / \sigma^{\text{Born}} (e^+ e^- \rightarrow \mu^+ \mu^-)$

			,				
The fitting results of $\sigma^{\rm B}(e^+e^- \rightarrow D_s^{(*)+}D_{sJ}^-)\mathcal{B}(D_{sJ}^- \rightarrow KD^{(*)})$ (K ⁻ mode)							
Final states	N ^{sig} _{cont}	significance(σ)	$\sigma^{\mathrm{B}}(e^+e^- \to D_s^{(*)}D_{sJ}^-)\mathcal{B}(D_{sJ}^- \to KD^{(*)})(\mathrm{fb})$				
$D_s^+ D_{s1}(2536)^-$	$86 \pm 10 \pm 2$	13.9	$67 \pm 8 \pm 6$				
$D_s^{*+}D_{s1}(2536)^-$	$79 \pm 10 \pm 2$	11.8	$84 \pm 11 \pm 11$				
$D_s^+ D_{s2}^* (2573)^-$	$102\pm17\pm21$	7.1	$56\pm9\pm13$				
$D_s^{*+}D_{s2}^{*}(2573)^{-}$	$102\pm16\pm6$	7.6	$106\pm17\pm12$				

 $R_1/R_2 = 9.8 \pm 2.5, 8.0 \pm 2.4, 9.7 \pm 3.0$ and 4.4 ± 2.8 for the $D_s^+ D_{s1}(2536)^-, D_s^{*+} D_{s1}(2536)^-, D_{s2}^{*+} D_{s1}(2536)^-, D_{s2}^{*+} D_{s2}(2536)^-, D_{s2}(256)^-, D_{s2}(25$ $D_s^+ D_{s2}^* (2573)^-$ and $D_s^{*+} D_{s2}^* (2573)^-$ final states in the $D_{sI}^- \to K^- \overline{D}^{(*)0}$ modes, respectively. The measured R_1/R_2 values indicate that the strong decay dominates in the $\Upsilon(2S) \rightarrow D_S^{(*)+} D_{SI}^-$ processes. 2/29/2024

Summary

 \checkmark We study the hindered M1 decays between P-wave bottomonium state $h_b(2P) \rightarrow \chi_{bJ}(1P)\gamma$ with J = 0,1,2 and set limits on $h_b(2P) \rightarrow \chi_{bJ}(1P)\gamma$ processes.

 \checkmark We found the first evidence of the $h_b(2P) \rightarrow \Upsilon(1S)\eta$ transition with significance of 3.5 σ and set limits on $h_b(1P, 2P) \rightarrow \Upsilon(1S)\pi^0$ processes.

 \checkmark We observe the charmed strange meson pair $D_s^{(*)+}D_{sJ}^-$ production in Y(2S) decays and e^+e^- annihilation at $\sqrt{s} = 10.52$ GeV for the first time, where D_{sJ}^- is $D_{s1}(2536)^-$ or $D_{s2}^*(2573)^-$.

 \checkmark There results are in good agreement with expected isospin symmetry and indicates that the strong decay dominates in the $\Upsilon(2S) \rightarrow D_s^{(*)+} D_{sJ}^{-}$ processes.

Thank for your attention!

Selections for studying of $\Upsilon(2S) \rightarrow D_s^{(*)+} D_{sJ}^- + c.c.$

For charged tracks

1. kaons: $\mathcal{L}(K)/\mathcal{L}(K) + \mathcal{L}(\pi) > 0.6$. Pions: $\mathcal{L}(K)/\mathcal{L}(K) + \mathcal{L}(\pi) < 0.4$, $P_T > 0.1$ GeV/c 2. |dr| < 0.5 cm and |dz| < 2.0 cm.

3. K_{S}^{0} is selected by nisKsFinder package select good candidates.

For γ candidates

1.For $\pi^0 \rightarrow \gamma \gamma$ E_{γ} >25 MeV in barrel, E_{γ} > 50 MeV in endcap.

2. For $\eta(\rightarrow\gamma\gamma)$ E_{γ}>150 MeV in barrel and endcap.

3.For γ_{targ} (decay from D_s^{*+}) candidates E_{γ} >50 MeV in barrel, E_{γ} >100 MeV in endcap.

For $D_s^{(*)+}$ candidates

1.Vertex Fit and Mass Constraint for $D_s^{(*)+}$. 2. The best $D_s^+\gamma$ combination per a event with the best mass fit χ^2 to avoid multiple combinations.

2/29/2024

2/29/2024

Distributions of $M_{P(*)+}^{recoil}$ v.s. $M_{P(*)+z}^{recoil}$ (a) continuum 28 Mrecoil GeV/c² GeV 2.6 2.4 1.6 2.4 └─ 1.€ M^{recoil} GeV/c² 2.2 2 M^{recoil} GeV/c² (C) (d) 30000 35000 30000 25000 2.8 2.8 M^{recoil} GeV/c² 9.5 9.7 GeV/c² 25000 20000 2.7 20000 15000 2.6 N 15000 10000 2.5 5000

There are clear bands in the distributions of data corresponding to the productions of the $D_{s1}(2536)^-$ and $D_{s2}^*(2573)^-$.

2/29/2024

2.4 1.6

1.9 2 M^{recoil} GeV/c²

1.8

1.7

2.1 2.2

Review of bottomonium decay results at Belle

2.2 2.3

2

2.1

1.9 2 M^{recoil}_{D^{(*)+}K} GeV/c²

1.8