

Decays of 1⁻⁺ Charmoniumlike Hybrid

Chunjiang Shi

IHEP, CAS

Collaborate with Ying Chen, Ming Gong, Xiangyu Jiang, Zhaofeng Liu, Wei Sun.

March 1st. 2024, QWG 24 @ IISER Mohali, India

Based on: arXiv:hep-lat/2306.12884

中國科學院為能物現湖完施 Institute of High Energy Physics Chinese Academy of Sciences

<u>Outline</u>

Motivation
Lattice methodology
Lattice results
Experimental prediction
Summary

Introduction

1. Exotic hadrons:

tetraquark / pentaquark states and hadronic molecule.

Glueball

 \succ hybrids ($q\overline{q}g$).

2. Experimental candidates for hybrids

```
Isovector 1<sup>-+</sup>states:
```

- $\succ \pi_1(1400) / \pi_1(1600), \Gamma_{tot} \sim 240 MeV$
- > $\pi_1(2105)$
- > Isoscalar 1^{-+} states: $\eta_1(1855)$.

 \succ charmoniumlike 1^{-+} counterpart $\eta_{c1}(c\overline{c}g)$ of $\eta_1(1855)$. Exists?

3. Insights of the masses of hybrids predicted by Lattice QCD

$$\begin{array}{l} & \qquad m_{\pi_1} \sim 1.8 - 2.0 \ GeV, \qquad m_{\eta_1} \sim 2.0 - 2.3 \ GeV, \\ & \qquad m_{\eta_{c1}} \sim 4.2 - 4.4 \ GeV. \end{array}$$

Spectrum of charmoniumlike 1^{-+}

- Super-multiplet ((0, 1, 2)⁻⁺, 1⁻⁻) observed around 4.2 GeV
- Consistent with the phenomenological expectation.
- Non-consistence appears in the spectrum of excited states Flux-tube: $\Delta m(2P 1P) \sim 0.38 \text{ GeV}$ QLQCD: $\Delta m(2P - 1P) \sim 1.2 - 1.3 \text{ GeV}$
- The internal stucture of these hybrids reflected by the BS wave functions seems different from the flux-tube picture.

E. Braaten et al., Phys. Rev. D 90 (2014) 014044

L. Liu [HSC Collab.], JHEP 07 (2012) 126

#node	$m(1^{})$	$m(0^{-+})$	$m(1^{-+})$	$m(2^{-+})$
	(GeV)	(GeV)	(GeV)	(GeV)
0	3.109(5)	3.010(4)	-	-
0	3.703(82)	3.672(76)	-	-
0	4.591(69)	4.551(63)	4.309(2)	4.419(3)
1	5.460(31)	5.393(28)	5.693(12)	5.779(12)
2	8.226(99)	8.286(109)	7.661(31)	7.708(29)

Y. Ma et al., Chin. Phys. C 45 (2021) 093111

Lattice methodology: M&M method (C. McNeile & C. Michael, PLB 556 (2003) 177)

Phys. Rev. D 93 (2016) 114515

- A vibrational string along the $Q\overline{Q}$ axis.
- The picture is originated from the lattice QCD formulation.

Flux tube model

 $H = -\frac{1}{2\mu}\frac{\partial^2}{\partial r^2} + \frac{L(L+1) - \Lambda^2}{2\mu r^2} + E^1(r)$ $E^1(r) = -\frac{4\alpha_s}{3r} + c + br + \frac{\pi}{r}\left(1 - e^{-fb^{1/2}r}\right)$

TABLE I. Some low-lying meson hybrids.

		, , ,			
Flavor	IPC or IP	Mass (GeV)	$\frac{dm}{df}$	Δm^{a}	m ^b
1 10/01	J 01 J	$101 \ f = 1$	(Gev)	(Gev)	(Gev)
I=1	$2^{\pm\mp}, 1^{\pm\mp}, 0^{\pm\mp}, 1^{\pm\pm}$	1.67	0.08	0.19	~1.9
$I = \frac{1}{2}$	$2^{\pm}, 1^{\pm}, 0^{\pm}, 1^{\pm}$	1.80	0.10	0.17	~2.0
$I=0 \left \frac{u\overline{u} + d\overline{d}}{\sqrt{2}} \right $	$2^{\pm\mp}, 1^{\pm\mp}, 0^{\pm\mp}, 1^{\pm\pm}$	1.67	0.08	0.19	~1.9
$I=0$ $(s\bar{s})$	$2^{\pm\mp}, 1^{\pm\mp}, 0^{\pm\mp}, 1^{\pm\pm}$	1.91	0.12	0.14	~2.1
cī	$2^{\pm\mp}, 1^{\pm\mp}, 0^{\pm\mp}, 1^{\pm\pm}$	4.19	0.18	0.06	~4.3
$b\overline{b}$	$2^{\pm\mp}, 1^{\pm\mp}, 0^{\pm\mp}, 1^{\pm\pm}$	10.79	0.28	0.02	~10.8

^aContribution to the mass from nonadiabatic effects, taken from Ref. 14. ^bA "best guess" based on the previous columns.

Isgur & Paton, Phys. Rev. D 31 (1985) 2910

K. Juge et al., Phys. Rev. Lett. 82, 4400 (1999)

<u>Hybrid in the Flux tube model</u>

2) Modes of two identical mesons are prohibited.

Open-charm and closed-charm decay modes

1) SP modes : $D_1\overline{D}$, $\chi_{c1}\eta(\eta')$

2) SS modes : $D^*\overline{D}$, $D^*\overline{D}^*$, $\eta_c\eta(\eta')$, $J/\psi\omega(\phi)$

Lattice setup

- Tadpole improved Symanzik's gauge action (C. Morningstar, PRD60(1999)034509)
- Anisotropic Lattice

•	$N_f =$	= 2 clover	gau	uge ensen	nbles v	with dege	nera	te u,
	IE	$N_s^3 \times N_t$	β	$a_t^{-1}({\rm GeV})$	ξ	$m_{\pi}({ m MeV})$	N_V	$N_{ m cfg}$
	L16	$16^3\times128$	2.0	6.894(51)	~ 5.3	~ 350	70	708
	L24	$24^3 \times 192$	2.0	6.894(51)	~ 5.3	~ 350	160	171

See: Jiang et al, Phys.Rev.D 107 (2023) 094510

• Distillation method:

(M.Peardon et al.(HSC.)(2009)PRD80,054506)

• disconnected diagrams are involved

η_{c1} decay modes

open-charm decay: $D\bar{D}_1(S$ -wave), $D\bar{D}^*(P$ -wave), $D^*\bar{D}^*(P$ -wave). close-charm decay: $\chi_{c1}\eta(S$ -wave), $\eta_c\eta'(P$ -wave), $J/\psi\omega(P$ -wave).

• The flavor wave functions of the open-charm modes

$$|D\bar{D}'\rangle_{(C=+)}^{(I=0)} = \frac{1}{2} (|D^+D'^-\rangle + |D^0\bar{D}'^0\rangle) \pm \frac{1}{2} (|D^-D'^+\rangle + |\bar{D}^0D'^0\rangle) \qquad \qquad D' = D^*, D_1, \\ "+" \text{ for } D\bar{D}^* \\ "-" \text{ for } D\bar{D}_1 \\ |D^*\bar{D}^*\rangle_{(C=+)}^{(I=0)} = \frac{1}{\sqrt{2}} (|D^{*+}D^{*-}\rangle + |D^{0*}\bar{D}^{0*}\rangle)_{(L=1)}^{(S=1)} \qquad \qquad L+S = \text{ even}$$

Decay amplitudes in M&M method

Effective Lagrangian:

$$egin{aligned} \mathcal{L}^{ ext{cc}}_{ ext{I}} &\sim & -g_{\chi\eta} m_{\eta_{c1}} H_{\mu} A^{\mu} \eta - i g_{\eta_{c}\eta} H_{\mu} \eta_{c} \overleftrightarrow{\partial}^{\mu} \eta \ & + i H_{\mu} \left(g \psi_{
u} \partial^{
u} \omega^{\mu} + g' \omega_{
u} \partial^{
u} \psi^{\mu} + g_{0} \psi_{
u} \overleftrightarrow{\partial}^{\mu} \omega^{
u}
ight), \end{aligned}$$

$$egin{split} \mathcal{L}_{\mathrm{I}}^{\mathrm{oc}} &\sim g_{D_1D} m_{\eta_{c1}} H_\mu rac{1}{2} \left(D_1^{\mu,\dagger} D + D^\dagger D_1^\mu
ight) \ &+ g_{D^*ar{D}^*} H^\mu rac{i}{\sqrt{2}} \left(D^{
u,\dagger} \partial_
u D_\mu + \partial_
u D_\mu^\dagger D^
u
ight) \ &+ rac{g_{D^*ar{D}}}{m_{\eta_{c1}}} \epsilon^{\mu
u
ho\sigma} (\partial_\mu H_
u) rac{1}{2} \left[(\partial_
ho D_\sigma^\dagger) D - D^\dagger (\partial_
ho D_\sigma)
ight]. \end{split}$$

Lattice results

$$\begin{split} \mathcal{C}_{\eta_{c1},AB}(t) &= \langle \Omega | \mathcal{O}_{AB}(t) \mathcal{O}_{\eta_{c1}}^+(0) | \Omega \rangle \\ &= \langle \Omega | \mathcal{O}_{AB}(0) e^{-t \, a \widehat{H}} \mathcal{O}_{\eta_{c1}}^+(0) | \Omega \rangle \\ &\to -axt \, e^{-t \, a \overline{E}} \langle \Omega | \mathcal{O}_{AB} | AB \rangle \, \big\langle \eta_{c1} \big| \mathcal{O}_{\eta_{c1}}^+ \big| \Omega \big\rangle \end{split}$$

transition amplitude

 $\frac{\mathcal{C}_{\eta_{c1},AB}(t)}{\sqrt{\mathcal{C}_{\eta_{c1}}(t)\mathcal{C}_A(t)\mathcal{C}_B(t)}} \to -(ax) t \left(1 + \frac{1}{24} (a\Delta t)^2\right)$

Numerical results

$\begin{array}{c} \text{Mode} \\ (AB) \end{array}$	$\hat{k}(\mathrm{IE})$	$ \overset{r_1}{(\times 10^{-3})} $	g_{AB}	g_{AB} (ave.)	$\frac{\Gamma_{AB}}{(\text{MeV})}$
$D_1 ar{D}$	(0, 0, 0)(L16) (0, 0, 0)(L24)	4.95(5) 3.10(26)	$\begin{array}{c} 4.27(5) \\ 4.92(41) \end{array}$	4.6(6)	258(133)
$D^*\bar{D}$	(1, 1, 1)(L16) (2, 2, 0)(L24)	$1.11(3) \\ 0.78(7)$	8.35(21) 8.34(74)	8.3(7)	88(18)
$D^* \bar{D}^*$	$\begin{array}{c} (1,1,1)(L16) \\ (1,1,0)(L16) \\ (2,0,0)(L24) \\ (1,1,1)(L24) \end{array}$	$1.00(3) \\ 1.15(4) \\ 1.05(9) \\ 0.67(7)$	$\begin{array}{c} 3.44(12) \\ 3.79(12) \\ 5.06(42) \\ 6.31(58) \end{array}$	4.6(1.8)	150(118)
$\chi_{c1}\eta_{(2)}$	(0, 0, 0)(L16) (0, 0, 0)(L24)	2.04(26) 1.18(38)	$\begin{array}{c} 1.31(2) \\ 1.39(45) \end{array}$	1.35(45)	_
$\eta_c\eta_{(2)}$	(1, 1, 1)(L16) (2, 2, 0)(L24)	$0.20(6) \\ 0.10(3)$	$\begin{array}{c} 0.62(18) \\ 0.47(12) \end{array}$	0.55(22)	_

$$\begin{split} \overline{|\mathcal{M}(\eta_{c1} \to AP)|^2} &= \frac{1}{3} g_{AP}^2 m_{\eta_{c1}} (3 + \frac{k_{\text{ex}}^2}{m_A^2}), \\ \overline{|\mathcal{M}(\eta_{c1} \to PP)|^2} &= \frac{4}{3} g_{PP}^2 k_{\text{ex}}^2, \\ \overline{|\mathcal{M}(\eta_{c1} \to VP)|^2} &= \frac{2}{3} g_{VP}^2 k_{\text{ex}}^2, \\ \overline{|\mathcal{M}(\eta_{c1} \to D^* \bar{D}^*)|^2} &= \frac{4}{3} g^2 k_{\text{ex}}^2 \frac{m_{\eta_{c1}}^2}{m_{D^*}^2}. \end{split}$$
$$\begin{aligned} \mathbf{\Gamma}_{AB} &= \frac{1}{8\pi} \frac{k_{\text{ex}}}{m_{\eta_{c1}}^2} \ \overline{|\mathcal{M}(\eta_{c1} \to AB)|^2} \end{split}$$

- $D_1 \overline{D}$ dominates.
- $D^*\overline{D}$ and $D^*\overline{D}^*$ are important.

This observation is in striking contrast to the expectation of the flux-tube model.

Numerical results

$\begin{array}{c} \text{Mode} \\ (AB) \end{array}$	$\hat{k}(\mathrm{IE})$	$r_1 \ (\times 10^{-3})$	g_{AB}	g_{AB} (ave.)	$\frac{\Gamma_{AB}}{(\text{MeV})}$
$D_1 ar{D}$	(0, 0, 0)(L16) (0, 0, 0)(L24)	4.95(5) 3.10(26)	$\begin{array}{c} 4.27(5) \\ 4.92(41) \end{array}$	4.6(6)	258(133)
$D^*\bar{D}$	(1, 1, 1)(L16) (2, 2, 0)(L24)	$1.11(3) \\ 0.78(7)$	$\begin{array}{c} 8.35(21) \\ 8.34(74) \end{array}$	8.3(7)	88(18)
$D^* \bar{D}^*$	$\begin{array}{c} (1,1,1)(L16) \\ (1,1,0)(L16) \\ (2,0,0)(L24) \\ (1,1,1)(L24) \end{array}$	$\begin{array}{c} 1.00(3) \\ 1.15(4) \\ 1.05(9) \\ 0.67(7) \end{array}$	$\begin{array}{c} 3.44(12) \\ 3.79(12) \\ 5.06(42) \\ 6.31(58) \end{array}$	4.6(1.8)	150(118)
$\chi_{c1}\eta_{(2)}$	(0, 0, 0)(L16) (0, 0, 0)(L24)	2.04(26) 1.18(38)	$\begin{array}{c} 1.31(2) \\ 1.39(45) \end{array}$	1.35(45)	-
$\eta_c \eta_{(2)}$	(1, 1, 1)(L16) (2, 2, 0)(L24)	$0.20(6) \\ 0.10(3)$	$\begin{array}{c} 0.62(18) \\ 0.47(12) \end{array}$	0.55(22)	_

Due to $m_{\eta_{c1}} = 4.329(36)$ GeV from our lattice

$$\begin{aligned} \overline{|\mathcal{M}(\eta_{c1} \to AP)|^2} &= \frac{1}{3} g_{AP}^2 m_{\eta_{c1}} (3 + \frac{k_{\text{ex}}^2}{m_A^2}), \\ \overline{|\mathcal{M}(\eta_{c1} \to PP)|^2} &= \frac{4}{3} g_{PP}^2 k_{\text{ex}}^2, \\ \overline{|\mathcal{M}(\eta_{c1} \to VP)|^2} &= \frac{2}{3} g_{VP}^2 k_{\text{ex}}^2, \\ \overline{|\mathcal{M}(\eta_{c1} \to D^* \bar{D}^*)|^2} &= \frac{4}{3} g^2 k_{\text{ex}}^2 \frac{m_{\eta_{c1}}^2}{m_{D^*}^2}. \end{aligned}$$
$$\begin{aligned} \mathbf{\Gamma}_{AB} &= \frac{1}{8\pi} \frac{k_{\text{ex}}}{m_{\eta_{c1}}^2} \ \overline{|\mathcal{M}(\eta_{c1} \to AB)|^2} \end{aligned}$$

- $D_1 \overline{D}$ dominates.
- $D^*\overline{D}$ and $D^*\overline{D}^*$ are important.

This observation is in striking contrast to the expectation of the flux-tube model.

Results v.s. Flux-tube model

$\begin{array}{c} \text{Mode} \\ (AB) \end{array}$	$\hat{k}(\mathrm{IE})$	$ \overset{r_1}{(\times 10^{-3})} $	g_{AB}	g_{AB} (ave.)	$\frac{\Gamma_{AB}}{(\text{MeV})}$
$D_1 \bar{D}$	(0, 0, 0)(L16) (0, 0, 0)(L24)	4.95(5) 3.10(26)	$\begin{array}{c} 4.27(5) \\ 4.92(41) \end{array}$	4.6(6)	258(133)
$D^*\bar{D}$	(1, 1, 1)(L16) (2, 2, 0)(L24)	$1.11(3) \\ 0.78(7)$	8.35(21) 8.34(74)	8.3(7)	88(18)
$D^* \bar{D}^*$	$\begin{array}{c} (1,1,1)(L16) \\ (1,1,0)(L16) \\ (2,0,0)(L24) \\ (1,1,1)(L24) \end{array}$	$\begin{array}{c} 1.00(3) \\ 1.15(4) \\ 1.05(9) \\ 0.67(7) \end{array}$	$\begin{array}{c} 3.44(12) \\ 3.79(12) \\ 5.06(42) \\ 6.31(58) \end{array}$	4.6(1.8)	150(118)
$\chi_{c1}\eta_{(2)}$	(0, 0, 0)(L16) (0, 0, 0)(L24)	2.04(26) 1.18(38)	$\begin{array}{c} 1.31(2) \\ 1.39(45) \end{array}$	1.35(45)	_
$\eta_c\eta_{(2)}$	(1, 1, 1)(L16) (2, 2, 0)(L24)	$0.20(6) \\ 0.10(3)$	$\begin{array}{c} 0.62(18) \\ 0.47(12) \end{array}$	0.55(22)	_
			l	 	

(Isgur& Paton 1985)

Flux tube model: light Isoscalar hybrid width ~150MeV

 $c\bar{c}$ Isoscalar hybrid width ~30MeV

1-+	D^*D	Р	.5	.1
	$D^{**}(2^+)D$	D	_	.5
	$D^{**}(1_L^+)D$	\mathbf{S}	_	1.2
		D	_	2.5
	$D^{**}(1_{H}^{+})D$	\mathbf{S}	_	25
		D	_	0
	Γ		.5	29

This observation is in striking contrast to the expectation of the flux-tube model.

Conclusion

The $m_{\eta_{c1}}$ -dependence of partial decay widths $|D^*\overline{D}^*\rangle_{(C=+)}^{(I=0)} = \frac{1}{\sqrt{2}} (|D^{*+}D^{*-}\rangle + |D^{0*}\overline{D}^{0*}\rangle)_{(L=1)}^{(S=1)}$ L + S = even • For $m_{\eta_{c1}} = 4329(36)$ MeV, we have

 $\Gamma_{D_1 \overline{D}} = 258(133) \text{ MeV}$ $\Gamma_{D^* \overline{D}^*} = 150(118) \text{ MeV}$ $\Gamma_{D \overline{D}^*} = 88(18) \text{ MeV}$

$$\Gamma_{\chi_{c1}\eta} = \sin^2 \theta \cdot 44(29) \text{ MeV}$$

$$\Gamma_{\eta_c\eta'} = \cos^2 \theta \cdot 0.93(77) \text{ MeV}$$

• Given the mass above, η_{c1} seems too wide to be identified easily in experiments.

• We suggest LHCb, Bellell and BESIII to search for η_{c1} in $D^*\overline{D}$ and $D^*\overline{D}^*$ systems !

$$|D^*\overline{D}^*\rangle_{(C=+)}^{(I=0)} = \frac{1}{\sqrt{2}} (|D^{*+}D^{*-}\rangle + |D^{0*}\overline{D}^{0*}\rangle)_{(L=1)}^{(S=1)}$$

L + S = even

16

• For $m_{\eta_{c1}} = 4329(36)$ MeV, we have

 $\Gamma_{D_1 \overline{D}} = 258(133) \text{ MeV}$ $\Gamma_{D^* \overline{D}^*} = 150(118) \text{ MeV}$ $\Gamma_{D \overline{D}^*} = 88(18) \text{ MeV}$

 $\Gamma_{\chi_{c1}\eta} = \sin^2 \theta \cdot 44(29) \text{ MeV}$ $\Gamma_{\eta_c\eta'} = \cos^2 \theta \cdot 0.93(77) \text{ MeV}$

- Given the mass above, η_{c1} seems too wide to be identified easily in experiments.
- However, $\Gamma_{\eta_{c1}}$ is very sensitive to $m_{\eta_{c1}}$.
- If $m_{\eta_{c1}} \sim 4.2$ GeV, then $\Gamma_{\eta_{c1}} \sim 100$ MeV. The dominant decay channels are $D^*\overline{D}$ and $D^*\overline{D}^*$.
- Especially for D*D*, the measurement of the polarization of D* and D* will help distinguish a 1⁻⁺ states from 1⁻⁻ states.
- We suggest LHCb, Bellell and BESIII to search for η_{c1} in $D^*\overline{D}$ and $D^*\overline{D}^*$ systems !

Possible production in experiments

<u>Summary</u>

- ✓ We give the first Lattice QCD prediction of the partial decay widths of the charmoniumlike η_{c1} .
- ✓ Disfavor the results of the Flux-tube model (Disfavor the S-wave suppression).
- ✓ We provide the theoretical information for the experimental search for charmoniumlike hybrid η_{c1} .

Backup slides

Meson spectrum on our lattice

X	ω	$\eta_{(2)}$	η_c	J/ψ	χ_{c1}	D	D^*	D_1	η_{c1}
$m_X(L16)(MeV)$	857(10)	715(10)	2975.0(3)	3099.1(2)	3559.8(1.7)	1882(1)	2023(1)	2423(7)	4330(21)
$m_X(L24)(MeV)$	845(7)	705(21)	2976.3(4)	3099.4(4)	3560.4(6.4)	1881(1)	2019(1)	2430(10)	4328(68)
$m_X(\text{PDG})(\text{MeV})$ [42]	782	547/958	2983	3097	3511	~ 1867	~ 2008	2420	-

Partial-wave operators $\mathcal{O}_{AB;JLSP}^{M}(\hat{k}) = \sum_{M_{L},M_{S},M_{A},M_{B}} \langle L, M_{L}; S, M_{S} | JM \rangle \langle S_{A}M_{A}; S_{B}M_{B} | S, M_{S} \rangle$ $\times \sum_{R \in O_{h}} Y_{LM_{L}}^{*}(R \circ \vec{k}) \mathcal{O}_{A}^{M_{A}}(R \circ \vec{k}) \mathcal{O}_{B}^{M_{B}}(-R \circ \vec{k}),$

Mode (AB)	E_{AB} (MeV)	$a_t \Delta$	r_0	$r_1 \; (imes 10^{-3})$	$r_3 \ (\times 10^{-7})$
L16	$(m_{\eta_{c1}} = 4330(21) \text{ MeV})$				
$D\bar{D}_1(000)$	4304(7)	~ 0.004	0.02077(38)	4.95(5)	-5.1(1.3)
$D\bar{D}^*(111)$	4301(4)	~ 0.004	0.00210(19)	1.11(3)	-2.2(8)
$D^*\bar{D}^*(111)$	4405(10)	\sim -0.011	0.00702(25)	1.00(3)	-4.3(9)
$D^*\bar{D}^*(110)$	4288(4)	~ 0.006	0.00702(25)	1.15(4)	-4.1(9)
$\chi_{c1}\eta_{(2)}(000)$	4262(8)	~ 0.010	-0.0076(18)	2.04(26)	-0.9(6.8)
$\eta_c \eta_{(2)}(111)$	4347(39)	\sim -0.003	-0.00057(39)	0.20(6)	1.6(1.6)
L24	$(m_{\eta_{c1}} = 4328(68) \text{ MeV})$				
$D\bar{D}_1(000)$	4310(10)	~ 0.003	0.0110(26)	3.10(26)	-3.3(3.5)
$D\bar{D}^*(220)$	4361(5)	\sim -0.005	-0.00027(69)	0.78(7)	-1.07(97)
$D^*\bar{D}^*(200)$	4269(2)	~ 0.009	0.00598(87)	1.05(9)	-3.1(1.2)
$D^*\bar{D}^*(111)$	4216(3)	~ 0.016	0.00234(62)	0.67(7)	-2.50(83)
$\chi_{c1}\eta_{(2)}(000)$	4260(7)	~ 0.010	-0.0057(27)	1.18(38)	-3.0(9.0)
$\eta_c \eta_{(2)}(220)$	4304(25)	~ 0.004	-0.00037(17)	0.10(3)	2.49(77)

Fitting stability

