Quarkonia meet Dark Matter

Antonio Vairo

Technische Universität München

Quarkonium in ^a quark-gluon plasma

Quarkonium as ^a quark-gluon plasma probe

In 1986, Matsui and Satz suggested quarkonium as an ideal quark-gluon plasma probe. <mark>⊙Matsui Satz PLB 178 (1986) 416</mark>

- • $\bullet~$ Heavy quarks are formed early in heavy-ion collisions: $1/M\sim0.1$ fm < 0.6 fm.
- •Heavy quarkonium formation is sensitive to the medium.
- • The dilepton signal (happening after the quark-gluon plasma has faded away) makes the quarkonium ^a clean experimental probe.

Υ suppression @ LHC

 R_{AA} is the nuclear modification factor = yield of quarkonium in PbPb / yield in pp.

◦ CMS PLB ⁷⁹⁰ (2019) ²⁷⁰ ALICE PLB ⁸²² (2021) ¹³⁶⁵⁷⁹ ATLAS PRC ¹⁰⁷ (2023) ⁰⁵⁴⁹¹²

Energy scales

Quarkonium in ^a medium is characterized by several energy scales:

- the scales of ^a non-relativistic bound state $(v$ is the relative heavy-quark velocity; $v \sim \alpha_{\rm s}$ for a Coulombic bound state): M (mass), Mv (momentum transfer, inverse distance), $M v^2$ (kinetic energy, binding energy, potential $V)$, ... • the thermodynamical scales:
	- T (temperature), \dots

 $\, T \,$ stands for a generic inverse correlation length characterizing the medium. For definiteness we assume that the system is locally in thermal equilibrium sothat ^a slowly varying time-dependent temperature can be defined.

The non-relativistic scales are hierarchically ordered: $M \gg M v \gg M v^2$

Non-relativistic EFTs of QCD

The existence of ^a hierarchy of energy scales calls for ^a description of the system interms of a hierarchy of EFTs. We assume $T\gtrsim M v^2$ $x^2 \sim 400$ MeV for Υ .

◦ Brambilla Pineda Soto Vairo RMP ⁷⁷ (2005) ¹⁴²³ Brambilla Ghiglieri Petreczky Vairo PRD ⁷⁸ (2008) ⁰¹⁴⁰¹⁷

pNRQCD

Fields:

- \bullet S^{\dagger} creates a quark-antiquark pair in a color singlet configuration.
- \bullet O^{\dagger} creates a (unbound) quark-antiquark pair in a color octet configuration.
- \bullet • gluons and light quarks.

Propagators:

 \bullet singlet ______ and octet _____ governed (in a Coulombic system) by the Hamiltonians $h_s = \frac{\mathbf{p}^2}{M} - \frac{4}{3}\frac{\alpha_{\rm s}}{r} + \ldots$ and $h_o = \frac{\mathbf{p}^2}{M} + \frac{\alpha_{\rm s}}{6r} + \ldots$, respectively.

Electric-dipole interactions:

$$
\begin{array}{ccc}\n\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet\n\end{array}
$$

Equation of motion:

$$
i\partial_t S = h_s S + \mathbf{r} \cdot g \mathbf{E}^a \frac{O^a}{\sqrt{6}} + \dots
$$

Real-time formalism

Temperature is introduced via the partition function.

Sometimes it is useful to work in the real-time formalism.

In real time, the degrees of freedom double ("1" and "2"), however, the advantages are

- $\bullet\;$ the framework becomes very close to the one for $T=0$ EFTs;
- \bullet in the heavy-particle sector, the second degrees of freedom, labeled "2", decouple from the physical degrees of freedom, labeled "1".

This usually leads to ^a simpler treatment with respect to alternative calculations inimaginary time formalism.

Dissociation mechanisms

\bullet Annihilation

 happens after the disappearance of the quark-gluon plasma and is responbile for the dilepton signal.

• Gluodissociation

is the dissociation of quarkonium by absorption of ^a ^gluon from the medium; this is the dominant mechanism for Mv^2 $^2 \gg m_D$.

• Dissociation by inelastic parton scattering

is the dissociation of quarkonium by scattering with light degrees of freedom fromthe medium; this is the dominant mechanism for Mv^2 $^2 \ll m_D$.

 \bullet ...

Quarkonium annihilation

Annihilation in pNRQCD is described by the imaginary local potentials:

$$
\mathcal{L}_{\text{pNRQCD}} \supset
$$
\n
$$
\frac{i}{M^2} \int d^3 r \,\text{Tr} \Bigg\{ S^{\dagger} \delta^3(\mathbf{r}) \, N \left[2 \text{Im}(f_{[1]}(^1S_0)) - S^2 \left(\text{Im}(f_{[1]}(^1S_0)) - \text{Im}(f_{[1]}(^3S_1)) \right) \right] S
$$
\n
$$
+ O^{\dagger} \delta^3(\mathbf{r}) \, T_F \left[2 \text{Im}(f_{[\text{adj}]}(^1S_0)) - S^2 \left(\text{Im}(f_{[\text{adj}]}(^1S_0)) - \text{Im}(f_{[\text{adj}]}(^3S_1)) \right) \right] O \Bigg\}
$$

which leads to the (leading order) annihilation widths:

$$
\Gamma_{\text{ann}}^{n\text{s}} = \frac{4\text{Im}(f_{\text{[1]}}(^{1}S_{0}))}{M^{2}} |\psi_{nS}(\mathbf{0})|^{2}
$$

Suppressed by at least $\alpha_s v^2$ with respect to bound-state dissociation.

Gluodissociation

From the optical theorem, the ^gluodissociation width follows from cutting the ^gluonpropagator in the following p ${\sf NRQCD}$ self-energy diagram $(\Sigma_{11}$ of 11 type)

For ^a quarkonium at rest with respect to the medium, the width has the form

$$
\Gamma^{nl} = \int_{q_{\min}} \frac{d^3q}{(2\pi)^3} n_{\rm B}(q) \,\sigma_{\rm gluo}^{nl}(q) \,.
$$

- $\sigma^{nl}_{\rm gluo}$ is the in-vacuum cross section $(Q\overline{Q})_{nl} + g \rightarrow Q + \overline{Q}$.
• Gluodissociation is also known as singlet-to-octet break up.
- Gluodissociation is also known as singlet-to-octet break up.
- Brambilla Ghiglieri Vairo Petreczky PRD ⁷⁸ (2008) ⁰¹⁴⁰¹⁷

$1S$ gluodissociation at ${\sf LO}$

The LO gluodissociation cross section for $1S$ Coulombic states is

$$
\sigma_{\text{gluo LO}}^{1S}(q) = \frac{\alpha_{\text{s}} C_F}{3} 2^{10} \pi^2 \rho (\rho + 2)^2 \frac{E_1^4}{M q^5} \left(t(q)^2 + \rho^2 \right) \frac{\exp\left(\frac{4\rho}{t(q)} \arctan\left(t(q) \right) \right)}{e^{\frac{2\pi \rho}{t(q)}} - 1}
$$

where $\rho \equiv 1/(N_c^2-1)$, $t(q) \equiv \sqrt{q/|E_1|-1}$ and $E_1 = -MC_F^2\alpha_{\rm s}^2/4$.

◦ Brambilla Escobedo Ghiglieri Vairo JHEP ¹¹¹² (2011) ¹¹⁶

Brezinski Wolschin PLB ⁷⁰⁷ (2012) ⁵³⁴

The Bhanot–Peskin approximation corresponds to the large N_{c} limit, i.e. to neglecting final state interactions (the rescattering of a QQ pair in a color octet configuration). ◦ Peskin NPB ¹⁵⁶ (1979) 365, Bhanot Peskin NPB ¹⁵⁶ (1979) ³⁹¹

Gluodissociation width vs Bhanot–Peskin width

Quarkonium dissociation by parton scattering

The thermal width follows from cutting the ^gluon self-energy in the following NRQCDdiagrams with external particles of type 1 (momentum of the gluon $\; \gtrsim \;$ $\gtrsim M v)$

and/or pNRQCD 11 diagram (momentum of the gluon $\ll Mv)$

• Dissociation by inelastic parton scattering is also known ^a s Landau damping.

Quarkonium dissociation by parton scattering

For ^a quarkonium at rest with respect to the medium, the thermal width has the form

$$
\Gamma^{nl} = \sum_{p} \int_{q_{\min}} \frac{d^3q}{(2\pi)^3} f_p(q) \left[1 \pm f_p(q)\right] \sigma_p^{nl}(q)
$$

where the sum runs over the different incoming light partons and $f_g=n_{\rm B}$ or $f_q=n_{\rm F}.$

- \bullet σ^{nl}_p is the in-medium cross section $(Q\overline{Q})_{nl}+p\rightarrow Q+\overline{Q}+p.$
- The convolution formula correctly accounts for Pauli blocking in the fermionic case (minus sign).
- The formula differs from the ^gluodissociation formula.

Dissociation width

◦ Brambilla Escobedo Ghiglieri Vairo JHEP ⁰⁵ (2013) ¹³⁰ Vairo EPJ Web Conf ⁷¹ (2014) ⁰⁰¹³⁵

Evolution equation and quarkonium suppression

The evolution equation is (under some conditions) ^a Lindblad equation

$$
\frac{d\rho}{dt} = -i[H, \rho] + \sum_{i} (C_i \rho C_i^{\dagger} - \frac{1}{2} \{ C_i^{\dagger} C_i, \rho \})
$$

In the Brownian limit $(T\gg Mv^2)$, we obtain the nuclear modification factor R_{AA} :

◦ Brambilla et al JHEP ⁰⁸ (2022) ³⁰³

Dark matter in the early universe

WIMP and freeze-out mechanism

Weakly interacting massive particles (WIMPs) are candidates for dark matter. The dark matter energy density can be computed via the thermal freeze-out mechanism, where at a temperature of the universe, T , much larger than the dark matter mass M , weak interactions between dark matter and Standard Model particles are sufficient tokeep dark matter in thermal equilibrium. As the universe expands and cools down, darkmatter pair annihilation becomes ineffective at freeze out $T\approx M/25\ll M$. Dark matter pairs are non-relativistic from there on. Thermal freeze-out may occur entirely within an extended dark sector and lead to the observed dark matter energy density:

 $\Omega_{\sf DM} h^2 = 0.1200 \pm 0.0012$

◦ Planck coll AA ⁶⁴¹ (2020) A1

The evolution equation of the dark matter number density n depends on the thermal average $\langle \sigma_\mathsf{eff} \rangle$ compraising annihilation, formation, dissociation and transition effects:

$$
(\partial_t + 3H)n = -\frac{1}{2} \langle \sigma_{\text{eff}} v_{\text{rel}} \rangle (n^2 - n_{\text{eq}}^2)
$$

Near-threshold effects modify the annihilation cross section significatly.

An abelian model

^A simple model is dark QED:

$$
\mathcal{L} = \bar{X}(i\rlap{\,/}D - M)X - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \mathcal{L}_{\text{portal}}
$$

where X is a dark fermion coupled to a dark photon, i.e. a $\mathsf{U}(1)$ gauge field. $\mathcal{L}_\mathsf{portal}$ includes the SM to dark matter coupling, which is small, and may be neglected when computing cross sections.

We assume the hierarchy of energy scales

 $M \gg M\alpha \gtrsim \sqrt{MT} \gg M\alpha^2 \gtrsim T$

where $M\alpha$ and $M\alpha^2$ are the threshold/bound-state scales. The scale \sqrt{MT} is the average X momentum in the thermal average.

Energy scales and non-relativistic EFTs

The hierarchy of energy scales calls for ^a hierarchy of EFTs.

Bound-state annihilation

We consider a bound state with quantum numbers n annihilating into dark photons:

$$
(X\bar{X})_n \to \gamma\gamma
$$

The (leading order) annihilation width follows from the imaginary part of the $\tt pNRQED_{\textrm{DM}}$ potential (just the abelian part of the $\tt pNRQCD$ potential):

$$
\Gamma_{\rm ann}^{nS} = \frac{4\mathrm{Im}(f(^{1}S_{0}))}{M^{2}}|\Psi_{nS}(\mathbf{0})|^{2}
$$

 Ψ_n \overline{n} is the S-wave bound state wave function.

Annihilation cross section

We consider a scattering state of momentum \boldsymbol{p} = $\,M$ $\boldsymbol{v}_{\mathsf{rel}}$ 2 $\frac{1}{2}$ annihilating into dark photons:

$$
(X\bar{X})_p \to \gamma\gamma
$$

From the imaginary part of the p $\mathsf{NRQED_{DM}}$ potential, the annihilation cross section is

$$
(\sigma_{\mathsf{ann}} v_{\mathsf{rel}})(\boldsymbol{p}) = \frac{\mathrm{Im}(f(^1S_0))}{M^2} \, |\Psi_{\boldsymbol{p}0}(\boldsymbol{0})|^2 = (\sigma_{\mathsf{ann}}^{\mathsf{NR}} v_{\mathsf{rel}}) \, S_{\mathsf{ann}}(\zeta)
$$

where $(\sigma_{\sf ann}^{\sf NR}v_{\sf rel})=\pi\alpha^2/M^2$ and $\Psi_{{\bm p}0}$ is the S-wave component of the scattering state wave function. This is also called Sommefeld factor

$$
S_{\text{ann}}(\zeta) \equiv |\Psi_{\bm p 0}(\bm 0)|^2 = \frac{2\pi\zeta}{1-e^{-2\pi\zeta}}\,, \qquad \zeta \equiv \frac{\alpha}{v_{\text{rel}}} = \frac{1}{2}\frac{M\alpha}{p}
$$

The Sommerfeld factor encodes the soft contribution to the scattering, whichsignificantly modifies the cross section for $v_{\sf rel} \lesssim \alpha.$

◦ Jengo JHEP ⁰⁵ (2009) 024, Cassel JPG ³⁷ (2010) ¹⁰⁵⁰⁰⁹

Bound state formation

We consider the process

 $(X\bar{X})_p \to \gamma + (X\bar{X})_n$

From the imaginary part of the ¹¹ self energy diagram

we get

$$
(\sigma_{\text{bsf}} v_{\text{rel}})(\boldsymbol{p}) \equiv \sum_{n} (\sigma_{\text{bsf}}^{n} v_{\text{rel}})(\boldsymbol{p}) = \frac{g^2}{3\pi} \sum_{n} \left[1 + n_{\text{B}}(\Delta E_{n}^{p})\right] |\langle n|\boldsymbol{r}|\boldsymbol{p}\rangle|^{2} (\Delta E_{n}^{p})^{3}
$$

where $\Delta E_n^p\equiv E_p-E_n$ and n_{B} is the Bose–Einstein distribution of the outgoing photon.

◦ von Harling Petraki JCAP ¹⁴¹² (2014) ⁰³³

Bound state dissociation

We consider the process

 $\gamma + (X\bar{X})_n \to (X\bar{X})_p$

From the imaginary part of the ¹¹ self energy diagram

we get

$$
\Gamma_{\text{bsd}}^n = \frac{g^2}{3\pi} \int \frac{d^3p}{(2\pi)^3} n_{\text{B}}(\Delta E_n^p) \left| \sum_{\ell} \langle n|\mathbf{r}|\mathbf{p}\ell \rangle \right|^2 (\Delta E_n^p)^3
$$

$$
= 2 \int_{|\mathbf{k}| \geq |E_n^b|} \frac{d^3k}{(2\pi)^3} n_{\text{B}}(|\mathbf{k}|) \sigma_{\text{ion}}^n(|\mathbf{k}|)
$$

◦ von Harling Petraki JCAP ¹⁴¹² (2014) ⁰³³

Dissociation by light scattering

Dissociation by light scattering is excluded from the adopted version of $\mathsf{QED}_{\mathsf{DM}}$ because there are no light degrees of freedom coupled to the dark photon:

In QED_{DM} with no light fermions only *a)* is possible. In other models *b)* and *c)* may compete or be more important than *a)* if $m_D \gtrsim M v^2$.

◦ Binder Blobel Harz Mukaida JHEP ⁰⁹ (2020) ⁰⁸⁶

Transitions

Bound-state transitions are ^given by the processes

$$
(X\bar{X})_n \leftrightarrow (X\bar{X})_{n'} + \gamma
$$

From the imaginary part of the ¹¹ self energy diagram

we get

$$
\Gamma_{\text{ex.}}^{1\text{S} \rightarrow 2\text{P}} = \frac{2^7}{3^7} \frac{M\alpha^5}{e^{\frac{3M\alpha^2}{16T}} - 1} \qquad \Gamma_{\text{de-ex.}}^{2\text{P} \rightarrow 1\text{S}} = \frac{2^7}{3^8} \frac{M\alpha^5}{1 - e^{-\frac{3M\alpha^2}{16T}}}
$$
\n
$$
\Gamma_{\text{ex.}}^{1\text{S} \rightarrow 3\text{P}} = \frac{1}{2^6} \frac{M\alpha^5}{e^{\frac{2M\alpha^2}{9T}} - 1} \qquad \Gamma_{\text{de-ex.}}^{3\text{P} \rightarrow 1\text{S}} = \frac{1}{3} \frac{1}{2^6} \frac{M\alpha^5}{1 - e^{-\frac{2M\alpha^2}{9T}}}
$$
\n...

Annihilation, bound-state formation and dissociation plots

◦ Biondini Brambilla Qerimi Vairo JHEP ⁰⁷ (2023) ⁰⁰⁶

Boltzmann equation

The time evolution equation of the dark matter number density can be described by the Boltzmann equation

$$
(\partial_t + 3H)n = -\frac{1}{2} \langle \sigma_{\text{eff}} v_{\text{rel}} \rangle (n^2 - n_{\text{eq}}^2)
$$

with the thermally averaged effective cross section defined as

$$
\left\langle \sigma_{\text{eff}} \, v_{\text{rel}}\right\rangle = \left\langle \sigma_{\text{ann}} v_{\text{rel}}\right\rangle + \sum_{n} \left\langle \sigma_{\text{bsf}}^{n} \, v_{\text{rel}}\right\rangle \frac{\Gamma_{\text{ann}}^{n}}{\Gamma_{\text{ann}}^{n}+\Gamma_{\text{bsd}}^{n}}
$$

At small temperatures, the bound-state to bound-state transitions become as large as or larger than the dissociation widths and further modify the effective cross section.

◦ Garny Heisig PRD ¹⁰⁵ (2022) ⁰⁵⁵⁰⁰⁴

Dark matter ^yield and parameter space

The yield is $Y=n/s$ with s the entropy density.

◦ Biondini Brambilla Qerimi Vairo JHEP ⁰⁷ (2023) ⁰⁰⁶

Conclusion I: from quarkonia to dark matter

Many results from quarkonium physics can be taken over/adapted to similar settings relevant for dark matter scenarios involving WIMPs and the freeze-out mechanism. Inthe simple framework of QED_{DM} , annihilation, bound-state formation and dissociation widths and cross sections correspond to the abelian limit of results derived for the quarkonium case.

More importantly the framework of non-relativistic EFTs provides ^a way to

- establish under which dynamical regime results are valid,
- systematically improve them in the regime of validity.

Conclusion II: when are results valid?

Results are valid as long as the hierarchy $M \gg M \alpha \gtrsim \sqrt{MT} \gg M \alpha^2$ which guarantees that the potential is Coulombic and the multipole expansion holds. $^2 \gtrsim T$ is fulfilled,

- \bullet In QED_{DM} with $\mathcal{L}_{\mathsf{portal}} = 0$ the condition $M \alpha^2$ thermal effects to the potential are $1/M$ suppressed due to the absence of n 2 \gtrsim T may be relaxed to $M \gg T$, as polarization corrections to the temporal photon propagator. The static potential is therefore a Coulomb potential also if just $M \gg T.$
- \bullet In dark sectors with asymptotic freedom $(\mathsf{QCD}\text{-like})$, in order to apply •weak-coupling expansions the coupling has to remain small from M to T . If the
terms with research learns this forces $\rho(2M)$ to be rather small. temperature range is large this forces $\alpha(2M)$ to be rather small. E.g. for $M/T = 10^5$, $\alpha(2M) \lesssim 0.04$ for 5 , $\alpha(2M) \lesssim 0.04$ for $\mathsf{SU}(3).$
- \bullet In dark sectors with asymptotic freedom (QCD-like), if $T\gtrsim M\alpha^2$ the static • potential gets thermal contributions carried by polarization corrections to the temporal ^gluon (present due to the self-interaction of the gauge bosons). $\mathsf{E}.\mathsf{g}.$ this is relevant for transitions between states with large principal quantum number $n.$ In a Coulombic system, the binding energy is proportional to $M\alpha^2/n^2$ rather than $M\alpha^2$. For some $n,$ $T > M\alpha^2/n^2$ and the Coulombic description of the state breaks down, as the potential gets thermal corrections that may be more important than the Coulomb part.

Conclusion III: how to improve results

Cross sections and decay widths are systematically improvable.

•They are improvable in the hard part.

 $\mathsf{E}.\mathsf{g}$. Including subleading corrections of order α^3 to the paradarkonium width and annihilation cross section requires including the orthodarkonium width andannihilation cross section in the effective cross section.

•They are improvable in the soft part.

E.g. Corrections in $1/M$ to the potential can be included order by order. They modify the wave functions starting from relative order α^2 $^2,~v_{\sf re}^2$ rel.

• Among higher order corrections are corrections due to the relative motion of the medium with respect to the center of mass of the $(X\bar{X})$ pair.

◦ Biondini Brambilla Qerimi Vairo arXiv:2402.12787

