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What & Why Subtraction : Motivation

“ Let us start from elementary particle productions described using collinear
factorisation

Short distance partonic Fragmentation
Cross section :

Parton density functions
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What & Why Subtraction : Motivation

“ Let us start from elementary particle productions described using collinear
factorisation

Short distance partonic Fragmentation
Cross section :

At least NLO is required for
reliable study

Parton density functions
Inclusion of more orders improves the reliability




What & Why Subtraction : NLO brief

Born cross Virtual Real
section corrections corrections

Lo = / 16,5 + / 16,V + / A¢n 1R
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What & Why Subtraction : NLO brief

Born cross Virtual Real

section corrections corrections
ONLO — /d¢n8 - /d¢nv + /d¢n 1R
O(a) O(a2™) O(a2™)
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What & Why Subtraction : NLO brief

Born cross Virtual Real
section corrections corrections
ONLO — /d¢n8 + /d¢nv + /d¢n 1R
b b-+1 b-+1
O(ay) O(ag™) O(ag™)
Cure:
Partonic cross section is infrared safe
-KLN theorem
| | Kinoshita '62; Lee, Nauenberg 64 |
V \/—OO \/ —+ 00
Finit A B
mite V=5t D e [ daiR =5 - 7+ R
€ € € €

Individually divergent, however V—I—/dgbleinfrared safe
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What & Why Subtraction : NLO brief

“ Matrix elements for the real emission has a complex structure. Hence, the phase space

integration over 1t 1s really hard.

“ In practice, we explore difterent numerical tools such as Monte-Carlo techniques to perform this

phase space integration.

“ But the problem 1s the IR divergence that appears in some corners of the phase space of

radiated parton. So we need to get rid of them before we attempt the integration.

“ "T'hat 1s exactly where the role of subtraction comes!



How subtraction Works?

* Gonceptually straightforward : find out the origin of the singularities and subtract
them from the real emaissions.

“ Let us see the source of these divergences:

2

k
M 1 1
a k-p a E,E (1 —cosd,,)

when E, — 0 soft singularity

when 6,, — 0 collinear singularity

—> 0

Divergence appears due to soft and/or collinear emissions



How subtraction Works?

/d¢172%/dgb1(72—8) +

N——

Free of divergences. Numerical

S — Subtraction counter term

integration possible in 4-dim.

Their divergence cancels with those of virtual corrections

* Requirement to choose a subtraction term:

[ dons

|

lim S =

lim S =

Qij —0

Integrated counter term, to be added back

= Should exactly matches the real emissions 1n their singular limats.

= Simple enough to integrate exactly.

10

lim R

lim R

Hij —0



NLO with subtraction

ONLO — /d¢n G

Each of the integrand is finite and can be
integrated numerically in 4-dimension and

+ / o (V + / d¢18) independently from one another
e—0

+ [ donn(R-S)

11



NLO with subtraction

ONLO — /d¢n G

Each of the integrand is finite and can be
integrated numerically in 4-dimension and

+ / o (V + / d¢18) independently from one another
e—0

-+ / dpn+1(R — S)

“ Widely used subtraction methods at NLO
- Dlp01€ subtraction method [Catani, Seymour *96]

= FKS subtraction method [Frixione, Kunszt, Signer *95]
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NLO with subtraction

ONLO — /d¢n G

Each of the integrand is finite and can be
integrated numerically in 4-dimension and

+ / o (V + / d¢18) independently from one another
e—0

-+ / dpn+1(R — S)

“ Widely used subtraction methods at NLO

General forany QCD process R
Automated in MadGraph_aMC@NLO (MG5) M;‘itjﬁixséfféinég]

-@ SUbtraCtion mﬁthOd Frixione, Kunszt, Signer *95] & POWHEG BOX

|Alioli, Nason, Oleari, Re *10]

- Dlp01€ subtraction method [Catani, Seymour *96]
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NLO A | | MGS [Alwall, Frederix, Frixione, Hirschi,
utomaton in o S

Lo = / 16,8 +. / A, / 16,5 + / A6 i1 (R —S)

Automatic tree level Automation of real

matrix element MadGraph MadFKS correction using FKS
generator subtraction
SM and BSM
MadGraph
aMC@NLO
Automation of Matching & Merging

virtual corrections
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NLO Automation in MG5 - for Quarkonium

+  Master formula : NRQGD factorisation

MadGraph
do(AB — H+ X) = Z( Z /dil?ad%fa/A(%)fb/B(%)
o LDME
xd(ab — QQ'[n] + X)) (O} MadGraph
Short distance cross section aMC@NLO

for heavy quark bound state with a specific color (C), spin(S)
and orbital (L) and total (J) angular momentum state :

n =251 L] MadLoop MC@NLO

o Amphtude . Aa+b—>QQ’[n] — PJPLPSPCAa—Fb—)QQ/

Projection operators
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NLO Automation in MG5 - for Quarkonium

»  Automating beyond tree level : best way could be

» Por automation at tree level, already available

tools 1n the market: MadGraph

MadOnia : for single quarkonium
|P. Artoisenet, I. Maltoni and 'T. Stelzer *07]

MadGraph
HELAC-Onia : general for one or more quarkonium [H.S Shao *12] aMC@NLO

MadLoop MC@NLO

extending the MG by including general

quarkonium productions.

Ongoing work - H.S Shao, Chris Flett et.a
Implementation of projection operators required
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NLO Automation in MG5 - for Quarkonium

*  Automating beyond tree level : at NL.O

D R—

= Extend MadLoop : future work MadGraPh

= Extend MadFKS

¥ MadGraph
aMC@NLO

First step : Extend FKS subtraction method by finding out
the counter terms (& integrated) required for additional
divergences due to radiation from heavy quarkonia.

v

Aim of our work

MadLoop MC@NLO
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FKS in briet

= Basic idea of FKS : partition the phase space such that each region involves only one soft and/or collinear

singularities
>, Siy=1

1] —Pairs

2
dor ‘Mn-l-l‘ d¢n—|-1 Partition function

1ifp;-p; =0
2 SZ”:

1] —Ppairs

» 'T'he subtraction term, for example for the soft emission of ith oluon, can be obtained as
: E ( 2
Ssoft = lim Sij ‘M’rH—l‘
£ —0 =
]
» Counter terms are maximally from three regions

= Solt

Subtracting all of them from real corrections
give finite contributions

= (Collinear

= Soft-collinear

18



FKS in briet

Additionally, we have to add back integrated counter term as well / A1 Ssott

hk
For this we have soft-eikonal approximation : Q 5

lim A(n+1’0)(r) = (s kj . E)"i(ki) ki ki soft

ki—0 kj - k;

Q(Z;)A™O) (rY)

At the amplitude squared level, this boil down to evaluating Eikonal integrals of the form

ki - K
dS),

T'his 1s known for general massive/massless cases [Frederix, Frixione, Maltoni, Stelzer *09)]
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Extending FKS to quarkonium

“ What 1s new?
= additional singularities appear due to the radiation emitted from quarkonia states
= Soft 1n origin - from projection operators and LDME renormalisation

» No new collinear or soft-collinear divergences : because /eavy quarkonium

= Additional non-standard Eikonal integrals

20



Extending FKS to quarkonium

“ What 1s new?
= additional singularities appear due to the radiation emitted from quarkonia states
= Soft 1n origin - from projection operators and LDME renormalisation
» No new collinear or soft-collinear divergences : because /eavy quarkonium
We can proceed similar methods to get new local counter terms to remove new singularities

= Additional non-standard Eikonal integrals

Need to evaluate the non-standard integrals

21



Extending FKS to quarkonium

+ Let us see an example of (1P1[8])

+ 'The amplitude after applying the projection operator gives

n(R)+n

ek e k) . g ()] .
: (n+1,0) e J S\ N 4(n,0) X A\ r1lp[8] (n,0) ¥
fim Aonn® = )L 9 g Q) Afg 01 (™) 90— = QQQTPTDAGg 01,1y ()

J=ng

J#1

e (K °E*_ kz K°E*, kz ki°€* K)’ =1 ~ n,0 ' = ~ n,0 '
+9s A I()'-kl-\t( ) Az((I{)k-)2 )T [Qeff(QQESI])Ag[l],Z),O,O}(7'\) +QeH(QQiSS])AgIB],Z),O,o}(7' ¥‘)]
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Extending FKS to quarkonium

+ Let us see an example of (1P1[8])

Standard Eikonal factor

N/
0‘0

T'he amplitude after applying the projection operator gives

el ) K &3, (k)
: (n+1,0) . g €, \Ri)| = \ 4(n0) X e\l = 515[8] (n,0) f
fim Aonn® = DL 9 5 g QI AL 00, (™) 9o = R(QQ TP A 01,1y ()
PR _ . _ »
J#1
3, (K) - ei (k) K &5, (ki e, (K)

S ~ n,0 ' 3 A n,0 '
+gs X [Qeff (QQE&] )'Ag[l] }),0,0} (’l"\) + Qeff (QQESS] )Ag[gl ,2),0,0} (7‘\)]

K - kz (K ° ki)2
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Extending FKS to quarkonium

+ Let us see an example of (1P1[8])

Standard Eikonal factor

Non-standard new Eikonal factor

N/
0‘0

T'he amplitude after applying the projection operator gives

ug (k:) K -et (k)
: (n+1,0) . J =N\ 2\ 4(n,0) X e\ =0 A Arlp 8] (n,0) f
kl,-linm ‘A{[8],0,1,1}(r) = Z Is k; - k; Q(IJ)-A{[g],o,l,l} (') +9s K -k Q(QQ [Pl ])-A{[g],o,l,l} ()
£t - v, - v,
JFi
Exlf. 9 o0 (7 K -€3 (k;)k; - 3. (K)] = = (n,0) ' = = (n,0) '
o[ 24 Ig.k).‘z( | /\z((K?k-)z 1 @er(@Qsn) Alfi} 0,00y ) + Qerr(QQfssy) Al 0,00 (™)
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Extending FKS to quarkonium

+ Let us see an example of (1P1[8])

Standard Eikonal factor

Non-standard new Eikonal factor

+ 'The amplitude after applying the projection operator gives

" (g3 (k) K -3, (k)
: (n+1,0) . 3 S\l =\ 4(n)0) X AN Wil = o Arip[8ly 4(n,0) X
klilglOA{[S],O,l,l}(r) = Z Js b -k, Q(IJ)A{[S],O,l,l} (') +9s K-k R(RQ[F; ])‘A{[S],O,l,l} ()

J=njp

JF#i

(e IS ) Ex k, o e kz kz e 0.8 3 ~ n,0 ' 3 ~ n,0 '
R K).k’.\’( ) 8/\1((1r<)/rc.)2€ O] ¢ [ Ger(QQfsn) A 0.0y ) + Qe (@) Al 001 1Y)

(K - kk)ki

e

» At [ Ay o7, M|, one such non-standard Eikonal integral looks like
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Extending FKS to quarkonium

+ Let us see an example of (1P1[8])

Standard Eikonal factor

Non-standard new Eikonal factor

+ 'The amplitude after applying the projection operator gives

o e
lim, A o121y i H (ki) GE)ACD, () +gi (’“)c}'(czcz TP DAL 01,1 )
e (OCRSYY . (18101,13\"/ T Alig01.1)
J=njp
JF#i
[Ex 1) ] kz K - *_ki kz g 0.8 3 ~ n,0 ' 3 ~ n,0 '
+9s E’\‘( K) | ;::"( ) 8)‘1((]{ ) k-);/\l( ) X [Qeff(QQEm])Ai[l]}),o,o} (7‘\) T Qeﬁ(QQigs])-Ag[g] 2) 0 0}( \)]

(K - kk)ki

»  Looking at their structure, we find they can be expressed as derivatives of the known standard ones. For

Instance, - 5 .
- K
i i = — (K €);
/dQ (k- k;) (K - ki)zlC i ( kk)é’Ku (/d (kg - k;) (K - k2)>
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« At | ATV, (| , one such non-standard Eikonal integral looks like




Extending FKS to quarkonium

* In general, for a single quarkonium with any quantum state, the Eikonal integral takes the form

k... k(.lnl_lk-{gl o k?’lg—l
k‘k . kl / 0, 2 i i ; -
e (kk ' kz) 1 (kl . ki)n2 ,  N1,N2 Z

* In addition to these counter terms, we have additional singularities from LDME renormalisation

for the P-waves - Need counter term for them as well.

» For example, for (1P1[8]) state, the counter term looks like

(B)
o .. JTL

S .\
) d¢n—l (T )N(T\)

x - X . X 8 1 2
G(i) [BFIM( LO)(#3) + CrIM( 1’0’(7"3)] e (g+log #2“ )
/ NRQCD
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Extending FKS to quarkonium

“ In general, for a single quarkonium with any quantum state, the Eikonal integral takes the form

kql kanl—l kﬂl kﬂnz—l
kk‘kl/ . > 1
RN e T A TR

7/

“ In addition to these counter terms, we have additional singularities from LDME renormalisation
for the P-waves - Need counter term for them as well.

“ For example, for (1P1[8]) state, the counter term looks like

J'n
W EPET. N (n=1,0) (7% (n=10) (73
4o 5
(O [81> Y 5[8]> - dmmome (% - “%:QCD) -

[CF

X ON <Ol >+B (01 >}a

P[l]
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Validation

Together, these integrated counter terms, along with collinear and soft-collinear c.t for elementary
particles, the singularities cancels out with those of virtual corrections.

Validation
= 'T'he poles are checked and cancel explicitly

= 'To check local counter term 10!

M™0) (7) — limy, o M0 (7)
M (n.0) (7.)

Asoft - X fz + 0(512)’

Aso ft

10
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Summary & Qutlook

Here we discuss subtraction method, specifically FKS subtraction method and how
that can be successtully extended to quarkonium productions.

At the moment we applied for the single quarkonium case along with any arbitrary
elementary particle productions, that could be massive/massless or colored/ colorless.

[ts implementation in MadGraph5_aMC@NILO is ongoing.
What could be done 1n near tuture
Multiple quarkonium productions

For the complete NLO automation, we also need a formalism for loop corrections
part.
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One of the Eikonal integral

(K - kk)ki

* For example, for / dll; ;

Divergent part

b o) (K - k)2 1f mass of particle k 1s 0, upto an overall tactor

k# k# ) 2 kli
£ + 1 — log kil —llog ts ——’2 1
2€2 ki - ky kk ki Ermy 2 ES m;

Finite part Z 7 (0ma)

2,12 )

ki 52 S m? 1 14+ 5 ELE;
T(O,ml),# e i {10 ( cut ) + l |: lo ( ) L lo
7Om)p _ k. _”_2 —log out8 i 110g2 2.5 + log k- ki log o - m? = Qég BE?| 1-p A= B ki-k; — ExEi(1 — ) .
1,12 ki -k 12 %S 4 %S Ermy Q%S + ELE; log( ki -k )] }
o ( k- k; ) 1l ( k- k; ) 11 2(1+Bl) ki ki — ExEi(1+ B) ExEi(1+ Bi)
- 0 —=-1lo 0
C\EE (1-B8) S \EE(1-4) 1 1 TOm# _ 0F { k [lo (EkEl (1+5) ) log( ki ki )‘
. k- ki : EE i (1+B) : ki ki — ExE; (1 — 5)) ki ki ExE (1 - Bi)
+L12(1—EkEl(1_,BI))_le(l— P e ) k- kzml ( )+ Ey Elzﬁl 1+5l)+ml)
k- Ky ky. -k E.E(1+8) ky - Ky | E35 1-57) 1-B)  Ef(ke-ki— ExE (1 + Br))
ki — ExEi(1 - B) log(EkEz i ﬂz)) T ek — ExEi(1+ Bi) log(EkEz (1 +ﬂz)) . [E E (10 (EkEI o ) ( e )) TR (1 o
| g\ e EE(1-B))) 1+A °\1-5
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ki ki

(EkEz(l —ﬂz))

)Iy

(A.13)



