

HOW MANY VECTOR STATES SIT IN THE ENERGY RANGE FROM 4.2 TO 4.35 GEV?

February 28, 2024 | Leon von Detten | IAS-4/IKP-3

QWG 2024

based on arXiv:2402.03057 in collaboration with Christoph Hanhart, Vadim Baru, Qian Wang, Daniel Winney and Qiang Zhao

Motivation

- $_{\circ}\,$ Why do mass and decay width scatter so much for different reactions?
- How big is the influence of the $D_1 \overline{D}$ threshold?
- Why Y(4320) only seen in $e^+e^- \rightarrow J/\psi\pi\pi$?

Simultaneous fit of almost all final states.

Hadronic Molecules

ψ**(4160)**

- \circ Narrow structure in $J/\psi \pi \pi$ incompatible with broad structure in $D\bar{D}^*\pi$
- $\circ~\mu^+\mu^-$ channel shows destructive interference
- \circ Values from RPP $m_{\Psi(4160)} = (4191\pm5) \text{ MeV}$ $\Gamma_{\Psi(4160)} = (70\pm10) \text{ MeV}$
- experimental Y(4230) extraction:
 - $D^0 D^{*-} \pi^+$: $\Gamma_Y = (77 \pm 6.3 \pm 6.8) \text{ MeV}$
 - J/ψπ⁺π⁻: Γ_Y=(41.8±2.9±2.7) MeV
 - $\mu^+\mu^-$: $\Gamma_Y = (47.2 \pm 22.8 \pm 10.5) \text{ MeV}$

 $D^0 D^{*-} \pi^+$

- Strong enhancement at $D_1 \overline{D}$ threshold, mainly driven by D_1 *D*-wave decay
- \circ $D_1
 ightarrow D^* \pi$ decay in S- and D-wave
- \circ Phase of contact terms fixed by $D^*\bar{D},\,J/\psi\pi$ rescattering into Z_c

Member of the Helmholtz Association

 $D^0 D^{*-} \pi^+$

 Molecular scenario predicts strong D₁ signal in D^{*}π invariant mass distribution

Member of the Helmholtz Association

 $J/\psi\pi^+\pi^-$

- + different box and triangle topologies
- \circ Asymmetry in total crosssection generated by $D_1\bar{D}$ intermediate state
- $\circ \, \pi \pi/\textit{KK}$ s-wave final state interaction approximate via coupled channel Omnés

Full FSI: Chen at al., PRD99(2019)7,074016 Danilkin et al., PRD 102(2020)1,016019

Member of the Helmholtz Association

February 28, 2024

 $h_c \pi^+ \pi^-$ and $J/\psi K^+ K^-$

• No contact term due to HQSS • Triangle requires $D_1 \overline{D}^*$ coupling

Full coupled channel analysis will include complete $\{D, D^*\} \otimes \{D_1, D_2\}$ multiplets with SU(3) flavor

 $\chi_{c0} \omega$, $J/\psi \eta$ and $X(3872)\gamma$

- Main contribution of *Y*(4230) from triangle loop
- \circ Destructive interference needed to create narrow structure in $\chi_{\rm c0}\omega$
- $\circ Y
 ightarrow X(3872)\gamma$ contact term subleading

Slide 7

exp. data BES III,PRD99(2019)9,091103 BES III,PRD102(2020)3,031101 BES III,PRL122(2019)23,232002

 $\mu^+\mu^-$

- Sensitive to one free real parameter and one phase
- Imaginary part of Mixing amplitude fixed by optical theorem
- Reproduce destructive interference between Y(4230) and $\Psi(4160)$ observed in data

Conclusion

Key Features: Y(4230) as $D_1 \overline{D}$ molecule and inclusion of ψ (4160)

Outlook:

Coupled channel analysis with complete $\{D,D^*\}\otimes\{D_1,D_2\}$ multiplets

Member of the Helmholtz Association

February 28, 2024

Y4230

$$G_Y = G_0 + G_0 g_{Y0} (2 \omega_Y \Sigma_{D_1 D}) g_{Y0} G_Y$$
 .

 $J^{PC} = 1^{--}$ isosinglet wavefunction

$$|Y(4230)(\mathcal{C}=-1, I=0)
angle = -rac{1}{2}\left(|D_{1}^{+}D^{-}
angle + |D^{+}D_{1}^{-}
angle + |D_{1}^{0}ar{D}_{0}^{0}
angle + |D^{0}ar{D}_{1}^{0}
angle
ight)$$

Lagrangian constructed by imposing invariance under heavy-quark spin and chiral symmetry

Lagrangian

Define superfiels for light-quark spin doublets:

$$\begin{split} H_{a}^{(Q)} &= \frac{1+\nu}{2} \left[D_{a}^{*\mu} \gamma_{\mu} - D_{a} \gamma_{5} \right] \\ T_{a}^{(Q)^{\mu}} &= \frac{1+\nu}{2} \left[D_{2a}^{\mu\nu} \gamma_{\nu} - \sqrt{\frac{3}{2}} D_{1a\nu} \gamma_{5} (g^{\mu\nu} - \frac{1}{3} \gamma^{\nu} (\gamma^{\mu} - \boldsymbol{v}^{\mu})) \right] \end{split}$$

Relevant terms for the interaction

$$\begin{split} \mathcal{L}_{\text{int}} &= g \langle H_b^{(Q)} \mathcal{A}_{ba} \gamma_5 \bar{H}_a^{(Q)} \rangle + k \langle T_b^{(Q)\mu} \mathcal{A}_{ba} \bar{T}_b^{(Q)} \rangle \\ &+ \frac{h_1}{\Lambda_{\chi}} \langle T_b^{(Q)\mu} (D_{\mu} \mathcal{A})_{ba} \gamma_5 \bar{H}_a^{(Q)} \rangle + \frac{h_2}{\Lambda_{\chi}} \langle T_b^{(Q)\mu} (D \mathcal{A}_{\mu})_{ba} \gamma_5 \bar{H}_a^{(Q)} \rangle \\ &+ g \langle \bar{H}_a^{(\bar{Q})} \mathcal{A}_{ab} \gamma_5 H_b^{(\bar{Q})} \rangle + k \langle \bar{T}_a^{(\bar{Q})\mu} \mathcal{A}_{ab} T_b^{(\bar{Q})} \rangle \\ &+ \frac{h_1}{\Lambda_{\chi}} \langle \bar{T}_a^{(\bar{Q})\mu} (\mathcal{A} \overleftarrow{D}_{\mu})_{ab} \gamma_5 H_b^{(\bar{Q})} \rangle + \frac{h_2}{\Lambda_{\chi}} \langle \bar{T}_a^{(\bar{Q})\mu} (\mathcal{A}_{\mu} \overleftarrow{D})_{ab} \gamma_5 H_b^{(\bar{Q})} \rangle + \text{h.c.} \end{split}$$

Member of the Helmholtz Association

Forschungszentrum

Parameters

-		Name		Value		Name		Value
-	Y	m _Y		(4227 ± 0.4) MeV	$J/\psi \pi^+\pi^-$	$\alpha_{1}^{(2)}$	_	(133.9 ± 4)
		g_{Y0}	—	$(10.4\pm0.2)~\text{GeV}$		g_1	_	$(14.9 \pm 0.9) 10^{-3}$
		Γ_{in}^{Y}		(54 ± 1) MeV		g_8		$(24 \pm 1) 10^{-3}$
		$1/f_Y$	—	(0.012 ± 0.001)		h_1	_	$(16.8 \pm 2.4) 10^{-3}$
		$\delta_{Y\gamma}$		$(17.1 \pm 0.1)^{o}$		h ₈		$(15 \pm 0.7) 10^{-3}$
	ψ	$1/f_{\psi}$	-	(0.023 ± 0.003)		$\beta_1^{(2)}$		(0 ± 0.1)
		$\delta_{\psi\gamma}$		$(67 \pm 2)^{o}$		c_{α}^{Δ}	_	$(0.381 \pm 0.1) \text{ GeV}^2$
	Z_c	m _Z		$(3884 \pm 1) \text{ MeV}$		$f_{I/ab}$		456 MeV
		g_{Z0}		$(4.15 \pm 0.06) \text{ GeV}$	YoOW	C ^Δ		(1.469 + 0.015) GeV ²
-		Γ_{in}^2		(48 ± 1) MeV	7000	$C^{Y_{c0}\omega}$		$(0.36 \pm 0.07) 10^{-3}$
	$D\bar{D}^*\pi$	$\alpha_{1}^{(1)}$	_	(128 ± 12)		C^{ψ}	_	$(16 \pm 0.5) 10^{-3}$
		$\alpha_2^{(1)}$	_	$(3.95\pm0.01)~\text{GeV}$.1/1/2020	CY		$(67.3 \pm 3.4) 10^{-3} \text{ GeV}^{-1}$
		$\beta_1^{(1)}$	_	(202 ± 18)	U / <i>\\$</i> /	$\mathcal{O}_{J/\psi\eta}$		$(208 \pm 11) 10^{-3} C_{2} V^{-1}$
		₍₁₎	_	(3.89 ± 0.1) GeV		$c_{j/\psi\eta}$		(298 ± 11) 10 ° GeV
		P2		(0.00 ± 0.1) 00 V	$X\gamma$	$c_{X\gamma}^{\gamma}$		$(0.71 \pm 0.15) \text{ GeV}^2$
* ψ	(4160)	mass m	4191 MeV and width		$c_{X\gamma}^{\psi}$		$(0.017 \pm 0.003) \text{ GeV}$	
г ⁷	70 M	a)/ fived	חחח	$\mu^{+}\mu^{-}$	Cmix		(0.6 ± 0.01)	
1/2	= 70 IVI		nom	nrr				

*

$\pi\pi - K\bar{K}$ final state interaction

$$\mathsf{disc}\mathcal{M}'_{j}(s) = 2i\sum_{k} T^{*}_{jk}(s)\sigma_{k}(s)\mathcal{M}'_{k}(s)$$

Solution given by Muskhelishvili Omn'es function

Full amplitude expressed by:

$$\mathcal{M}_{j}^{\text{full}}(\boldsymbol{s}) = \mathcal{M}_{j} + \Gamma_{j} = \mathcal{M}_{j} + \sum_{k} \Omega_{jk} \left[(\mathcal{P}_{n-1})_{k} + \sum_{lm} \frac{\boldsymbol{s}^{n}}{\pi} \int \frac{\boldsymbol{z}}{\boldsymbol{z}^{n}} \frac{\Omega_{kl}^{-1}(\boldsymbol{z}) \mathcal{T}_{lm}(\boldsymbol{z}) \sigma_{m}(\boldsymbol{s}) \mathcal{M}_{m}^{0}(\boldsymbol{z})}{\boldsymbol{z} - \boldsymbol{s}} \right]$$
$$= \left[\mathcal{M}_{j}^{l>0} + \mathcal{M}_{j}^{0} \right] + \sum_{k} \left[\Omega_{jk} \left((\mathcal{P}_{n-1})_{k} + \frac{\boldsymbol{s}^{n}}{\pi} \text{ P.V. } \int [...] \right) + i \mathcal{T}_{jk} \sigma_{k} \mathcal{M}_{k}^{0} \right]$$

Modified S-wave approximately given by $(\mathcal{M}_{j}^{0})_{\text{mod}} = \mathcal{M}_{j}^{0} + \sum_{k} \Omega_{jk} (\mathcal{P}_{n-1})_{k} + \left(iT_{jk}\sigma_{k} + \frac{1}{\pi}\ln\left(\frac{1}{s/s_{\text{th}} - 1}\right)T_{jk}\sigma_{k}\right)\mathcal{M}_{k}^{0}$ $(\mathcal{M}_{j})_{\text{mod}} = \mathcal{M}_{i}^{l>0} + (\mathcal{M}_{i}^{0})_{\text{mod}}$

Production with coupled channel FSI

