### **Recent J/psi decay results from KEDR**

V.M.Malyshev, K.Yu.Todyshev, B.A.Shwartz (On behalf of the KEDR collaboration) Budker Institute of Nuclear Physics Novosibirsk



- $J/\Psi \rightarrow \rho \pi, \rho' \pi$
- $J/\Psi \rightarrow 5\pi$ ,  $2K3\pi$ ,  $4\pi$ ,  $2K2\pi$



□ Wide energy range E<sub>beam</sub>=1÷6 GeV, 2x2 bunches
□ Peak luminosity 1.5×10<sup>30</sup> cm<sup>-2</sup>s<sup>-1</sup> at J/ψ
□ Precise beam energy determination :

- Resonant Depolarization Method,  $\sigma_{\rm F} \approx 1.5 \text{ keV}$
- Interpolation for DAQ runs  $\sigma_E \approx 8 \div 30 \text{ keV}$
- IR-light Compton BackScattering, σ<sub>E</sub> < 100 keV
- Scattering electron tagging system for twophoton studies

### **VEPP-4M e<sup>+</sup>e<sup>-</sup> collider and KEDR detector**



2

- 1. Vacuum chamber
- 2. Vertex detector
- 3. Drift chamber
- 4. Threshold aerogel counters
- 5. ToF-counters
- 6. Liquid krypton calorimeter
- 7. Superconducting coil (0.6 T)
- 8. Magnet yoke
- 9. Muon tubes
- 10. Csl-calorimeter
- 11. Compensation solenoid
- 12. VEPP-4M
  - quadrupole

<sup>29.02.2024</sup> 

#### **Selection criteria**



- Two reconstructed tracks are required to have d < 3 cm and  $|z_0| < 17$  cm, where d is the track impact parameter relative to the beam axis and  $z_0$  is the coordinate of the closest approach point.
- At least one track from interaction region (d < 0.75 cm,  $|z_0| < 13$  cm) or two tracks with d < 0.75 cm were accepted.
- Two clusters in the calorimeter not associated to tracks ("neutral clusters") with energies exceeding  $E_1 = 50$  MeV or one cluster with an energy greater than  $E_2 = 150$  MeV.
- $\chi^2 (\pi^+ \pi^- \pi^0)$  from a kinematic fit must be less than 90 and also satisfy the condition  $\chi^2(\pi^+ \pi^- \pi^0) < \chi^2(K^+ K^- \pi^0)$ .
- For the suppression of the background induced by the processes  $e^+e^-(\gamma)$ ,  $\mu^+\mu^-(\gamma)$  for events with "merged-  $\pi^0$  we used the additional criteria. The ratio of Fox-Wolfram moments  $H_2/H_0$  was required to be less than 0.8.
- The ratio of the energy deposited in the calorimeter to the measured momentum of the charged particle E/p must be less than 0.75.
- The sum  $\cos \theta(\pi^+\pi^-) + \cos \theta(\pi^+\pi^0) + \cos \theta(\pi^-\pi^0)$  was required to be less than -1.075, this distribution lies in the range of [-1.5, -1.]. 29.02.2024



JHEP06(2023)196

J/Ψ $\rightarrow$ ρπ, ρ'π

 $M^2_{\pi^-\pi^0} \left[ GeV^2/c^4 \right]$ 



The experimental  $J/\psi \rightarrow 3\pi$  Dalitz plot.



The experimental distribution of events over the cosines  $\cos \theta(\pi^+\pi^0)$ ,  $\cos \theta(\pi^-\pi^0)$ ,  $\cos \theta(\pi^+\pi^-)$ .

# M( $3\pi$ ) distributions analysis



In our analysis, we perform a binned simultaneous fit of the  $\pi^+\pi^-$ ,  $\pi^0\pi^+$  and  $\pi^0\pi^-$  invariant mass distributions  $\rho(750)$  and  $\rho'(1450)$  are included to the fit The systematic uncertainty connected to the fit model were checked by inclusion of  $\rho'(1700)\pi$  and  $\omega\pi$  states to the fit

# J/Ψ→ρπ, ρ'π, - Results

 $\begin{aligned} \mathscr{B}(J/\psi \to \rho \pi) &= (2.072 \pm 0.017 \pm 0.062) \times 10^{-2} \\ \mathscr{B}(J/\psi \to \rho'(1450)\pi) \times \mathscr{B}(\rho'(1450) \to \pi \pi) &= (2.2 \pm 0.2 \pm 1.1) \times 10^{-4} \\ \mathscr{B}(J/\psi \to \pi^+ \pi^- \pi^0) &= (1.878 \pm 0.013 \pm 0.051) \times 10^{-2} \end{aligned}$ 

**JHEP06 (2023) 19**,

arXiv: 2211.13520

Dominant systematic uncertainties in the  $\mathcal{B}(J/\psi \rightarrow \rho \pi).$ Source Uncertainty, % Fitting model 1.5 Fitting procedure 1.2 Number of  $J/\psi$  decays 1.1 Detector response 8.0 Background 0.2 Selected criteria 1.8 Sum in quadrature 3.0



# $J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$ , $K^+K^-\pi^+\pi^-\pi^0$ , $2(\pi^+\pi^-)$ , $K^+K^-\pi^+\pi^-$ - decays

(2.10±0.08)%

(1.20±0.30)%

(6.2±0.9)%



*Eur. Phys. J. C (2022) 82:938 https://doi.org/10.1140/epjc/s10052-022-10879-9* 

 $\pi^{+}\pi^{-}\pi^{0}$ 

 $\pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}$ 

 $2(\pi^+\pi^-)3\pi^0$ 

## **KEDR data and selections**

- Integrated luminosity at E<sub>beam</sub>=1561.4 MeV (J/ψ peak) L = 1.32 ± 0.07 pb<sup>-1</sup> and at E<sub>beam</sub>=1550.5 MeV (continuum) L = 82.3 ± 4.1 nb<sup>-1</sup> is collected
- > Measured beam energy spread was used for calculation of the number of J/ $\psi$  produced :  $N_{\psi} = 5.1 \pm 0.3$  M
- **□** For selection of the  $J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$ ,  $K^+K^-\pi^+\pi^-\pi^0$ ,  $2(\pi^+\pi^-)$  or  $K^+K^-\pi^+\pi^-$  final states corresponding number of  $\pi^\pm$  and  $K^\pm$  originated from IP as well as  $\pi^0$  should be reconstructed. Any number of additional photons were allowed.
  - The  $\pi^{\pm}$  and  $K^{\pm}$  identification for the track momentum of *P*<0.6 GeV was performed by the barrel part of the time-of-flight system of scintillation counters (ToF) while at *P*>0.6 GeV a system of threshold Cherenkov counters (ATC) was used.
  - A cluster in liquid krypton (LKr) or CsI calorimeter with energy *Ecl*>50 MeV was considered a photon if it was not associated with reconstructed tracks in drift chamber.
  - A combination of two photons with a mass closer to the mass of  $\pi^0$  or  $\eta$  than double the mass resolution was considered as a  $\pi^0$  or  $\eta$  candidate.
- ☐ Kinematic fit:
  - $(4+n_1\pi^0+n_2\eta)C$  fit : constrains on E, P, M( $\pi^0$ ), M( $\eta$ )
  - For signal events the condition  $\chi^2 < 50$  for  $5\pi$ ,  $2K3\pi$  and  $\chi^2 < 40$  for  $4\pi$ ,  $2K2\pi$  were applied

|  |                                   | $2(\pi^+\pi^-)\pi^0$ | $K^+K^-\pi^+\pi^-\pi^0$ | <i>2(π</i> <sup>+</sup> <i>π</i> <sup>-</sup> ) | $K^+K^-\pi^+\pi^-$ |
|--|-----------------------------------|----------------------|-------------------------|-------------------------------------------------|--------------------|
|  | Selection efficiencies (MC), %:   | 8.47±0.13            | 2.88±0.05               | 17.7±0.20                                       | 7.18±0.15          |
|  | Number of signal events selected: | 22995                | 2616                    | 2654                                            | 2671               |
|  | 29.02.2024                        |                      |                         |                                                 |                    |

### Measurement of $J/\psi \rightarrow 5\pi$ , $2K3\pi$ , $4\pi$ , $2K2\pi$

$$B_{i} / B_{mh} = \frac{N_{i}^{peak} - N_{i}^{cont} \cdot L/L_{cont}}{N_{mh}^{peak} - N_{mh}^{cont} \cdot L/L_{cont}} \frac{\varepsilon_{mh}^{MC}}{\varepsilon_{i}^{MC}} \frac{R_{i}^{MC}}{R_{i}^{exp}}$$

– branching fraction of  $J/\psi \rightarrow X_i$  decay,

 $B_{mh} = (87.7 \pm 0.5)\%$ – branching fraction of  $J/\psi$  multihadron decays (PDG), – number of selected signal events in  $J/\psi \rightarrow X_i$  channel

N<sub>i</sub>cont N<sub>mh</sub><sup>peak</sup>=4618k N<sub>mh</sub><sup>cont</sup>=32.3k L=1.315 pb<sup>-1</sup> L<sup>cont</sup>=82.3 nb<sup>-1</sup> ε<sub>mh</sub><sup>MC</sup>=0.938 ε<sub>i</sub>MC **R**<sub>i</sub>exp decays, **R**<sub>i</sub><sup>MC</sup> decays(MC).

Bi

N<sub>i</sub>peak

- number of selected signal events in continuum - number of selected multihadron events at the  $J/\psi$  peak, - number of selected multihadron events in the continuum, - integrated luminosity at the  $J/\psi$  peak, - integrated luminosity in the continuum, - selection efficiency of  $J/\psi$  multihadron decays (MC), - selection efficiency of  $J/\psi \rightarrow X_i$  decays (MC), – fractions of signal events in candidate events for  $J/\psi \rightarrow X_i$ 

– fractions of signal events in candidate events for  $J/\psi \rightarrow X_i$ 



example:  $J/\psi \rightarrow \omega f_0 \rightarrow 2(\pi^+\pi^-)\pi^0$  decay

Angular and momentum distributions in J/w decays:

- **LundCharm** generator (based on Jetset 7.4), J.C. Chen et al., PRD V62, 034003
- **KsGenHAmp** generator (helicity formalism), J.D. Richman, CALT-68-1148

$$d\Gamma = \frac{(2\pi)^4}{2M_{\psi}} \frac{1}{2} \sum_{\lambda=\pm 1} \left| M_{fi}^{\lambda} \right|^2 d\Phi$$

 $d\Phi \propto \prod_{i} p_{i}' d\Omega_{i}' \prod_{k} dm_{k} \qquad M_{fi}^{\lambda} = \sum_{i} \prod_{i} \left( \frac{2J_{i}+1}{4\pi} \right)^{1/2} D_{\lambda_{i},\lambda_{i_{1}}-\lambda_{i_{2}}}^{J_{i}^{*}} (\Omega_{i}') A_{\lambda_{i_{1}}\lambda_{i_{2}}}^{i} \qquad A_{\lambda_{1},\lambda_{2}} = \eta_{0} \eta_{1} \eta_{2} (-1)^{J-S_{1}-S_{2}} A_{-\lambda_{1},-\lambda_{2}}$ 

#### $J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$ decay



### $J/\psi \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$ decay



Mass distributions for  $K^+K^-\pi^+\pi^-\pi^0$  selected signal events: + data, - MC with LundCharm generator, - MC with KsGenHAmp generator, - background (non- $J/\psi \rightarrow 2K3\pi$  decays, LundCharm generator), + continuum events

## $J/\psi \rightarrow 2(\pi^+\pi^-)$ decay



Mass, momentum and polar angle distributions for  $2(\pi^+\pi^-)$  selected signal events: + data, - MC with LundCharm generator, - MC with KsGenHAmp generator, - background (non- $J/\psi \rightarrow 4\pi$  decays, bgndGham generator), + continuum events



# $J/\psi \rightarrow K^+ K^- \pi^+ \pi^- \text{decay}$



Mass distributions for  $K^+K^-\pi^+\pi^-$  selected signal events: + data, - MC with LundCharm generator, - MC with KsGenHAmp generator, - background (non- $J/\psi \rightarrow 2K2\pi$  decays, LundCharm generator), + continuum events **29.02.2024** 

### Systematic uncertainties and results

|                                                 | Ni <sup>sig</sup> | ε <sub>i</sub> (MC<br>KsGenHam<br>p), % | B <sub>i</sub> , % (this work) |
|-------------------------------------------------|-------------------|-----------------------------------------|--------------------------------|
| 2(π <sup>+</sup> π <sup>-</sup> )π <sup>0</sup> | 22995             | 8.31 ± 0.32                             | $5.44 \pm 0.07 \pm 0.33$       |
| K⁺K⁻π⁺π⁻π⁰                                      | 2616              | 3.05 ± 0.10                             | $1.74 \pm 0.08 \pm 0.23$       |
| 2(π <sup>+</sup> π <sup>-</sup> )               | 2654              | 17.7 ± 0.19                             | 0.288 ± 0.014 ± 0.022          |
| K⁺K⁻π⁺π⁻                                        | 2671              | 7.42 ± 0.40                             | 0.704 ± 0.026 ± 0.090          |



0.6

0.5 B(J/ψ→2(π<sup>+</sup>π<sup>-</sup>)), %

0.4

MARKI 76

29.02.20243

BABAR 12

0.55 0.6 0.65 0.7 0.75 0.8

B(J/ψ→K<sup>+</sup>K<sup>-</sup>π<sup>+</sup>π<sup>-</sup>), %

Systematic uncertainties (percent) of measured branching fraction of the  $J/\psi \rightarrow X_i$  decay:

|                                              | 2(π⁺π⁻<br>)π⁰ | Κ⁺Κ⁻π⁺π⁻<br>π⁰ | <b>2(</b> π <sup>+</sup> π <sup>-</sup> ) | K <sup>+</sup> K <sup>-</sup> π <sup>+</sup> π <sup>-</sup> |
|----------------------------------------------|---------------|----------------|-------------------------------------------|-------------------------------------------------------------|
| $\chi^2$ distributions of the kinematic fits | 1.0           | 3.9            | 3.6                                       | 2.9                                                         |
| track registration efficiency                | 3.6           | 3.6            | 3.6                                       | 3.6                                                         |
| $\pi^0$ registration efficiency              | 1.5           | 1.5            | -                                         | -                                                           |
| fake $\pi$                                   | 1.9           | 3.5            | 2.8                                       | <1                                                          |
| $\pi \rightarrow K$ misidentification        | 2.1           | 1.1            | 2.1                                       | 1.1                                                         |
| $K \rightarrow \pi$ misidentification        | <1            | 11             | <1                                        | 10                                                          |
| fitting procedure (range, bin width)         | <1            | 2.6            | 4.0                                       | 2.9                                                         |
| threshold on $\chi^2$ of the kinematic fit   | <1            | <1             | <1                                        | <1                                                          |
| trigger + selection cuts                     | <1            | <1             | <1                                        | <1                                                          |
| nonresonant background subtraction           | 1.6           | 1.6            | 1.6                                       | 1.6                                                         |
| interference with the continuum              | 1.9           | <1             | 3.3                                       | 1.5                                                         |
| helicity amplitudes of decay                 | 1.6           | 1.9            | 1.1                                       | 2.2                                                         |
| modes branching fractions of decay modes     | 2.0           | 2.9            | <1                                        | 4.9                                                         |
| interference between decay mode amplitudes   | <1            | <1             | <1                                        | <1                                                          |
| Total                                        | 7.4           | 14.5           | 7.5                                       | 14.4                                                        |

### Decays of $J/\psi$ involving intermediate resonances



29.02.2024

15

# Conclusion

Branching fractions of the J/ $\Psi \rightarrow \rho \pi$ ,  $2(\pi^+\pi^-)\pi^0$ ,  $2(\pi^+\pi^-)\pi^0$ ,  $K^+K^-\pi^+\pi^-\pi^0$ ,  $2(\pi^+\pi^-)$ ,  $K^+K^-\pi^+\pi^-$  decays were measured with high precision by the KEDR collaboration at VEPP-4M e<sup>+</sup>e<sup>-</sup> collider