$\alpha_{\rm s}$ in (2+1+1)-Flavor QCD from the Static Energy

Viljami Leino Helmholtz Institute Mainz, JGU Mainz

*For the TUMQCD collaboration A. Bazavov, N. Brambilla, A. S. Kronfeld, J .Mayer-Steudte, P. Petreczky, S. Steinbeißer, A. Vairo and J. H. Weber

> QWG 2024 28th of February 2024 IISER-Mohali, India

- Static energy $E_0(r)$ between a static quark and antiquark
- Defined as a ground state of Wilson loop
- Of major importance for scale setting
- Very well known in perturbation theory
- Physical observable: No scheme change required between lattice and continuum
- Detailed previous studies in $N_f = 0$ and $N_f = 2 + 1 \Rightarrow \Lambda_{\overline{\rm MG}}^{N_f = 0,3}$
- Very few 2+1+1 extractions

Static energy

- We calculate the static energy in 2+1+1-flavor QCD
- Self-consistently set the scale with

 $r_i^2 F(r_i) = \begin{cases} 1.65, & i = 0^1 \\ 1.0, & i = 1^2 \\ 0.5, & i = 2^3 \end{cases}, r_1 \sim 0.3106 \,\mathrm{fm}$

- Take massive charm quark into account $1/m_c \sim 0.15 fm$
- \bullet Aim to extract $\Lambda_{\overline{\rm MS}}$ from the small distance behavior
- Scale setting and charm effect done in: TUMQCD, PRD107 (2023)

Static energy in perturbation theory

- Determined from the large-time behavior of Wilson loops $E(r) = -\lim_{T \to \infty} \frac{\ln \langle \operatorname{Tr}(W_{r \times T}) \rangle}{T}, \qquad W_{r \times T} = P \left\{ \exp \left(i \oint_{r \times T} dz_{\mu} g A_{\mu} \right) \right\}$
- Perturbatively known to N³LL ¹:

 $E_0(r) = \Lambda_{\rm s} - \frac{C_{\rm F}\alpha_{\rm s}}{r} \left(1 + \#\alpha_{\rm s} + \#\alpha_{\rm s}^2 + \#\alpha_{\rm s}^3 + \#\alpha_{\rm s}^3 \ln \alpha_{\rm s} + \#\alpha_{\rm s}^4 \ln^2 \alpha_{\rm s} + \#\alpha_{\rm s}^4 \ln \alpha_{\rm s} \dots\right)$

- In the dimensional regularization requires a renormalon subtraction
- In the lattice regularization diverges as 1/a towards continuum limit
- Both regularization problems can be absorbed into a constant term
- Integrating the static force eliminates the leading renormalon

$$\mathsf{E}_0(r) = \int_{r^*}^r \mathrm{d}r' F(r') + \mathrm{const}$$

- The ultra-soft scale $\mu_{
 m us}
 ightarrow \ln lpha_{
 m s}(1/r)$ term, can be resummed
- Set scale as $\mu = 1/r$

¹ For review of perturbative results, see e.g. X. Tormo Mod. Phys. Lett. A28 (2013)

• Effects due to finite mass of a heavy quark give correction $\delta V_{\rm m}^{(N_{\rm f})}(r)$

4/14

Lattice simulations

- Use state of the art 2+1+1 HISQ¹ ensembles from MILC²
- Three different light quark masses, physical strange and charm sea
- Six lattice spacings $a \approx 0.032 0.15$
- Relation to physical units via $f_{\rm p4s}$ scale
- Fix coulomb gauge
 - $\rightarrow\,$ Static energy as ground state of Wilson line correlation function
 - $\rightarrow\,$ Off-axis separations accessible
- Static quarks with and without one step of HYP-smearing
- Measure static energy for separations $r \approx 0.03 0.9$ fm.

```
<sup>1</sup>E. Follana, et.al., PRD75 (200/); <sup>2</sup> A. Bazavov, et.al., PRD98 7 (2018)
```

Static energy on the lattice

• We compute E_0 from Wilson line correlators in Coulomb gauge $W(\mathbf{r}, \tau, a) = \prod_{u=0}^{\tau/a-1} U_4(\mathbf{r}, ua, a)$

$$C(\mathbf{r},\tau,\mathbf{a}) = \left\langle \frac{1}{N_{\sigma}^{3}} \sum_{\mathbf{x}} \sum_{\mathbf{y}=R(\mathbf{r})} \frac{1}{N_{c}N_{r}} \operatorname{Tr} W^{\dagger}(\mathbf{x}+\mathbf{y},\tau,\mathbf{a}) W(\mathbf{x},\tau,\mathbf{a}) \right\rangle$$
$$C(\mathbf{r},\tau,\mathbf{a}) = e^{-\tau E_{0}(\mathbf{r},\mathbf{a})} \left(C_{0}(\mathbf{r},\mathbf{a}) + \sum_{n=1}^{N_{st}-1} C_{n}(\mathbf{r},\mathbf{a}) \prod_{m=1}^{n} e^{-\tau \Delta_{m}(\mathbf{r},\mathbf{a})} \right) + \cdots$$

- Vary the fit range with $\mathit{N}_{\rm st}$ and |r|

$$\begin{split} |\mathbf{r}| + 0.2 \text{ fm} &\leq \tau_{\min,1} \leq 0.3 \text{ fm} & \text{for } N_{\mathrm{st}} = 1, \Rightarrow \text{ prior values} \\ \frac{2}{3} |\mathbf{r}| + 0.1 \text{ fm} &\leq \tau_{\min,2} \leq \tau_{\min,1} - 2a & \text{for } N_{\mathrm{st}} = 2, \Rightarrow \text{ our pick} \\ \frac{1}{3} |\mathbf{r}| & \leq \tau_{\min,3} \leq \tau_{\min,2} - 2a & \text{for } N_{\mathrm{st}} = 3, \Rightarrow \text{ cross-check} \end{split}$$

- We use Bayesian fits with loose linear priors
- Priors for $E_1 E_0$ come from pure gauge ¹
- ¹ K. Juge, et.al., PRL90 (2003) ² A. Hasenfratz, et.al., PRD64 (2001);

6/14

Discretization effects: Tree-level

- *E*₀(*r*, *a*) is available only at discrete distances and is direction dependent
- Tree-level improved distance defined with lattice gluon propagator $D_{\mu
 u}(k)$

$$E(r,a) = -C_F g_0^2 \int \frac{\mathrm{d}^3 k}{(2\pi)^3} e^{ik \cdot r} D_{44}(k) = -\frac{C_F g_0^2}{4\pi} \frac{1}{r_I}$$
7/14

Discretization effects: 1-loop

- Ongoing effort to calculate the 1-loop improvement¹
- Lattice perturbation theory can be too complicated to do by hand
- Use HPsrc and HiPPy programs to numerically calculate the diagrams
- Promising results, but needs fine tuning before prime time in analysis

Lattice scales extraction procedure

- Static energy allows for determination of lattice scales r_i and the string tension σ
- $r_2 \sim 1/m_c$, scales r_i expected to be affected by charm differently
- Locally fit the data using Cornell ansatz

$$E(R,a) = -\frac{A}{R} + B + \sigma R$$

- Asymmetric random picking for systematics
- Smooth the data with Allton ansatz
- Leading discretization effects $\alpha_{\rm s}^2 a^2$ and $a^4 \rightarrow$ continuum limit

¹ R. Sommer, NPB411 (1994); ² C. Bernard, et.al., PRD62 (2000); ³ A. Bazavov, et.al., PRD97 (2018)

Extracted scales compared to literature

Charm quark mass effects on the lattice

- Clearly visible difference between the behaviors of $2+1^1$ and $2+1+1^2$
- Curve with charm effects follows the data better than curves without

¹ A. Bazavov, et.al., PRD100 (2019) ² TUMQCD, PRD107 (2023)

Fitting lambda

- Fit $N_f = 4$ static potential to $r < 1/m_c$,
 - $N_f = 3$ to $r > 1/m_c$
- Fit $N_f = 3$ plus massive charm to whole range
- Choose fit range with these limits using AIC
 - Limits for this talk
 - Limit to 2-loops for consistency
 - Tree-level improvement
 - Limit to off-axis points
 - Focus on finest ensemble

Some (preliminary) results

• Reminder on scales:

2+1+1 $r_1 = 0.3037(25)$ fm

- 2+1 $r_1 = 0.3106(17)$ fm
- We get very preliminary results:

 $\begin{array}{cccc} N_f & r_1 \Lambda^{(N_f)} & \Lambda^{(N_f)} \ [MeV] & "(de) couple" \\ 3+1 & 0.501(19)_{\rm lat}(43)_{\rm soft-scale} & 0.325(13)_{\rm lat}(28)_{\rm soft-scale} & 0.283(31) \ [\Lambda^{(4)}] \\ 4 & 0.457(22)_{\rm lat}(32)_{\rm soft-scale} & 0.297(14)_{\rm lat}(21)_{\rm soft-scale} & 0.339(25) \ [\Lambda^{(3)}] \end{array}$

• Comparing to literature results

$$N_f$$
TUMQCD19 r_1 TUMQCD19 MeVFLAG213 0.494^{+24}_{-13} 314^{+15}_{-8} $339(12)$ 4297(10)

- We have computed the static energy $E_0(r)$ with 2+1+1 flavors
- Determined scales r_0 , r_1 , and r_2 , their ratios, and string tension σ
- All these scales have been measured simultaneously
- We can see charm decoupling well in the data
 - Perturbative charm effects give better description of the data
 - Scales closer to inverse charm mass differ more from their 2+1 flavor counterparts
- Initial, promising results on the $\Lambda_{\overline{\rm MS}}$
- One loop improvement coming soon

- We have computed the static energy $E_0(r)$ with 2+1+1 flavors
- Determined scales r_0 , r_1 , and r_2 , their ratios, and string tension σ
- All these scales have been measured simultaneously
- We can see charm decoupling well in the data
 - Perturbative charm effects give better description of the data
 - Scales closer to inverse charm mass differ more from their 2+1 flavor counterparts
- Initial, promising results on the $\Lambda_{\overline{\rm MS}}$
- One loop improvement coming soon

Thank you for your attention!