

New Hadronic Decays from LHCb

Mikhail Mikhasenko Ruhr University Bochum

On behalf of Kick collaboration

IISER Mohali

Content

Measurement of the ratio of branching fractions $B(B_c^+ \rightarrow B_s^0 \pi^+) / B(B_c^+ \rightarrow J/\psi \pi^+)$ [2210.12000]

Search for prompt production of pentaquarks in open charm hadron final states [in preparation]

Observation of the $B_s^0 \to \chi_{c1}(3872) \pi^+ \pi^-$ decay [2302.10629]

Observation of the $B^+ \rightarrow J/\psi \eta' K^+$ decay [2303.09443]

[detector, performance, event display]

The LHCb experiment

B_c^+ decays

Misha Mikhasenko "New hadronic decays"

RUB

[LHCb, JHEP 07 (2023) 066]

- \circ *c* quark decays: $\rightarrow B_s^0 \pi^+$
 - $B_s^0 \to D_s^- \pi^+$ (bottom right)
 - $B_s^0 \to J/\psi \phi$ (bottom left)

Which heavy quark decays first

Standard weak decay, muon lifetime

• $\Gamma_{\mu \to e \overline{\nu} \nu} \sim m_{\mu}^5$ (where m_{μ}^3 matrix element, m_{μ}^2 phase space)

For quarks, $m_b^3 \gg m_c^3$. So, does *b* decay shortly? – no

$V_{bc}^2 \sim 10^{-3}$ makes b-quark long-lived

[LHCb, JHEP 07 (2023) 066]

More on B_c^+

[LHCb-PAPER-2023-039] [LHCb-PAPER-2023-046]

RUB

Pentaquarks

Rock garden, Chandigarh

Pentaquarks $P_{c\bar{c}}^+$ in $\Lambda_b^0 \to K^-(p J/\psi)$

Near threshold $\Sigma_c^{(*)+}\overline{D}^{(*)0} / \Sigma_c^{(*)++} D^{(*)-}$

Multiplicity matches threshold-states spin algebra

No observation in other final states so far

[naming scheme for hadrons, PDG2023]

New search of Pentaquarks in open-flavor decays

[LHCb-PAPER-2023-018, in preparation] 50 F Candidates / (1 MeV/ c^2) preliminary Pentaguark states seen in $J/\psi p$ π^+ K^{-} LHCb 40must leave traces in (c) $5.7\,{\rm fb}^{-1}$ 30 Λ_{c}^{+} (*)0 D^0 20 $\Sigma_{c}^{(*)0} D^{(*)0}$ 10 р р $\Lambda_c^+ D^{(*)-}$ 250 Ĭ50 200 [courtesy G. Robertson (LHCb)] $\Lambda_c^+ \overline{D}^{(*)0}$ $m(\Lambda_c^+\pi^+) - m(pK^-\pi^+)$ [MeV/c²] $\Sigma_c^{++} \bar{D}^0$ $\Sigma_c^{++}D^{-}$ $\Sigma_c^0 \bar{D}^0$ $\Sigma_c^0 D^ \Sigma^0_C D^*$ New search in prompt production is performed in many systems of $\Sigma_c^{*++} \overline{D}^0$ $\Sigma_c^{*++}D^ \Sigma_c^{*++}$ Σ_c^* $\Sigma_c^{*++}D^{*-}$ D^0 D^+ $\Sigma_c^{*0} \bar{D}^0$ $\Sigma_c^{*0} D^0$ $\Sigma_c^{*0} D^ \Sigma_c^{*0} D^+$ $\Sigma_{c}^{*0}D^{*-}$ $\Lambda_c^+ \overline{D} \pi^\pm$ $\Lambda_c^+ \bar{D}^0$ $\Lambda_c^+ D^0$ $\Lambda_c^+ D^ \Lambda_c^+ D^+$ $\Lambda_c^+ D^{*-}$ $\Lambda_c^+ \bar{D}^0 \pi^+$ $\Lambda_c^+ D^0 \pi^+$ $\Lambda_c^+ D^- \pi^+$ $\Lambda_c^+ D^+ \pi^+$ $\Lambda_c^+ D^{*-} \pi^+$ $\Lambda_c^+ D^{*+} \pi^+$ $\Lambda_c^+ \bar{D}^0 \pi^ \Lambda_c^+ D^0 \pi^ \Lambda_c^+ D^- \pi^ \Lambda_c^+ D^+ \pi^ \Lambda_c^+ D^{*-} \pi^ \Lambda_c^+ D^{*+} \pi^$ combinations

[X] : too small statistics for limit setting

RUB

[LHCb-PAPER-2023-018, in preparation]

Search for pentaquarks: $\Sigma_c \overline{D}^{(*)}$

Statistically limited

Search for pentaquarks: $\Lambda_c^+ \overline{D}$

Candidates / (10 MeV/c²) 250 150 [Meng-Lin Du et al.] 100 F $40 [\Lambda_b \to K \Lambda_c \bar{D}^{(*)}]$ LHCb Candidates / (10 MeV/c²) 50 F $5.7\,{\rm fb}^{-1}$ 40 preliminary 30 0 35 400 600 í٥ $m(\Lambda_c^+\overline{D}^0) - m(\Lambda_c^+) - m(\overline{D}^0) [MeV/c^2]$ 30 $\Lambda_c \bar{D}^{\circ}$ 20 25 20 Candidates / (10 MeV/ c^2) 10 15 10 LHCb $\Lambda_c D$ $5.7\,{ m fb}^{-1}$ 0 preliminary 120 4300 4350 4400 4450 4500 4550 4600 100 $-m(\Lambda_c^+) - m(D^*)[MeV/c^2]$ $\frac{200}{m(\Lambda_c^+D^-)}$ $M_{\Lambda_c D^{(*)}}$ [MeV] 80 60 F LHCb 40 E $5.7\,{\rm fb}^{-1}$ 20Ē preliminary 0 400 600 200 $m(\Lambda_c^+D^-) - m(\Lambda_a^+) - m(D^-) [MeV/c^2]$

No obvious peaks

[LHCb-PAPER-2023-018, in preparation]

[LHCb-PAPER-2023-018, in preparation]

Search for pentaquarks: $\Lambda_c^+ \overline{D} \pi$

Some peaking structures that might become pentaquarks with more statistics

[LHCb-PAPER-2023-034]

$\Lambda_c^+ D^0$ in *b*-decays

$J/\psi \eta'$

Studies of charmonium in $(J/\psi \eta)$

Charmonium states $\psi(4040)$, $\psi(4160)$, $\psi(4360)$, observed in $(J/\psi \eta)$ decays by Belle and BESIII

No evidence for $\psi(4260), \psi(4415), \psi(4430)$

First look by LHCb

First observation of the decay mode!

$$\frac{\mathcal{B}(B^+ \to J/\psi \eta' K^+)}{\mathcal{B}(B^+ \to \psi(2S)K^+)} = (4.91 \pm 0.47 \pm 0.29 \pm 0.07) \times 10^{-2},$$

[LHCb 2023, JHEP 08 (2023) 174]

Projections $B^+ \rightarrow J/\psi \eta' K^+$

No significant contributions from charmonium or charmonium-like resonances.

Dominated by K* resonances

$B_s^0 \to \chi_{c1}(3872) \pi^+ \pi^-$

Rock garden, Chandigarh

$\chi_{c1}(3872)$ in B decays

Puzzle with isospin ratio $B^0 \rightarrow \chi_{c1}(3872)K^0$ $B^+ \rightarrow \chi_{c1}(3872)K^+$

$\frac{\mathcal{B}(B_{s}^{0} \to X(3872)\phi)}{\mathcal{B}(B^{0} \to X(3872)K^{0})} \stackrel{\chi_{c1} \to J/\psi \pi^{+}\pi^{-}}{= 0.96 \pm} 0.31 \quad \text{Using} [\underline{\mathsf{CMS}}_{2021}] + [\underline{\mathsf{PDG}}]$ $\frac{\mathcal{B}(B_{s}^{0} \to X(3872)\phi)}{\mathcal{B}(B^{+} \to X(3872)K^{+})} \stackrel{\chi_{c1} \to J/\psi \pi^{+}\pi^{-}}{= 0.482 \pm} 0.063 \text{ (stat)} \pm 0.037 \text{ (syst)} \pm 0.070 \text{ (}\mathcal{B}\text{)}. \quad [\underline{\mathsf{CMS}}_{2021}]$ $\frac{\mathcal{B}(B^{0} \to K^{0}X(3872))}{\mathcal{B}(B^{+} \to K^{+}X(3872))} \stackrel{\chi_{c1} \to J/\psi \pi^{+}\pi^{-}}{= 0.50 \pm} 0.14 \text{ (stat)} \pm 0.04 \text{ (syst)} \quad [\underline{\mathsf{Belle}}_{2011}]$ $\frac{\mathcal{B}(B^{0} \to X(3872)K^{0})}{\mathcal{B}(B^{+} \to X(3872)K^{+})} \stackrel{\chi_{c1} \to \overline{\mathcal{D}}^{0}\mathcal{D}^{0}}{= 1.34^{+0.47}_{-0.40}(\mathrm{stat})^{+0.10}_{-0.12}(\mathrm{syst}), \quad [\underline{\mathsf{Belle}}_{2023}]$

To understand better the production, $B_s^0 \rightarrow \chi_{c1}(3872) (K^+K^-)_{\phi}$

we look at the $\chi_{c1}(3872)$ production current with $\pi^+\pi^ B_s^0 \rightarrow \chi_{c1}(3872) \pi^+\pi^-$

 $B_{s}^{0} \rightarrow \chi_{c1}(3872)\pi^{+}\pi^{-}$

- First observation
- $\chi_{c1}(3872) \rightarrow J/\psi \ \pi^+\pi^-$ is considered
- $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$ is a reference

$$\frac{B(B_s^0 \to \chi_{c1}(3872)\pi^+\pi^-) \times B(\chi_{c1}(3872) \to J/\psi \pi^+\pi^-)}{B(B_s^0 \to \psi(2S)\pi^+\pi^-) \times B(\psi(2S) \to J/\psi \pi^+\pi^-)} = 6.8 \pm 1.1 \pm 0.2 \%$$

$$\frac{B(B_s^0 \to \chi_{c1}(3872)\varphi) \times B(\psi(2S) \to J/\psi \pi^+\pi^-)}{B(B_s^0 \to \psi(2S)\varphi) \times B(\psi(2S) \to J/\psi \pi^+\pi^-)} = 2.21 \pm 0.29 \pm 0.17 \%$$
[CMS 2021]

[LHCb-PAPER-2023-015]

 $B_s^0 \to \chi_{c1}(3872)\pi^+\pi^-$

sss **drives the production current**

The spectrum is consistent with strange-dominated f_0 resonances

Ramping up with Run-III

Vertex detector is successfully reinstalled Downstream tracker is replaced No calorimeter trigger (L0)

Schedule:

- 6 March: cavern closed
- 11 March: first circulating beam
- 3 April: first stable beams
- 12-25 April: intensity ramp up
- 25 April: start luminosity production
 Goal: 120 days (2024) + 140 days (2025)

LHCb pixel Velo

[W. Altmannshofer, F. Archilli, 2206.11331]

Future runs of LHCb

Conclusion. Quiz

• Which quark in B_c^+ decays faster?

• $B_s^0 \rightarrow J/\psi \ 4\pi$ which charmonium dominates $J/\psi \ \pi^+\pi^-$ spectrum?

• Give an order of magnitude $(10^{-2}, 10^{-3}, 10^{-4})$

 $\frac{\mathcal{B}(B^+ \to J/\psi \eta' K^+)}{\mathcal{B}(B^+ \to \psi(2S)K^+)}$

