

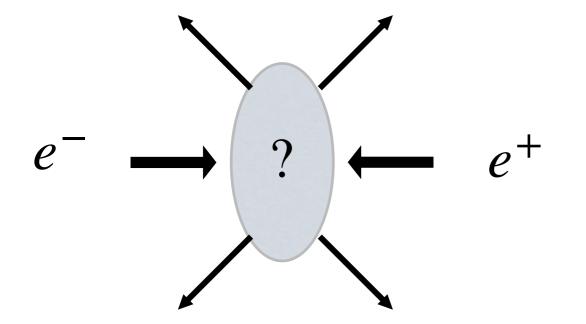
Rhorry Gauld

FCC-ee QCD Physics - jet flavour & tagging CERN (13/12/22)

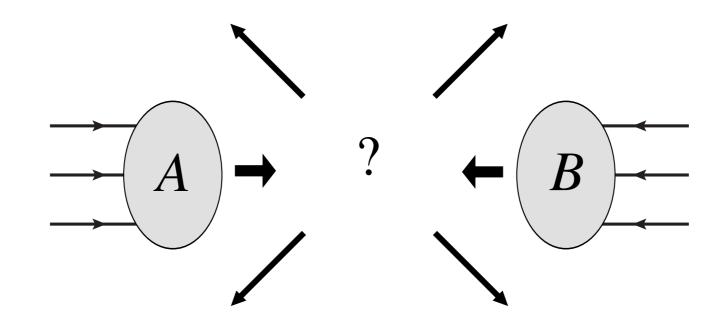
MAX-PLANCK-INSTITUT FÜR PHYSIK Overall goals of this talk:

- Discuss recent (theoretical) progress on jet flavour
 - ... inevitably that will revolve around LHC physics

• Implications/relevance of this work for the FCC-ee



Threshold	\sqrt{s}
Ζ	~ 91 GeV
WW	~ 160 GeV
ZH	~ 240 GeV
$t\overline{t}$	~ 365 GeV



 $AB \to f + X$

A, B may be e or p or \dots

f composed of :

leptons hadrons photons missing E_T jets

. . .

$$d\sigma_{AB \to f+X}^{meas.}$$
 vs $d\sigma_{AB \to f+X}^{theory}$

$$d\sigma^{\text{meas.}}_{AB \to f+X}$$
 vs $d\sigma^{\text{theory}}_{AB \to f+X}$

Focussing on IRC (InfraRed and Collinear) safe observables:

- Those not impacted by collinear splitting(s) or emission(s) of soft particles
- ➡ Can (reliably) use fixed-order perturbation theory

KLN theorem: (Kinoshita '62, Lee & Nauenberg '64)

• For such observables, a cancellation of IRC divergences between virtual and real emissions is ensured (order-by-order)

Comments:

• IRC unsafe observables can of course be defined, but then all orderresummation is required (e.g. PDF evolution, <u>obs. dependent</u> resummation)

Jet algorithms



Experimentally (e.g. LHC):

- Apply an algorithm to particle flow objects (Kaons, Pions,...) (e.g. ATLAS arXiv: 1703.10485, CMS arXiv: 1706.04965, LHCb arXiv: 1310.8197)
- Reconstruct a hadronic jet (~collimation of hadronic radiation)

Theoretically:

• If IRC safe, can be applied to parton-level fixed-order predictions

 $d\sigma_{AB \to f+X}^{\text{meas.}}$ vs $d\sigma_{AB \to f+X}^{\text{parton}}$ 5 (i.e. physics of the hard-scattering)

quark

K,

K⁺

(Cacciari, Salam, Soyez arXiv:0802.1189)

Initialise a list of particles (pseudo jets)

Introduce distance measures between particles (pseudo jets) and a Beam:

$$d_{ij} = \min\left(k_{Ti}^{2p}, k_{Tj}^{2p}\right) \frac{\Delta R_{ij}^2}{R^2}$$
$$d_{iB} = k_{Ti}^{2p}$$

$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

(Cacciari, Salam, Soyez arXiv:0802.1189)

Initialise a list of particles (pseudo jets)

Introduce distance measures between particles (pseudo jets) and a Beam:

$$d_{ij} = \min\left(k_{Ti}^{2p}, k_{Tj}^{2p}\right) \frac{\Delta R_{ij}^2}{R^2} \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$
$$d_{iB} = k_{Ti}^{2p}$$

(Inclusive) clustering proceeds by identifying the min. distance:

- If it is d_{ij} combine particles ij (update list to contain combined particle)
- If it is d_{iB} , identify i as a jet and remove from list (or a d_{cut} value, excl.) [repeat until <u>list</u> is empty]

(Cacciari, Salam, Soyez arXiv:0802.1189)

Initialise a list of particles (pseudo jets)

Introduce distance measures between particles (pseudo jets) and a Beam:

$$d_{ij} = \min\left(k_{Ti}^{2p}, k_{Tj}^{2p}\right) \frac{\Delta R_{ij}^2}{R^2} \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2 d_{iB} = k_{Ti}^{2p}$$

(Inclusive) clustering proceeds by identifying the min. distance:

- If it is d_{ij} combine particles ij (update list to contain combined particle)
- If it is d_{iB} , identify i as a jet and remove from list (or a d_{cut} value, excl.) [repeat until <u>list</u> is empty]

8

Special cases: $k_T (p=1)$ Cambridge/Aachen (p=0) anti- $k_T (p=-1)$

In
$$e^+e^-$$
, e.g. for $p = 1$:

$$d_{ij} = \frac{2\min\left(E_i^2, E_j^2\right)}{Q^2} \left(1 - \cos\theta_{ij}\right)$$
Durham / kT

(Cacciari, Salam, Soyez arXiv:0802.1189)

Initialise a list of particles (pseudo jets)

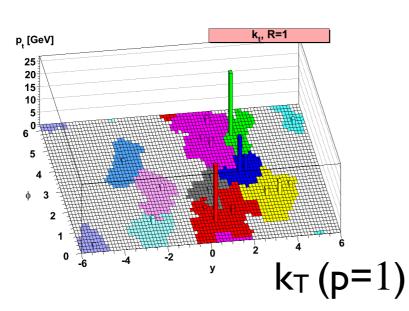
Introduce distance measures between particles (pseudo jets) and a Beam:

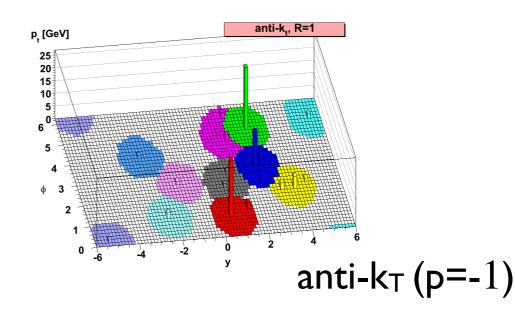
$$d_{ij} = \min\left(k_{Ti}^{2p}, k_{Tj}^{2p}\right) \frac{\Delta R_{ij}^2}{R^2} \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2 d_{iB} = k_{Ti}^{2p}$$

(Inclusive) clustering proceeds by identifying the min. distance:

- If it is d_{ij} combine particles ij (update list to contain combined particle)
- If it is d_{iB} , identify i as a jet and remove from list (or a d_{cut} value, excl.) [repeat until list is empty] Nice geometrical properties

9

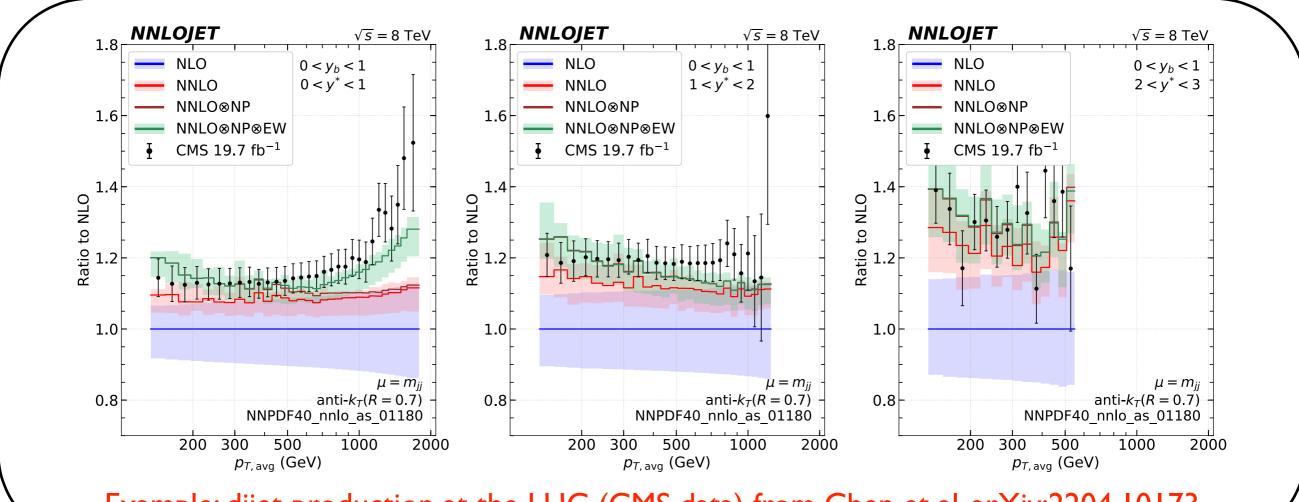




(Cacciari, Salam, Soyez arXiv:0802.1189)

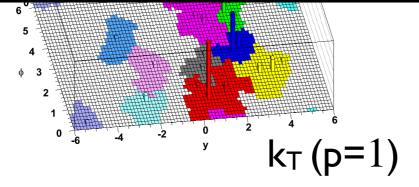
Initialise a list of particles (pseudo jets)

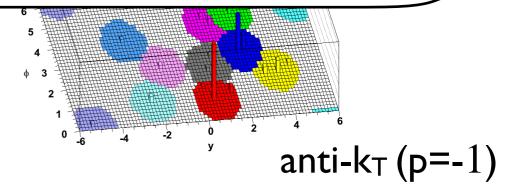
Introduce distance measures between particles (pseudo jets) and a Beam:



Example: dijet production at the LHC (CMS data) from Chen et al. arXiv:2204.10173

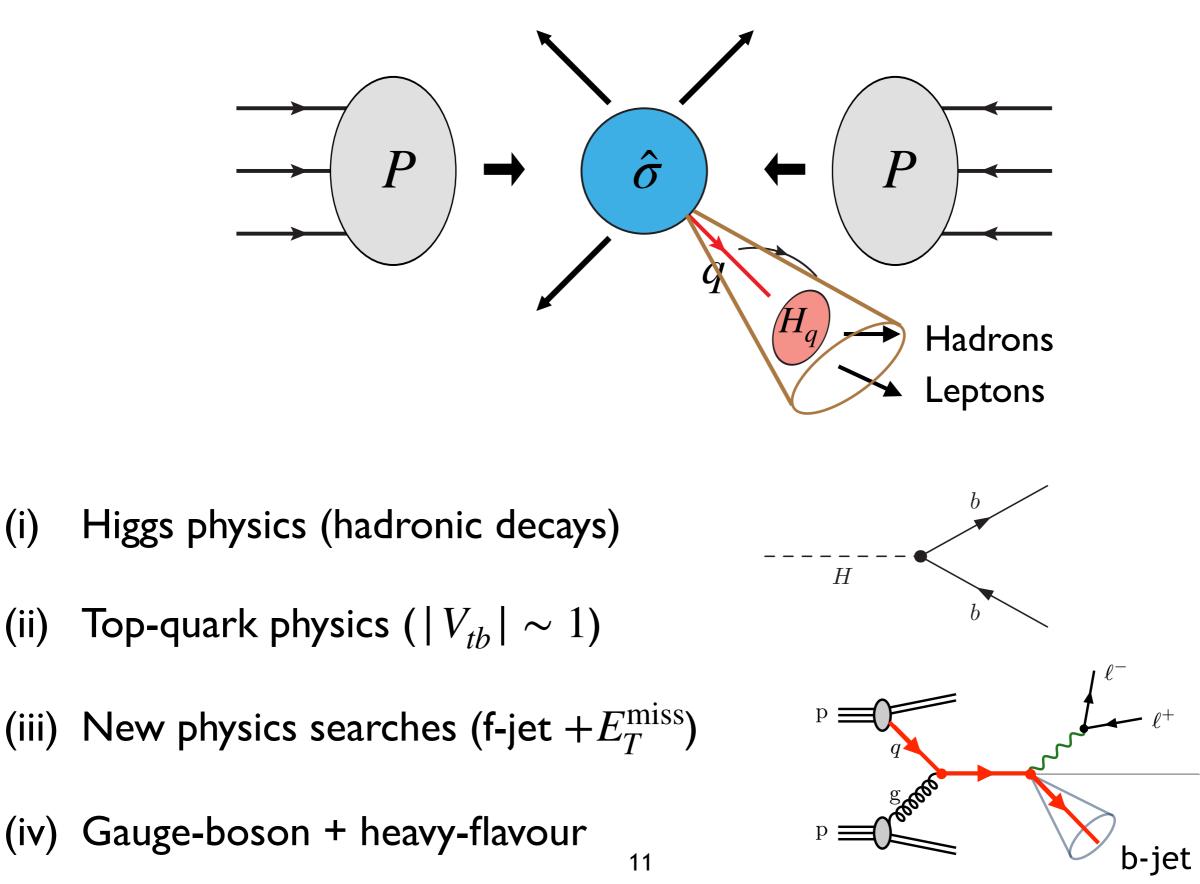
10





Heavy-flavour jets at the LHC

(this has been the catalyst for progress on jet flavour)



(i)

(ii)

(iv)

Heavy-flavour jets at the LHC

Examples of experimental approaches of defining jet flavour: ATLAS arXiv:1504.07670, CMS arXiv:1712.07158, LHCb arXiv:1504.07670

Generally (at level of published data/truth level):

- i) First identify flavour-blind anti- k_T jets in a fiducial region
- ii) Tag these jets with flavour by the presence of I or more D/B hadrons

 $\Delta R(j,D/B) < 0.5$

iii) [ATLAS/LHCb] Additionally make a pT requirement on the D/B hadrons

 $p_T^{D/B} > 5 \text{ GeV}$

Heavy-flavour jets at the LHC

Examples of experimental approaches of defining jet flavour: ATLAS arXiv:1504.07670, CMS arXiv:1712.07158, LHCb arXiv:1504.07670

Generally (at level of published data/truth level):

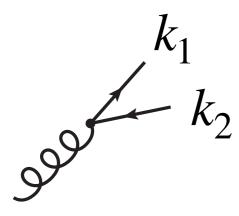
- i) First identify flavour-blind anti-k $_{T}$ jets in a fiducial region
- ii) Tag these jets with flavour by the presence of I or more D/B hadrons

 $\Delta R(j,D/B) < 0.5$

iii) [ATLAS/LHCb] Additionally make a pT requirement on the D/B hadrons

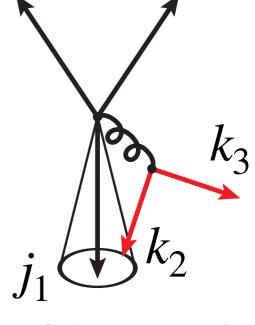
$$p_T^{D/B} > 5 \text{ GeV}$$

Many IRC problems...



the 'even tag'

collinear 'cutout'



soft 'pollution'

An elegant solution (flavour k_T algorithm)

(Banfi, Salam, Zanderighi hep-ph/0601139)

A flavour dependent jet algorithm (i.e. flavoured particle inputs)

I) Flavour number assignment:

 $q = +1, \qquad \bar{q} = -1$

2) Flavour dependent distance measures (and hence clusterings)

$$d_{ij} = \frac{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}{R^2} \begin{cases} \max(k_{ti}, k_{tj})^{\alpha} \min(k_{ti}, k_{tj})^{2-\alpha} & \text{softer of } i, j \text{ is flavoured,} \\ \min(k_{ti}, k_{tj})^{\alpha} & \text{softer of } i, j \text{ is unflavoured.} \end{cases}$$

3) Rapidity-dependent Beam distances (differentiates soft vs. initial collinear)

$$d_{fB} = \max\left(p_{T,f}, p_T^B(y)\right)^{\alpha} \min\left(p_{T,f}, p_T^B(y)\right)^{2-\alpha}$$
$$p_T^B(y) = \sum_i p_{T,i} \left(\Theta(y_i - y) + \Theta(y - y_i)e^{y_i - y}\right)$$

Note: the e^+e^- version, $p_T \to E$, $\Delta R^2/R^2 \to 2(1 - \cos\theta)/Q^2$

An elegant solution (flavour k_T algorithm)

(Banfi, Salam, Zanderighi hep-ph/0601139)

A flavour dependent jet algorithm (i.e. flavoured particle inputs)

However... this algorithm has never been adopted by experiment:

- (1) Jet calibration / pileup subtraction better achieved with anti- k_T jets (mainly a hadron collider issue)
- (2) Flavour information of inputs particles required (i.e. modified inputs) (modified inputs: D/B unstable, represented by secondary vertex SVs)
- (3) Systematics due to probabilistic flavour of SVs
 (every event will have many clustering histories / jet kinematics / flavour)

... Note, some issues less relevant in e^+e^- environment

i

Note: the e^+e^- version, $p_T \to E$, $\Delta R^2/R^2 \to 2(1 - \cos\theta)/Q^2$

An elegant solution (flavour k_T algorithm)

(Banfi, Salam, Zanderighi hep-ph/0601139)

A flavour dependent jet algorithm (i.e. flavoured particle inputs)

Lots of activity from LHC community on this topic:

- (i) Soft Drop grooming approach, Caletti et al. 2205.01109
- (ii) Winner-Takes-All approach, Caletti et al. 2205.01117
- (iii) Flavoured anti-k_T, Czakon et al. 2205. | 1879
- (iv) Successive iterations of flavour- k_T and anti- k_T , Caletti et al. 2108.10024
- (v) Jet angularities & primary Lund jet plane, Fedkevych et al. 2202.05082

A dress of **flavour** to suit any jet

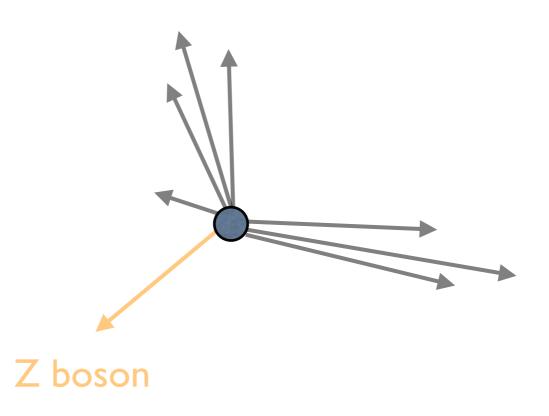
(RG, Huss, Stagnitto arXiv:2208.11138)

Note: the e^+e^- version, $p_T \to E$, $\Delta R^2/R^2 \to 2(1 - \cos\theta)/Q^2$

(RG, Huss, Stagnitto arXiv:2208.11138)

Our motivation: A well defined flavour algorithm applicable to anti-k_T jets (actually, any jet)

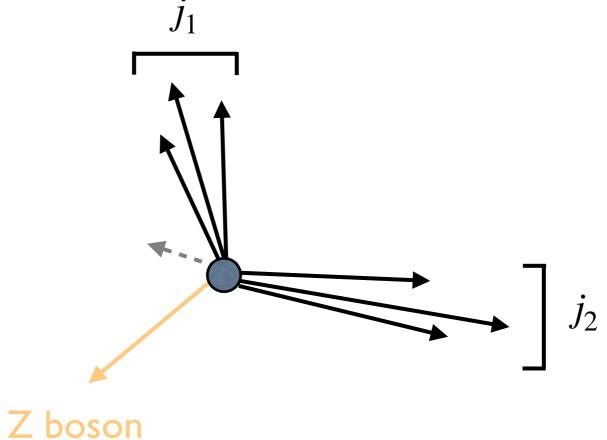
Toy event



(RG, Huss, Stagnitto arXiv:2208.11138)

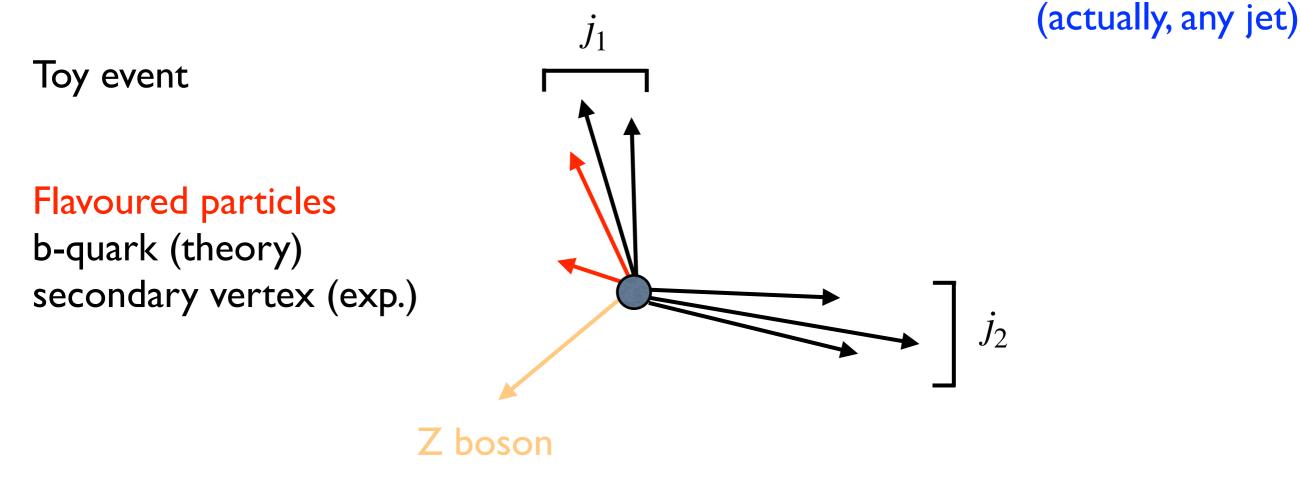
Our motivation: A well defined flavour algorithm applicable to anti- k_T jets i_1 (actually, any jet)

Toy event



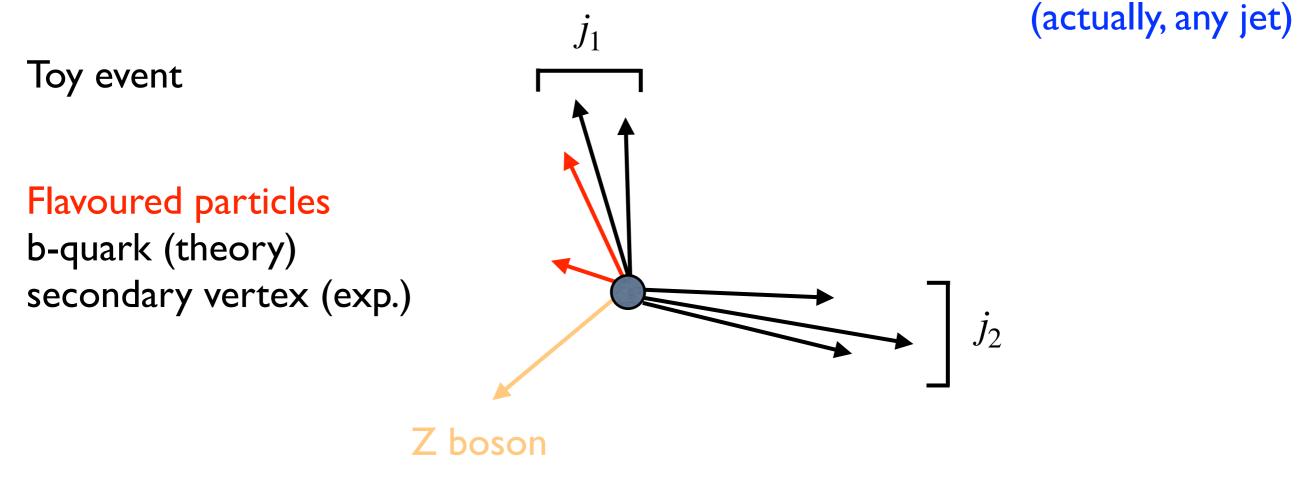
(RG, Huss, Stagnitto arXiv:2208.11138)

Our motivation: A well defined flavour algorithm applicable to anti- k_T jets



(RG, Huss, Stagnitto arXiv:2208.11138)

Our motivation: A well defined flavour algorithm applicable to anti- k_T jets



set of jets
$$\{j_1, \ldots, j_m\}$$
 set of flavoured objects $\{\hat{f}_1, \ldots, \hat{f}_n\}$

an assignment of the flavoured objects to these jets

(collinear safe) flavoured objects

(RG, Huss, Stagnitto arXiv:2208.11138)

flavoured particles (quarks, hadrons) not collinear safe. Define new objects:

Non-technical version:

We dress the flavoured particles with collinear radiation (altering momenta but not flavour) $\{f_1, \ldots, f_n\} \rightarrow \{\hat{f}_1, \ldots, \hat{f}_n\}$ flavoured particles \rightarrow flavoured 'clusters'

(collinear safe) flavoured objects

(RG, Huss, Stagnitto arXiv:2208.11138)

flavoured particles (quarks, hadrons) not collinear safe. Define new objects:

- i) Initialise a <u>list</u> of all particles
- ii) Add to the list all flavoured particles, removing any overlap
- iii) Calculate the distances $d_{ij} = \Delta R_{ij}^2$ between all particles

iv) If $d_{ii}^{\min} > \Delta R_{cut}^2$ terminate the clustering. Otherwise:

- I. (i & j flavourless) replace i & j in the list with combined object ij
- 2. (i & j flavoured) remove flavoured objects i & j from the list
- 3. (i or j flavoured) combine i and j if the criterion:

$$\frac{\min(p_{T,i}, p_{T,j})}{p_{T,i} + p_{T,j}} > z_{\text{cut}} \left(\frac{\Delta R_{ij}}{R_{\text{cut}}}\right)^{\beta} \qquad \text{[Soft-drop]} \\ \text{(Larkoski et al. arXiv: 1402.2657)}$$

Otherwise remove flavourless of i/j from list [Repeat until <u>list</u> empty, or no flavoured particles left]

(RG, Huss, Stagnitto arXiv:2208.11138)

We now have have $\{j_1, \ldots, j_m\}, \{\hat{f}_1, \ldots, \hat{f}_n\}$

We introduce an **Association criterion** for \hat{f}_a and j_b (some possibilities):

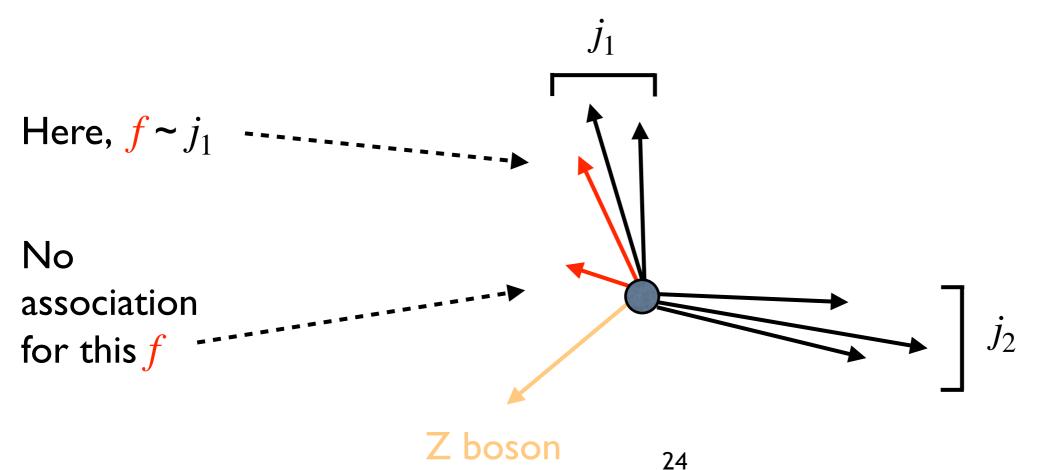
- the flavoured particle f_a is a constituent of jet j_b (applicable to unstable f_a)
- or $\Delta R(\hat{f}_a, j_b) < R_{\text{tag}}$
- or Ghost association of \hat{f}_a (include direction of \hat{f}_a in anti-k_T clustering)

(RG, Huss, Stagnitto arXiv:2208.11138)

We now have have $\{j_1, \ldots, j_m\}, \{\hat{f}_1, \ldots, \hat{f}_n\}$

We introduce an **Association criterion** for \hat{f}_a and j_b (some possibilities):

- the flavoured particle f_a is a constituent of jet j_b (applicable to unstable f_a)
- or $\Delta R(\hat{f}_a, j_b) < R_{\text{tag}}$
- or Ghost association of \hat{f}_a (include direction of \hat{f}_a in anti-k_T clustering)



(RG, Huss, Stagnitto arXiv:2208.11138)

We now have have $\{j_1, \ldots, j_m\}, \{\hat{f}_1, \ldots, \hat{f}_n\}$

We introduce an **Association criterion** for \hat{f}_a and j_b (some possibilities):

- the flavoured particle f_a is a constituent of jet j_b (applicable to unstable f_a)
- or $\Delta R(\hat{f}_a, j_b) < R_{\text{tag}}$
- or Ghost association of \hat{f}_a (include direction of \hat{f}_a in anti-k_T clustering)

Introduce a **Counting** or **Accumulation** for flavour:

- with charge info. (q vs \bar{q}), then q = +1 and $\bar{q} = -1$ (net flavour is sum)
- if one cannot (e.g. experiment), $q = \bar{q} = 1$ (net flavour is sum modulo 2) [i.e. jets with even number of $q_i + \bar{q}_j$ are NOT flavoured]

(RG, Huss, Stagnitto arXiv:2208.11138)

We now have have $\{j_1, \ldots, j_m\}, \{\hat{f}_1, \ldots, \hat{f}_n\}$, association, and counting rules

(RG, Huss, Stagnitto arXiv:2208.11138)

We now have have $\{j_1, \ldots, j_m\}, \{\hat{f}_1, \ldots, \hat{f}_n\}$, association, and counting rules

Dressing algorithm:

- Calculate a set of distances between the flavoured objects, jets and beam:
 - [ff] d_{ab} between all all flavoured objects \hat{f}_a and \hat{f}_b
 - [fj] d_{ab} between \hat{f}_a and j_b ONLY if there is an association
 - [fB] d_{aB} for all \hat{f}_a without a jet association

(RG, Huss, Stagnitto arXiv:2208.11138)

We now have have $\{j_1, \ldots, j_m\}, \{\hat{f}_1, \ldots, \hat{f}_n\}$, association, and counting rules

Dressing algorithm:

- Calculate a set of distances between the flavoured objects, jets and beam:
 - [ff] d_{ab} between all all flavoured objects \hat{f}_a and \hat{f}_b
 - [fj] d_{ab} between \hat{f}_a and j_b ONLY if there is an association
 - [fB] d_{aB} for all \hat{f}_a without a jet association
- Find the minimum distance of all entries in the list
 - if it is an [fj] assign \hat{f}_a to j_b (removing entries involving \hat{f}_a from list)
 - otherwise just remove \hat{f}_a [fB] or \hat{f}_a and \hat{f}_b [ff] from the list

[repeat until list empty]

• The flavour of each jet is then just the accumulation of its flavour

(RG, Huss, Stagnitto arXiv:2208.11138)

We now have have $\{j_1, \ldots, j_m\}, \{\hat{f}_1, \ldots, \hat{f}_n\}$, association, and counting rules

Dressing algorithm.

Here we use the distance measures proposed in flavour-k_T (Banfi, Salam, Zanderighi hep-ph/0601139)

$$d_{ab} = \Delta R_{ab}^2 \max\left(p_{T,a}^{\alpha}, p_{T,b}^{\alpha}\right) \min\left(p_{T,a}^{2-\alpha}, p_{T,b}^{2-\alpha}\right)$$

$$d_{aB\pm} = \max(p_{T,a}^{\alpha}, p_{T,B_{\pm}}^{\alpha}(y_{\hat{f}_{a}})) \min(p_{T,a}^{2-\alpha}, p_{T,B_{\pm}}^{2-\alpha}(y_{\hat{f}_{a}}))$$

Note: the e^+e^- version, $p_T \to E$, $\Delta R^2/R^2 \to 2(1 - \cos\theta)/Q^2$

Another viable option is Jade: (directly suitable for e^+e^-)

$$d_{ab} = 2p_a \cdot p_b$$

• The flavour of each jet is then just the accumulation of its flavour

(RG, Huss, Stagnitto arXiv:2208.11138)

Consider the process $e^+e^- \rightarrow 2$ jets at fixed-order using k_T algorithm

Look at 'bad' events (i.e. where we do not find 2 flavoured jets, $e^+e^- \rightarrow q\bar{q}$)

The 'bad' cross-section should vanish in the $y_3 \rightarrow 0$ limit $(y_3 \text{ defines the distance measure at which the event goes from 2 jet <math>\rightarrow$ 3 jet) $(y_3 \rightarrow 0 \text{ corresponds to limit of extremely soft and/or collinear emissions})$

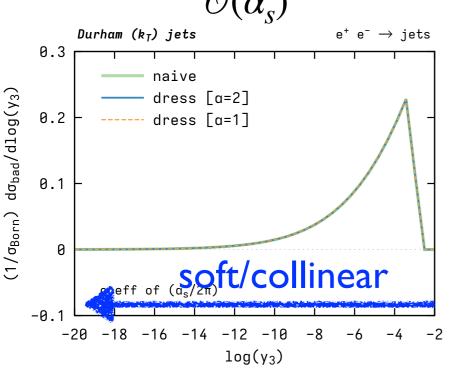
These tests originally proposed/shown in the original flavour- k_T study (Banfi, Salam, Zanderighi hep-ph/0601139)

(RG, Huss, Stagnitto arXiv:2208.11138)

Consider the process $e^+e^- \rightarrow 2$ jets at fixed-order using k_T algorithm

Look at 'bad' events (i.e. where we do not find 2 flavoured jets, $e^+e^- \rightarrow q\bar{q}$)

The 'bad' cross-section should vanish in the $y_3 \rightarrow 0$ limit (y_3 defines the distance measure at which the event goes from 2 jet \rightarrow 3 jet) ($y_3 \rightarrow 0$ corresponds to limit of extremely soft and/or collinear emissions) $O(\alpha_s)$



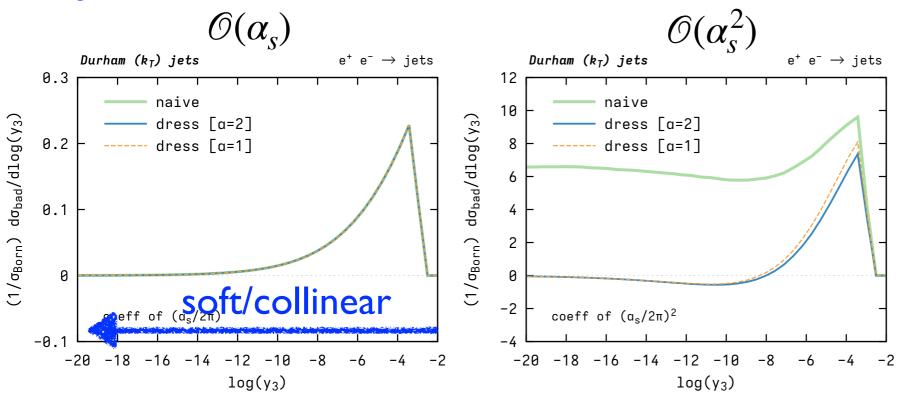
These tests originally proposed/shown in the original flavour-k_T study

(RG, Huss, Stagnitto arXiv:2208.11138)

Consider the process $e^+e^- \rightarrow 2$ jets at fixed-order using k_T algorithm

Look at 'bad' events (i.e. where we do not find 2 flavoured jets, $e^+e^- \rightarrow q\bar{q}$)

The 'bad' cross-section should vanish in the $y_3 \rightarrow 0$ limit (y_3 defines the distance measure at which the event goes from 2 jet \rightarrow 3 jet) ($y_3 \rightarrow 0$ corresponds to limit of extremely soft and/or collinear emissions)



These tests originally proposed/shown in the original flavour-k_T study

32

(RG, Huss, Stagnitto arXiv:2208.11138)

Consider the process $e^+e^- \rightarrow 2$ jets at fixed-order using k_T algorithm

Look at 'bad' events (i.e. where we do not find 2 flavoured jets, $e^+e^- \rightarrow q\bar{q}$)

The 'bad' cross-section should vanish in the $y_3 \rightarrow 0$ limit $(y_3 \text{ defines the distance measure at which the event goes from 2 jet <math>\rightarrow$ 3 jet) $(y_3 \rightarrow 0 \text{ corresponds to limit of extremely soft and/or collinear emissions})$ $\mathcal{O}(\alpha_{\rm s}^3)$ $\mathcal{O}(\alpha_s^2)$ $\mathcal{O}(\alpha_{\rm s})$ Durham (k_T) jets Durham (k_T) jets Durham (k_T) jets $e^+ e^- \rightarrow jets$ $e^+ e^- \rightarrow jets$ e⁺ e⁻ → jets 0.3 2000 12 naive naive 10 $d\sigma_{bad}/dlog(y_3)$ (1/o_{Born}) do_{bad}/dlog(y₃) 1500 dress [a=2] dress [a=2] 0.2 dress [a=1] 8 dress [a=1] 1000 0.1 500 (1/σ_{Born}) (2 0 0 naive 'collinear -500 dress [a=2] -2 coeff of $(a_s/2\pi)^2$ coeff of $(a_s/2\pi)^3$ dress -1000 -0.1 -20 -18 -16 -14 -12 -10 -6 -4 -20 -18 -16 -14 -12 -10 -8 -2 -20 -18 -16 -14 -12 -10 -2 -8 $log(y_3)$ $log(y_3)$ $log(y_3)$

These tests originally proposed/shown in the original flavour- k_T study

 $(1/\sigma_{Born}) d\sigma_{bad}/dlog(y_3)$

I have presented a new algorithm for assigning flavour to jets:

- The approach is IRC safe (at least until N4LO, maybe more)
- It can be applied to any set of (IRC safe) jets
 (and can be applied in any collider environment pp, e⁺e⁻, ... etc.)
- It does **not** require flavoured particles to be part of the initial jet reco.
 (i.e. it can be applied to heavy flavour tagging at an experiment!)
- The algorithm can be applied to general processes with flavoured jets (e.g. run the algorithm for u,d,s,c,b flavours, or for q flavour)

Obvious use cases (where precise theory critical): A_{fb}^b , A_{fb}^c , ...

continued...

- Experimental detectors are not ideal (Particle Identification not perfect) (obviously critical here, when tracking flavour quantum numbers)
- There are many interesting measurements of the IRC-unsafe contr.
 (e.g. double-tagged jet events, critical for PS tunes and fragmentation)

Thank you!

(more pp results in backups)

Whiteboard

Whiteboard

Tests of the algorithm (pp)

(RG, Huss, Stagnitto arXiv:2208.11138)

Can also perform all-order 'sensitivity' tests using Parton Shower framework

In this case study, also use resolution variable to probe IRC sensitive regions (here we study the behaviour, rather than the bad cross-section vanishing)

Here consider dijet events (exclusive k_T algorithm) with $E_T \ge 1$ TeV

We use the resolution variable: $y_3^{k_T} = d_3^{k_T}/(E_{T,1} + E_{T,2})$ (Buonocore et al. arXiv:2201.11519)

These tests originally proposed/shown in the original flavour- k_T study

Tests of the algorithm (pp)

(RG, Huss, Stagnitto arXiv:2208.11138)

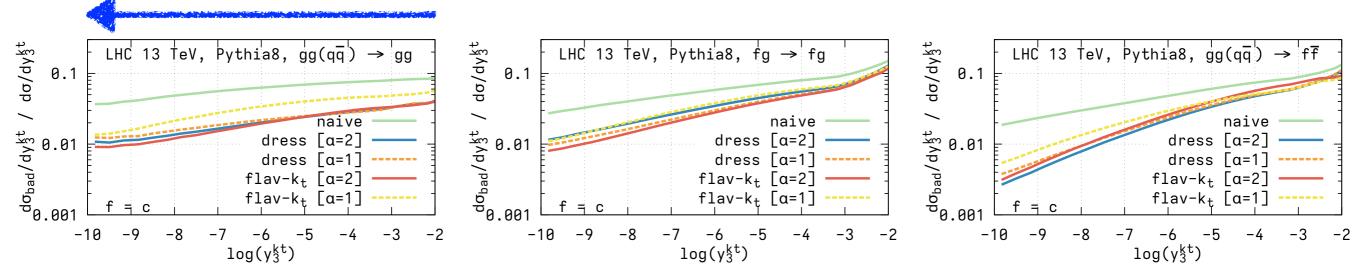
Can also perform all-order 'sensitivity' tests using Parton Shower framework

In this case study, also use resolution variable to probe IRC sensitive regions (here we study the behaviour, rather than the bad cross-section vanishing)

Here consider dijet events (exclusive k_T algorithm) with $E_T \ge 1$ TeV

We use the resolution variable: $y_3^{k_T} = d_3^{k_T}/(E_{T,1} + E_{T,2})$ (Buonocore et al. arXiv:2201.11519)

soft/collinear



These tests originally proposed/shown in the original flavour-k_T study

Application of the algorithm (pp)

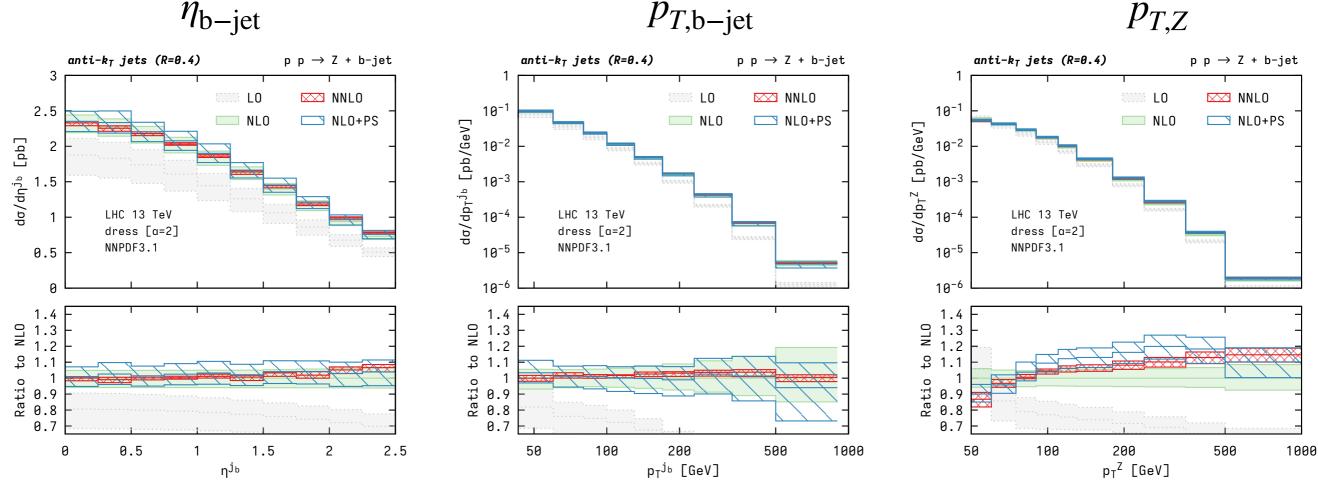
(RG, Huss, Stagnitto arXiv:2208.11138)

Now consider the process $pp \rightarrow Z + b - jet$ in Fiducial region (13 TeV, CMS-like)

(N)NLO at fixed-order w/ NNLOJET, RG et al. arXiv:2005.03016

NLO+PS Hadron-level with aMC@NLO interfaced to Pythia8

Tests sensitivity to: all-order effects, hadronisation (also FO IRC safety in pp)



40

Massive calculation (IRC unsafe def.)

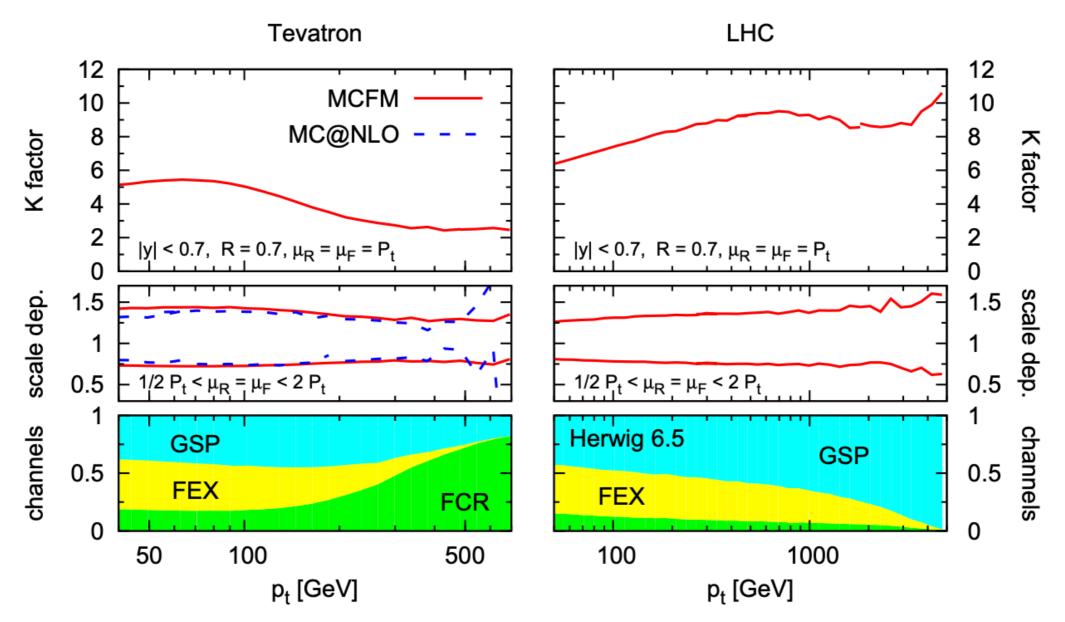


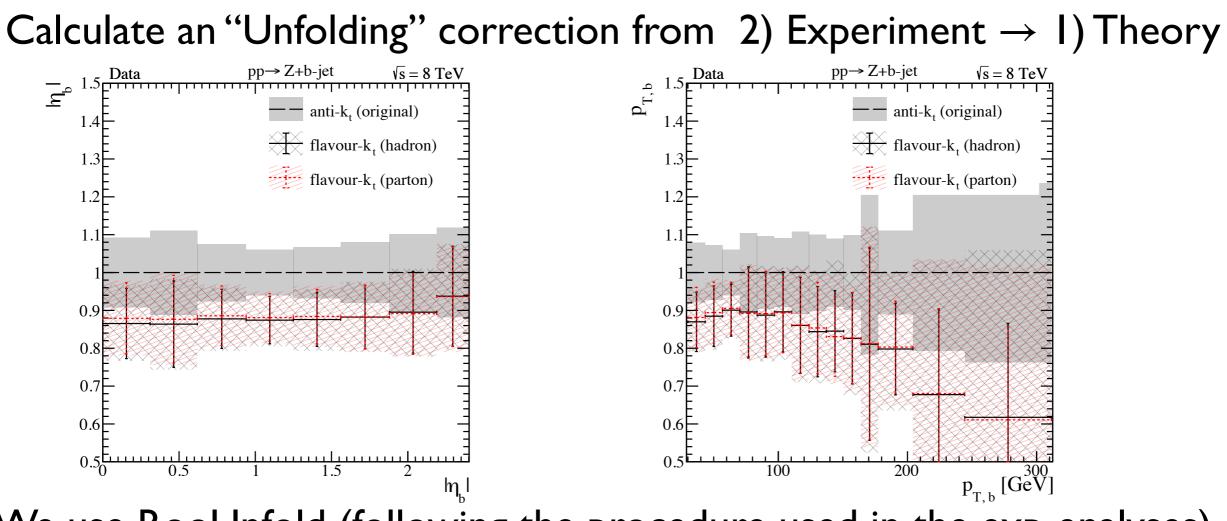
Figure 2: Top: K-factor for inclusive b-jet spectrum as computed with MCFM [10], clustering particles into jets using the k_t jet-algorithm [9] with R=0.7, and selecting jets in the central rapidity region (|y| < 0.7). Middle: scale dependence obtained by simultaneously varying the renormalisation and factorisation scales by a factor two around p_t , the transverse momentum of the hardest jet in the event. Bottom: breakdown of the Herwig [11] inclusive b-jet spectrum into the three major hard underlying channels cross sections (for simplicity the small $bb \rightarrow bb$ is not shown).

arXiv:0704.2999 BSZ

Unfolding for Z+b-jet

How to account for theory-experiment mismatch?

Use an NLO + Parton Shower prediction (which can evaluate both) I) Prediction at parton-level, flavour- k_T algorithm **(Theory)** 2) Prediction at hadron-level, anti- k_T algorithm **(Experiment)**



We use RooUnfold (following the procedure used in the exp. analyses)