NRQCD in Parton Showers

Naomi Cooke

University of Glasgow

March 1, 2024

 $\rm QWG~2024$

- What is NRQCD?
- $\textcircled{0} J/\psi ~in~jets~measurements$
- **3** Improving MC predictions with NRQCD fragmentation
- **4** Implementation into Pythia 8
- **5** Results
- 6 Outlook

What is NRQCD?

NRQCD (i)

Prompt J/ψ : production from directly from PV, or feed down.

Naomi Cooke

NRQCD in Parton Showers

NRQCD (ii)

5/29

J/ψ in jets measurements

Study of J/ψ production in jets (i)

Study of J/ψ production in jets (ii)

Measure $d\sigma/\sigma$ verses $z(J/\psi) \equiv p_T(J/\psi)/p_T(jet)$. Prompt (direct from PV) and displaced (i.e. b decay) distributions, where $p_{T}(jet) > 20$ GeV [Phys. Rev. Lett. 118, 192001 (2017)].

Naomi Cooke

NRQCD in Parton Showers

Study of J/ψ production in jets (iii)

Note: all measurements limited by MC modelling systematic.

🍠 🦳 9 / 29

Can we improve MC predictions?

MC Generated Event

What's missing?

NRQCD in Parton Showers

NRQCD Fragmentation

Implementation into Pythia 8

Implementation into PYTHIA 8 (i)

- Implemented the following splittings into Pythia 8:
 - $c \rightarrow \eta_c^{(1)} c$ • $g \rightarrow \eta_c^{(1)} g$ • $c \rightarrow \psi(nS)^{(1)} c, n = 1,2$ • $g \rightarrow \psi(nS)^{(1)} gg, n = 1,2$ • $c \rightarrow \chi_{ci}^{(1)} c, i = 0,1,2$ • $g \rightarrow \chi_{ci}^{(1)} g, i = 0,1,2$ • $c \rightarrow \chi_{ci}^{(8)} c, i = 0,1,2$ • $g \rightarrow X^{(8)}$, where X is any quarkonia state
- Also the same for bottomonium.
- Validate with analytic expressions, and LHCb/CMS data.

Implementation into PYTHIA 8 (ii)

Production Type	Flag	Purpose
All Production	OniaShower:all	All onia
	OniaShower:all(1SO)	All ${}^{1}S_{0}$ onia
	OniaShower:all(3S1)	All ${}^{3}S_{1}$ onia
	OniaShower:all(3PJ)	All ³ P _J onia
	OniaShower:all(3DJ)	All ³ D _J onia
	CharmoniumShower:all	All charmonia
	BottomoniumShower:all	All bottomonia
$\begin{array}{c} {\rm Charmonium} \\ {}^1{\rm S}_0 \\ {\rm States} \end{array}$	CharmoniumShower:states(1SO)	$\eta_{ m c}$
	CharmoniumShower:0(1S0)[1S0(1)]	$\eta_{ m c}$
	CharmoniumShower:0(1S0)[3S1(8)]	$\eta_{ m c}$
	CharmoniumShower:c2ccbar(1S0)[1S0(1)]c	$\eta_{ m c}$
	CharmoniumShower:g2ccbar(1S0)[1S0(1)]g	$\eta_{ m c}$
	CharmoniumShower:g2ccbar(1S0)[3S1(8)]	$\eta_{ m c}$

ر ا

Implementation into PYTHIA 8 (iii)

Parton shower is an iterative process:

Overall, sample a $p_{T,evol}^2$ and z to evolve the shower.

Naomi Cooke

17 / 29

Implementation into PYTHIA 8 (iv)

Implementation of colour singlet states, e.g. $c \rightarrow J/\psi(1)c$ [Phys. Rev. D 48, 4230]:

$$\int_{0}^{1} dz \, D_{c \to J/\psi}(z) = \frac{8\alpha_{s}^{2}|R(0)|^{2}}{27\pi m_{c}} \int_{0}^{\infty} ds \, \frac{1}{(s-m_{c}^{2})^{4}}$$
$$\int_{0}^{1} dz \, \vartheta \left(s - \frac{4m_{c}^{2}}{z} - \frac{m_{c}^{2}}{1-z}\right) \left((s^{2} - 2m_{c}^{2}s - 47m_{c}^{4}) - z(s-m_{c}^{2})(s-9m_{c}^{2}) + 4\frac{z(1-z)}{2-z}s(s-m_{c}^{2}) - \frac{8-7z-5z^{2}}{2-z}m_{c}^{2}(s-m_{c}^{2}) + 12\frac{z^{2}(1-z)}{(2-z)^{2}}(s-m_{c}^{2})^{2}\right)$$
(3)

Translate $\{s,z\} \rightarrow \{p_{T,evol}^2,z\}$ and find overestimate.

🥑 18 / 29

Implementation into PYTHIA 8 (v)

Implementation of $g \rightarrow J/\psi(1)gg$ [Phys. Rev. D 52, 6627]:

$$\begin{aligned} d_1^{(3S_1)}(z,2m_Q) &= \frac{5}{5184\pi m_Q^3} \alpha_s (2m_Q)^3 \int_0^z dr \int_{(r+z^2)/2z}^{(1+r)/2} dy \, \frac{1}{(1-y)^2 (y-r)^2 (y^2-r)^2} \\ &\times \sum_{i=0}^2 z^i \left(f_i(r,y) \,+\, g_i(r,y) \frac{1+r-2y}{2(y-r)\sqrt{y^2-r}} \log \frac{y-r+\sqrt{y^2-r}}{y-r-\sqrt{y^2-r}} \right) \,. \end{aligned} \tag{3}$$

The integration variables are $r = 4m_Q^2/s$ and $y = p \cdot q/s$, where p and q are the 4-momenta of the quarkonium and the fragmenting gluon and $s = q^2$. The functions f_i and g_i are

$$\begin{split} f_0(r,y) &= r^2(1+r)(3+12r+13r^2) - 16r^2(1+r)(1+3r)y \\ &- 2r(3-9r-21r^2+7r^3)y^2 + 8r(4+3r+3r^2)y^3 - 4r(9-3r-4r^2)y^4 \\ &- 16(1+3r+3r^2)y^5 + 8(6+7r)y^6 - 32y^7 , \end{split}$$
(4)
$$f_1(r,y) &= -2r(1+5r+19r^2+7r^3)y + 96r^2(1+r)y^2 + 8(1-5r-22r^2-2r^3)y^3 \end{split}$$

+
$$16r(7+3r)y^4 - 8(5+7r)y^5 + 32y^6$$
, (5)

Translate $\{r,y,z\} \rightarrow \{p_{T,evol}^2,z,m_{gg}^2\}$ and find overestimate.

Naomi Cooke

🥑 19 / 29

Implementation of colour octet states, e.g. $g \rightarrow J/\psi(8)$ [Phys. Rev. D 52, 6627]:

$$\frac{\pi\,\langle 0|\mathcal{O}_8^\psi(^3S_1)|0\rangle}{24m_Q^3}\delta(1-z)\delta(1-\frac{s}{M_\psi^2})$$

Handle delta functions, by only allowing generation of splitting to occur just above onium mass.

Results

Results: charm splittings to colour singlet J/ψ and η_c

Production of colour-singlet S-wave states from charm splittings compared between (solid) PYTHIA 8 and (dashes) analytic expressions at the energy scales of (left) $3m_c$ and (right) $m_Z/2$.

Production of (left) colour-singlet and (right) colour-octet states from charm splittings with PYTHIA 8 at the energy scale of $m_Z/2$.

Production of (left) colour-singlet and (right) colour-octet states from gluon splittings with PYTHIA 8 at the energy scale of $m_Z/2$.

Comparison of (left) scale choices for the colour-singlet ${}^{3}S_{1}$ splitting and (right) splitting kernel choices for the colour-octet ${}^{3}S_{1}$ splitting with PYTHIA 8 at the energy scale of $m_{Z}/2$.

Comparison to LHCb data

Comparison of the current PYTHIA 8 implementation with all splittings to onia with LHCb data.

🎽 26 / 29

Outlook

Future prospects with PYTHIA 8

- Incorporated into Pythia version 8.310.
- Initial paper out on arXiv: 2312.05203. Submitted to EPJC.
- I'm a PYTHIA author. Feel free to test the shower, and tag me on the PYTHIA issue desk!
- Compare with experimental results: e.g. LHCb/CMS J/ $\!\psi$ in jets.
- Explore LDME values.

	$\langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[1]})\rangle$	$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[8]})\rangle$	$\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle$	$\langle \mathcal{O}^{J/\psi}(^{3}P_{0}^{[8]}) angle/m_{c}^{2}$
	$\times {\rm GeV^3}$	$\times 10^{-2}~{\rm GeV^3}$	$ imes 10^{-2} { m GeV^3}$	$ imes 10^{-2} { m GeV^3}$
B & K [5, 6]	1.32 ± 0.20	0.224 ± 0.59	4.97 ± 0.44	-0.72 ± 0.88
Chao, et al. [12]	1.16 ± 0.20	0.30 ± 0.12	8.9 ± 0.98	0.56 ± 0.21
Bodwin et al. [13]	1.32 ± 0.20	1.1 ± 1.0	9.9 ± 2.2	0.49 ± 0.44

- Expand to heavy ion collisions, and other areas.
- (Polarisation).

- Implemented splittings of colour singlet + colour octet quarkonia into the parton shower.
- Interleaving the above splittings with ISR and MPI, and in all the available splittings: $g \rightarrow q\bar{q}/q \rightarrow qg/g \rightarrow gg$.
- Initial predictions with LHCb data and Higgs measurements are promising!
- Paper out on arXiv: 2312.05203. Submitted to EPJC.
- Improve with NLO calculations, matching and merging, tune with data etc.
- Explore heavy ion prospects and other mesons.

29 / 29

Back up slides

Future experimental prospects

Quarkonia in jets measurements:

- Analyses for ψ(2S), Υ(1S), Υ(2S), Υ(3S) and X(3872) are in progress at LHCb.
- Predictions for the z distributions are shown below, with current version of PYTHIA 8 where Υ 's are predicted to be more isolated than $\psi(2S)$ and X(3872).

Results - charm splittings to $\chi_{cJ}(1,8)$

Production of (left) colour-singlet and (right) colour-octet P-wave states from charm splittings compared between (solid) PYTHIA 8 and (dashes) analytic expressions at the energy scale of $3m_c$.

Results - gluon splittings to colour singlet onia

Production of colour-singlet (left) S-wave and (right) P-wave states from gluon splittings compared between (solid) PYTHIA 8 and (dashes) analytic expressions at the energy scale of $2m_c$.

🍼 4 / 5

Parton shower

$$\mathcal{P}_{a}^{no}(Q_{max}^{2},Q^{2}) = \exp\left(-\int_{Q^{2}}^{Q_{max}^{2}}\int_{z_{min}}^{z_{max}} d\mathcal{P}_{a}(z',Q'^{2})\right) = \Delta_{a}(Q^{2},q^{2}) \quad (4)$$

FSR:
$$Q^2 = s - m_a^2 = \frac{p_{T,evol}^2}{z(1-z)}$$
 (5)

Overall, sample a $\mathbf{p}^2_{\mathrm{T,evol}}$ and z to evolve the shower.

Naomi Cooke

NRQCD in Parton Showers

J 5 / 5