Search for rare phenomena at BESIII

Vindhyawasini Prasad

Email: vindymishra@gmail.com

Instituto de Alta Investigacion Universidad de Tarapaca Casilla 7D, Arica, Chile

Outline

- ✤ Motivation
- ✤ BESIII experiment
- Charmonium weak decays
 - Search for the semi-muonic charmonium decay $J/\psi \rightarrow D^- \mu^+ \nu_\mu$
 - Search for weak decays of $J/\psi \to DX \ (X = \pi^{\pm,0}, \eta, \rho^{\pm,0})$
- ✤ Exotic particle searches
 - Search for an Axion-like particle
 - Search for invisible muon philic scalar X_0 or vector X_1 via $J/\psi \rightarrow \mu^+\mu^-$ +invisible
 - Invisible decays of dark photon
 - Search for a massless dark photon in $\Lambda_c^+ \to p\gamma'$
- Summary

Motivation

- **Standard Model (SM) is incredibly successful,** it is well tested by many experiments
- * But, it can't be considered to be theory of everything
 - Tensions with some experimental measurements:

Naturalness and stability, g-2, W mass, R_K, R_D, R_{D*},

• Unable to explain:

Existence & mechanism of dark matter and dark energy

Baryon asymmetry of the universe

Neutrino masses and oscillations, hierarchy

Current status of anomalous magnetic moment

D. P. Aguillard, et. al. (Muon g-2 Collaboration) arXiv:2308.06230

Real opportunity to search for new physics beyond the SM

New physics search approaches

Very rare decays

Symmetry

BNV & LNV processes

- LFV processes
- Other symmetry violation
- FCNC processes
- Charmonium weak decays
- Other rare decays

Very rare

Exotic particles

- Invisible signature
- Muon philic vector/scalars
- Dark matter portals

Dark matter portals allow the connection between the SM particles with the dark matter within a 'dark matter hidden sector' model

arXiv:1311.0029 (2013)

$\mathcal{L} \supset \left\{ \right.$	$-\frac{\varepsilon}{2\cos\theta_W}B_{\mu\nu}F'^{\mu\nu},$	vector portal	A' kinetic mixing with $\gamma,$ Z
	$(\mu\phi + \lambda\phi^2)H^{\dagger}H,$ $y_nLHN,$	Higgs portal neutrino portal	Dark Higgs (mixes with SM Higgs) Sterile neutrino
	$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu},$	axion portal	Axion, coupling to DM

• Can be accessible by high intensity e⁺e⁻ collider experiments, such as BESIII experiment, if their masses are a few GeV

BESIII Experiment

A symmetric electron positron collider running at taucharm region.

Multilayer drift chamber (MDC)

- He/C₃H₈ (60/40)
- 43 layers
- Momentum resolution $\sigma_p/p\approx 0.5\%$ @ 1 GeV

MD

• Spatial resolution $\sigma_{xy}\approx 130~\mu m.$

Super conducting magnet

✓ 1 Tesla

cos0=0.93

0.90

[Nucl. Instrum. Meth. A614, 345-399 (2010)]

Time of Flight (TOF)

- 2 layer plastic scintillators
- $\sigma_{\rm T} \approx 68 \, \rm ps \, (\rm barrel)$
- $\sigma_T \approx 110 \text{ ps} (\text{endcap}) (\sim 65 \text{ ps})$ after upgradation with MRPC)
- Particle id

Muon system

- 9 layers of RPC
- **P>400 MeV/c**
- $\delta R \phi \approx 1.4 1.7 \text{ cm}$

Electromagnetic calorimeter (EMC) (CsI(Tl))

- \rightarrow 6240 crystals overall
- $\sigma(E)/E \approx 2.5\%$
- $\sigma_{Z,\phi}(E) \approx 0.5 0.7 \text{ cm}$

Will replace the inner part of the drift chamber by the three layers of CGEM detector in the coming years.

QWG-2024 at IISER Mohali

1/01/2024

Y

X

BESIII Dataset

Collected world largest data in taucharm region

- ✓ Charmonium spectroscopy
- ✓ Charm physics
- ✓ Light hadrons
- \checkmark New physics search

GOODOPPORTUNITYTOSTUDYTHELIGHTHADRONSPECTROSCOPY&SEARCHFORNEWPHYSICSPHENOMENA!

Weak decays of J/ψ meson

 $J/\psi \to D_s^- e^+ \nu_e$ Phys. Rev. D 90, 112014 (2014) $J/\psi \to D_s^{*-} e^+ \nu_e$ Phys. Rev. D 90, 112014 (2014) $J/\psi \to D^0 e^+ e^-$ Phys. Rev. D 96, 111101(R) (2017) $J/\psi \to D^{-}e^{+}\nu_{e} \quad \text{JHEP 06, 157 (2021)}$ $J/\psi \to D^{-}\mu^{+}\nu_{\mu} \quad \text{arXiv:2307.02165 (2023) (This talk)}$ $J/\psi \to \overline{D}^{0}X (X = \pi^{0}, \eta, \rho^{0}) \quad \text{arXiv:2307.07277 (2023)}$ $J/\psi \to D^{-}Y (Y = \pi^{+}, \rho^{+}) \quad \text{(This talk)}$

Charmonium weak decays

- Charmonium weak decays are allowed in SM, but highly suppressed by strong and EM decays.
- The branching fraction of inclusive weak decays $J/\psi \rightarrow D_{(s)}^{(*)}X$ (X = pion or lepton-pair) is predicted to be at the level of ~ 10⁻⁸ J. Phys. G: Nucl. Part. Phys. **44**, 045004 (2017)
- But contribution of new physics, such as Top-color model, MSSM, two-Higgs doublet model, could enhance the branching fraction up to the level of 10⁻⁵. PLB 345, 483 (1995); PLB 119, 136 (1982); PRD 15, 1958 (1977)
- Semi-leptonic weak decays: $J/\psi \to D^- \ell^+ \nu_\ell$, $J/\psi \to D_S^{(*)-} \ell^+ \nu_\ell$
- Hadronic weak decays: $J/\psi \to \overline{D}{}^0 X (X = \pi^0, \eta, \rho^0)$ and $J/\psi \to D^- Y (Y = \pi^+, \rho^+)$

1/01/2024

Search for the semi-muonic charmonium decay $J/\psi \rightarrow D^- \mu^+ \nu_{\mu}$

- Expected branching fraction of $J/\psi \rightarrow D^-\mu^+\nu_\mu$ is at the level of 10⁻¹¹ Eur. Phys. J. C 54, 107 (2008) Phys. Rev. D 78, 074012 (2008) Adv. HEP 2013, 706543 (2013) Phys. Rev. D 92, 074030 (2015)
 - J. Phys. G: Nucl. Part. Phys. 44, 045004 (2017)
- ➤ Perform the first search for the rare semi-muonic charmomium decay $J/\psi \rightarrow D^-\mu^+\nu_\mu$ +c.c. using 10 billion J/ψ events collected by the BESIII detector.
- ► Perform one-constraint (1C) fit for $D^- \to K^+ \pi^- \pi^-$ reconstruction.
- No significant signal event in found in U_{miss} distribution.
- > Set an upper limit of the branching fraction at 90% CL $\mathcal{B}(J/\psi \to D^- \mu^+ \nu_\mu + c.c.) < 5.6 \times 10^{-7}$

arXiv:2307.02165 (2023)

Search for weak decays of $J/\psi \rightarrow DX$ ($X = \pi^{\pm,0}, \eta, \rho^{\pm,0}$)

- The 10 billion of BESIII J/ψ data has also been utilized to search for weak decays $J/\psi \rightarrow \overline{D}{}^{0}X$ ($X = \pi^{0}, \eta, \rho^{0}$) and $J/\psi \rightarrow D^{-}Y$ ($Y = \pi^{+}, \rho^{+}$).
- Semi-leptonic modes of reconstructed *D* candidates:

$$\bar{D}^0 \to K^+ e^- \bar{\nu_e} \qquad D^- \to K^0_S e^- \bar{\nu_e}$$

• Perform one-constraint (1C) fit for $\pi^0/\eta \to \gamma\gamma$ reconstruction.

• No evidence of significant signal events in accepted candidates to the recoiling mass spectra

• Set 90% CL upper limits on branching fractions

 $\begin{array}{ll} \mathcal{B}(J/\psi \to \bar{D}^{0}\pi^{0} + c.c.) < 4.7 \times 10^{-7} & \mathcal{B}(J/\psi \to \bar{D}^{0}\eta + c.c.) < 6.8 \times 10^{-7} & \mathcal{B}(J/\psi \to \bar{D}^{0}\rho^{0} + c.c.) < 5.2 \times 10^{-7} \\ \mathcal{B}(J/\psi \to D^{-}\pi^{+} + c.c.) < 7.0 \times 10^{-8} & \mathcal{B}(J/\psi \to D^{-}\rho^{+} + c.c.) < 6.0 \times 10^{-7} \\ \mathcal{W}^{\text{G-2024 at IISER Mohali}} & 10 \end{array}$

arXiv:2310.07277 (2023)

Status of J/ψ weak decays after new BESIII results

Exclude large fraction of the parameter space of the new physics models.

Future J/ψ data to be collected by super tau-charm factory may prove or disprove the SM predictions.

1/01/2024

12

Search for an invisible muon philic scalar X_0 or vector X_1 via $J/\psi \rightarrow \mu^+\mu^- + \text{invisible}$ PRD 109, L031102 (2024)

- A new type of massive vector meson X_1 or scalar boson X_0 may appear in SM extension of the anomaly free gauged U(1) or $U(1)_{L_{\mu}-L_{\tau}}$ model.
- They only couple to the second or third generations of leptons $(\mu, \nu_{\mu}, \tau, \nu_{\tau})$ with the coupling strength $g'_{0,1}$.
- The $X_{0,1}$ can contribute to the muon anomalous magnetic moment and explain the $(g-2)_{\mu}$ anomaly.

$$\Delta a_{\mu}^{scalar} = \frac{g_0^2}{8\pi^2} \int_0^1 dx \frac{m_{\mu}^2 (1-x)(1-x^2)}{m_{\mu}^2 (1-x)^2 + m_{Z'}^2 x} \qquad \qquad \Delta a_{\mu}^{vector} = \frac{g_1^2}{8\pi^2} \int_0^1 dx \frac{2m_{\mu}^2 x(1-x)^2}{m_{\mu}^2 (1-x)^2 + m_{Z'}^2 x}$$

arXiv:1610.06587 (2016)

• Can be accessible via $J/\psi \to \mu^+ \mu^- X_{0,1}$

Search for an invisible muon philic scalar X_0 or vector X_1 via $J/\psi \rightarrow \mu^+\mu^-+$ invisible prd 109, L031102 (2024)

- Current experimental constraints:
 - The g' space with $Z' \rightarrow \mu^+ \mu^-$

• The g' space with $Z' \rightarrow invisible$

✓ BESIII can contribute to the low mass region

Search for a light muon philic scalar X_0 or vector X_1 is performed via $J/\psi \rightarrow \mu^+ \mu^- X_{0,1}$ with $X_{0,1}$ invisible decays using (8.998 ± 0.039) × 10⁹ J/ ψ events collected by the BESIII experiment.

Search for an invisible muon philic scalar X_0 or vector X_1 via $J/\psi \rightarrow \mu^+\mu^-+$ invisible PRD 109, L031102 (2024)

Signal yield is extracted by performing a series of ML fits.

Search for an invisible muon philic scalar X_0 or vector X_1 via $J/\psi \rightarrow \mu^+\mu^- + invisible$ PRD 109, L031102 (2024)

"invisible" $L_{\mu} - L_{\tau}$ model

JHEP10(2020)207

"scalar" U(1) model

"vanilla" $L_{\mu} - L_{\tau}$ model

Search for an Axion-like particle

BESIII Preliminary

An Axion

- is a pseudo-scalar particle
- introduced by the spontaneous breaking of Peccei-Quinn symmetry to solve the strong CP problem of the QCD

Phys. Rev. Lett. **40**, 223 (1978); Phys. Rev. Lett. **40**, 279 (1978) Phys. Rev. Lett. **38**, 1440 (1977); Phys. Rev. D **16**, 1791 (1977)

- An Axion-like particle (ALP) is predicted by many models beyond the SM and proposed to be a cold DM candidate.
- couples to a pair of photons with ALP photon coupling $g_{a\gamma\gamma}$
- Experimental bounds on $g_{a\gamma\gamma}$ with m_a range of MeV/c² GeV/c² mainly come from e⁺e⁻ collider experiments

Phys. Lett. B 753, 482 (2016)

ALP-Strahlung process

Radiative decay process

Phys. Rev. D 52, 1755 (1995)

Axion-like particle search with $\psi(2S)$ data

• Using 2.7 billion $\psi(2S)$ data, BESIII has set one of best limits on $g_{a\gamma\gamma}$ via $J/\psi \rightarrow \gamma a$

• The limits can be further improved with 10 billion of BESIII J/ ψ data, which can include both radiative $J/\psi \rightarrow \gamma a$ and ALP-Strahlung process $e^+e^- \rightarrow \gamma a$.

Expected pollution of ALP-Strahlung process $e^+e^- o \gamma a$ in ${\mathrm J}/\psi$ data

Cross-section of radiative process:

$$\sigma_a^{rad} = \frac{N_{J/\psi}}{L_{J/\psi}} \mathscr{B}(J/\psi \to \gamma a)$$

JHEP **06**, 091 385 (2019)

 $\sigma_a / \sigma_a^{rad}$ is calculated to be 0.044. (To be considered as systematic uncertainty)

Search for an Axion-like particle

- Select at least three photon candidates in the EMC barrel region
- A four-constraint (4C) kinematic fit is performed to improve the mass resolution.
- Important selection criteria:
 - EMC time difference between two photons: $-500 < \Delta t < 500$ ns
 - $\chi^2_{4C} < 30$
 - $\chi^2_{4C}(3\gamma) < \chi^2_{4C}(n\gamma) \ (n=2,3,4)$
 - Energy difference between third and first (second) photons > -1.46 (-1.41) GeV
 - Absolute value of azimuthal angle difference between third and first photons larger than 1 radian.

Di-photon invariant mass spectrum with all the three combinations of photons after vetoing the $J/\psi \rightarrow \gamma P$ ($P = \pi^0, \eta, \eta', \eta_c$) backgrounds

BESIII

Preliminary

Search for an Axion-like particle

Preliminary

BESIII

95% Confidence level upper limits on product branching fractions

<u>New BESIII measurement</u> has 8-9 times improvement than the previous BESIII measurement

arXiv:2308.15486 (2023)

95% Confidence level upper limits on ALP-photon coupling

New BESIII measurement has an improvement by a factor of 3 (5) over previous BESIII (Belle-II) measurement. Phys. Lett. B 838, 137678 (2023) Phys. Rev. Lett. 125, 161806 (2020)

Invisible decays of dark photon

• This search is based on 14.9 fb⁻¹ of e⁺e⁻ annihilation data taken at center-of-mass (CM) energies from 4.13 to 4.60 GeV.

Dark photon search is explored via Initial-State-Radiation (ISR) production ($e^+e^- \rightarrow \gamma_{ISR}\gamma'$), where γ_{ISR} is an ISR photon.

Energy of monochromatic photon:

1/01/2024

QWG-2024 at IISER Mohali

Search for a massless dark photon in $\Lambda_c^+ \rightarrow p\gamma'$

PRD **106**, 072008 (2022) **10** hadronic decay modes

Summary

- \succ Rare decays of charmonium mesons are sensitive to new physics beyond the SM.
- \blacktriangleright Recent BESIII results related to the weak J/ψ decays are consistent with the SM predictions.
- Future J/ψ data of super tau-charm factory may prove or disprove the SM prediction of the weak decays of charmonum mesons.
- ▶ BESIII has set one of most stringent limits on Axion-photon coupling in the range of [0.18, 2.8] GeV.
- > BESIII has also put the competitive exclusion limits on other dark matter scenarios.
- > More results is expected to come in the near future, especially with recently collected 20 fb⁻¹ of $\psi(3770)$ data.

Thanks!

Search for an Axion-like particle

BESIII Preliminary

Signal yield is extracted by performing a series of maximum likelihood (ML) fit to the di-photon invariant $mass(m_{\gamma\gamma})$ spectrum

