

Jet flavor identification for FCCee

Franco Bedeschi, LG, Michele Selvaggi [EPJ C 82 646 (2022) link]

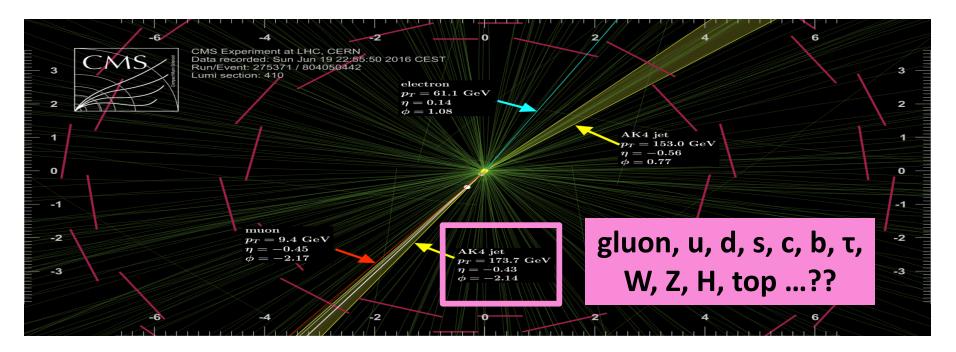
New members: Andrea Del Vecchio, Laurent Forthomme

FCC-ee QCD Physics: Topical Meeting on Jet flavor and Tagging Dec 13, 2022

Outline

- Review a decade in jet identification @ LHC
- Jet flavour tagging developments for FCCee
- Technical details/ How(Where) to start

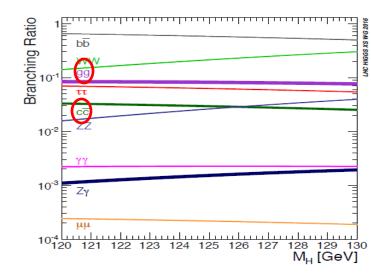
Jet flavor identification ("tagging")

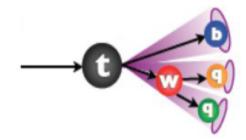


- A topic of high interest in both TH and EXP communities
 - More than 30 years at colliders
 - b-jets at LEP and Tevatron; W, Z, H,.. at the LHC
- Recently: much more powerful algorithms w/ multi-object tagging capabilities
 - opened-up unchartered territory

Physics motivation

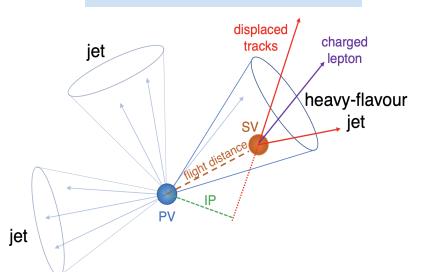
- Flavour tagging essential for the e⁺e⁻ program, e.g.:
 - Higgs Sector:
 - (HL-)LHC can access 3rd gen. couplings and a few of 2nd generation
 - Future e⁺e⁻: Measure Higgs particle properties and interactions in challenging decay modes
 - E.g. cc, 1st gen quarks/fermions, gg [?]
 - Top quark physics [if E_{CM} sufficient]
 - Precise determination of top properties [mass, width, Yukawa]
 - QCD Physics
 - strong couplin (aS), event shapes ..

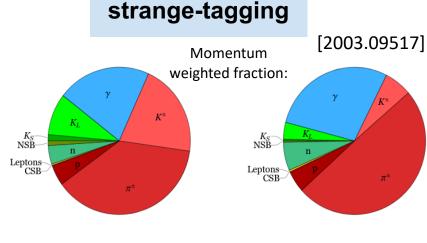




Basics for jet flavor identification







Strange $p_T = 45 \,\mathrm{GeV}$

Down $p_T = 45 \,\mathrm{GeV}$

Large Kaon content

- Charged Kaon as track:
 - K/pi separation
- Neutral Kaons:
 - $\blacksquare K_{S} \rightarrow \pi\pi, K_{L}$

- Large lifetime
- Displaced vertices/tracks
- Large track multiplicity
- non-isolated e/μ

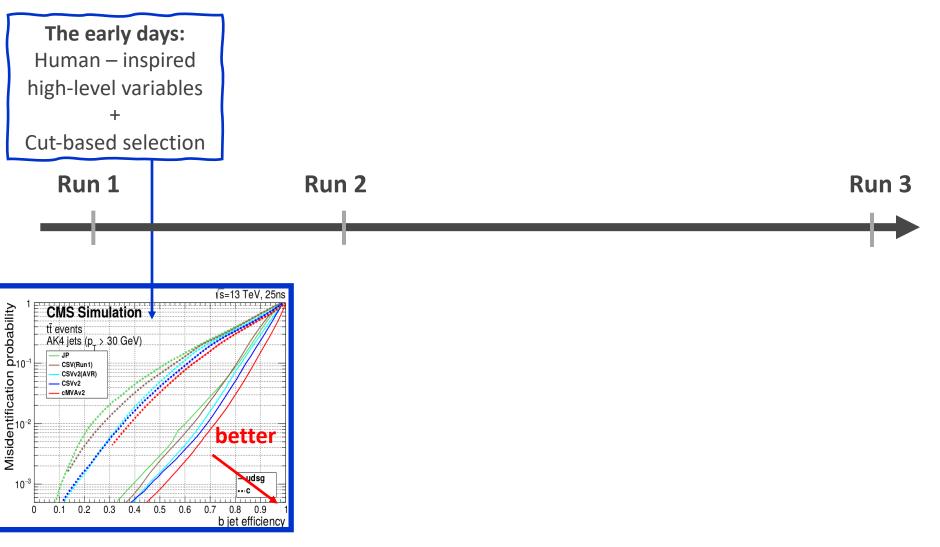
Detector constraints:

Pixel/tracking detectors

- Little material, spatial resolution, precise track alignment
- PID detectors:
 - timing capabilities, energy loss (gas/silicon)

Enormous progress over the last few years:

e.g., b-tagging



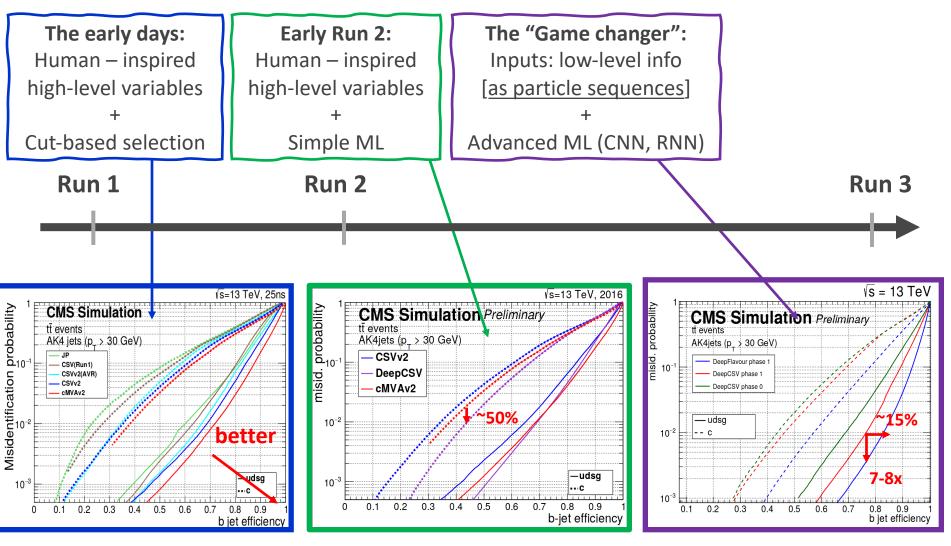
[Disclaimer: Focus on CMS results; similar methods developed by the other LHC experiments]

Enormous progress over the last few years: e.g., b-tagging The early days: Early Run 2: Human – inspired Human – inspired high-level variables high-level variables **Cut-based selection** Simple ML Run 2 Run 1 √s=13 TeV, 25ns √s=13 TeV, 2016 **CMS Simulation** Misidentification probability misid. probability CMS Simulation Preliminary tī events tt events AK4 jets (p > 30 GeV) AK4jets (p₊ > 30 GeV) CSVv2 CSV(Run1) DeepCSV CSVv2(AVR) CSVv2 cMVAv2 cMVAv2 50% 10⁻² better -udsa udsg 10^{-3} 10-8 - C 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 b-jet efficiency b jet efficiency

[Disclaimer: Focus on CMS results; similar methods developed by the other LHC experiments]

Run 3

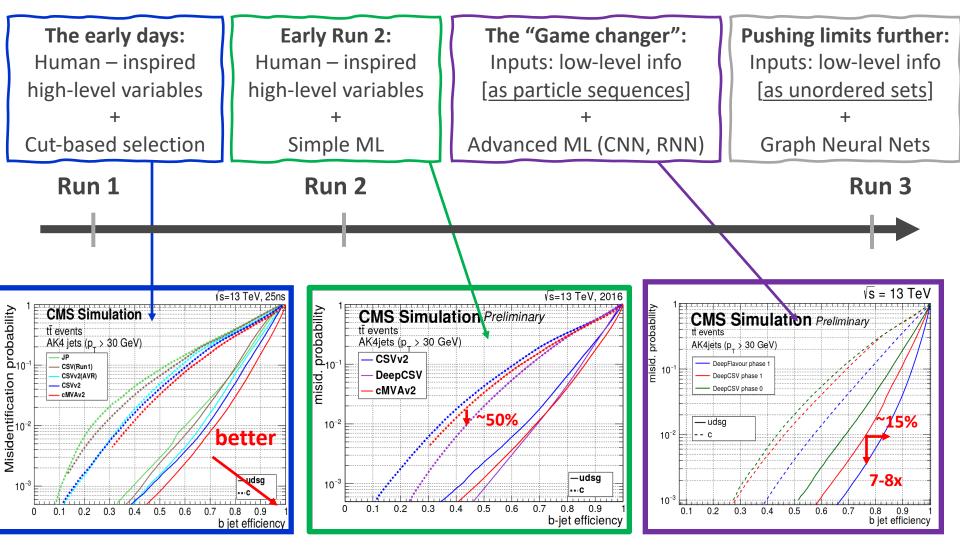
• Enormous progress over the last few years:



[Disclaimer: Focus on CMS results; similar methods developed by the other LHC experiments]

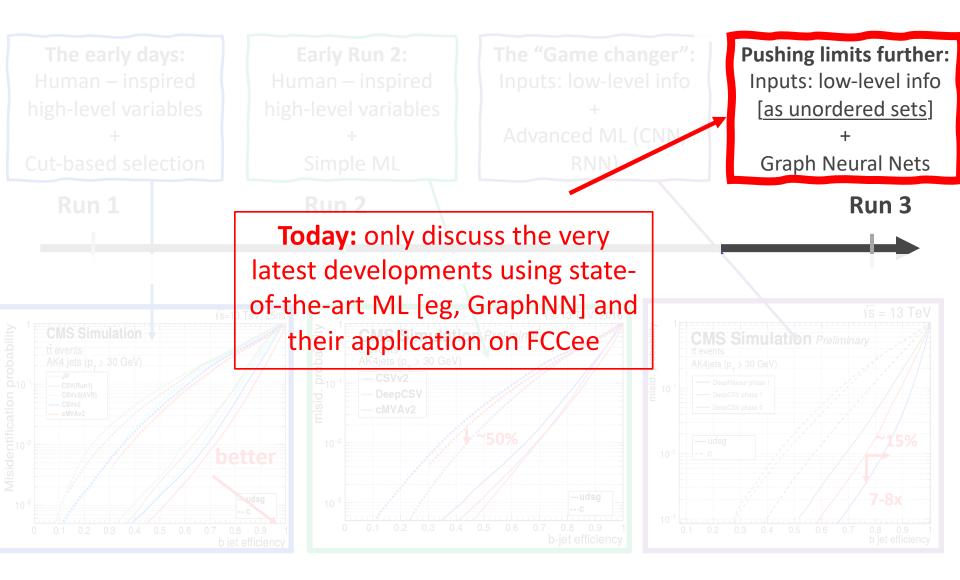
• Enormous progress over the last few years:

e.g., b-tagging



[Disclaimer: Focus on CMS results; similar methods developed by the other LHC experiments]

Enormous progress over the last few years:



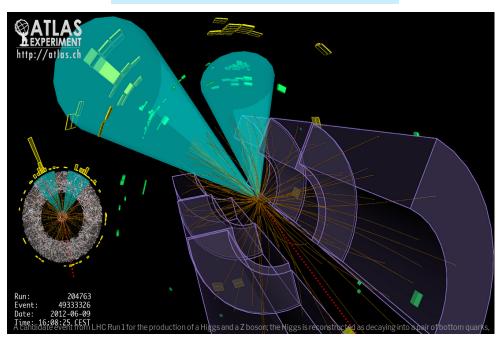
Part 2: Jet Flavor tagging @ FCCee

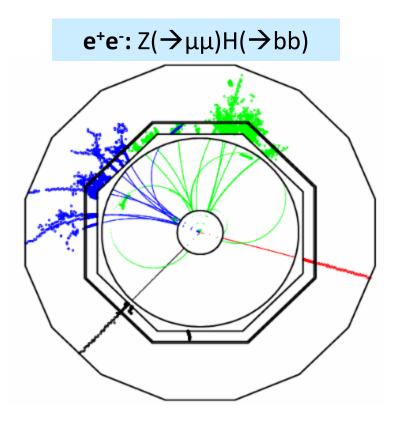
- Scope: Build a general framework for developing flavor tagging algorithms for future colliders [eg., e⁺e⁻]
 - Fast detector simulation
 - Understand detector requirements/ optimize design
 - $\circ~$ eg., vertexing and PID capabilities of the FCCee detectors
 - Develop a versatile flavor tagger
 - Identify with high purity gluons and ud, strange, charm, bottom quarks
 - Baseline: ParticleNet jet tagging algorithm
 - modifications to meet e+e- motivations/challenges/goals
 - Results shown for FCCee & IDEA

Jet tagging: from hh \rightarrow e⁺e⁻ colliders

- e⁺e⁻ colliders provide a very clean environment
 - Lower occupancy , no pileup

LHC: $Z(\rightarrow vv)H(\rightarrow bb)$





Jet tagging: from hh \rightarrow e⁺e⁻ colliders

- e⁺e⁻ colliders provide a very clean environment
 - Lower occupancy , no pileup
- Powerful detectors:
 - Pixel/tracking detectors tailored for b/c tagging
 - Higher granularity wrt to LHC detectors
 - $_{\odot}~$ ATLAS/CMS pixel size: O(~100x100 $\mu m^2)$
 - Less tracking material
 - \circ ~0.4% X₀/layer CMS/ATLAS Pixel, ~0.15-0.2% X₀/layer in e⁺e⁻ detectors
 - better impact parameter resolution/ less multiple scattering
 - \circ CMS/ATLAS Pixel resolution: O(10) µm; ~2-5 µm in e⁺e[−]
 - PID capabilities
 - dE/dx (Si tracker), dN/dx (Drift)
 - Time-of-flight [timing layer]

→ e⁺e⁻: Natural place to explore potential of jet tagging algorithms using advanced ML

 \rightarrow A step further: Consider reconstructing the full event in e⁺e⁻

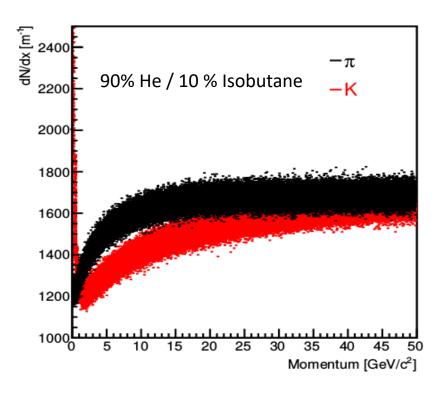
Particle ID: Cluster counting (dN/dx)

- Count number of primary ionization clusters along track path
- Avoids large Landau flukes
- Requires high granularity
- module added in Delphes

#######################################
Cluster Counting

<pre>module ClusterCounting ClusterCounting {</pre>
add InputArray TrackSmearing/tracks
set OutputArray tracks
set Bz \$B
check that these are consistent with DCHCANI/DCHNANO parameters in TrackCovariance module
set Rmin SDCHRMIN
set Rmax SDCHRMAX
set Zmin SDCHZMIN
set Zmax \$DCHZMAX
gas mix option:
0: Helium 90% - Isobutane 10%
1: Helium 100%
2: Argon 50% - Ethane 50%
3: Argon 100%
set GasOption 0
}

IDEA detector:



Particle ID: TOF

Good K/ π separation at low-momenta:

$$t_{\rm flight} \equiv t_{\rm F} - t_{\rm V} = \frac{L}{\beta} = \frac{L\sqrt{p^2 + m^2}}{p}$$

Assumption on vertex time [crucial for highly displaced K_s]

set TrackInputArray TimeSmearing/tracks

set VertexInputArray TruthVertexFinder/vertices

0: assume vertex time tV from MC Truth (ideal case)

2: calculate vertex time as vertex TOF, assuming tPV=0

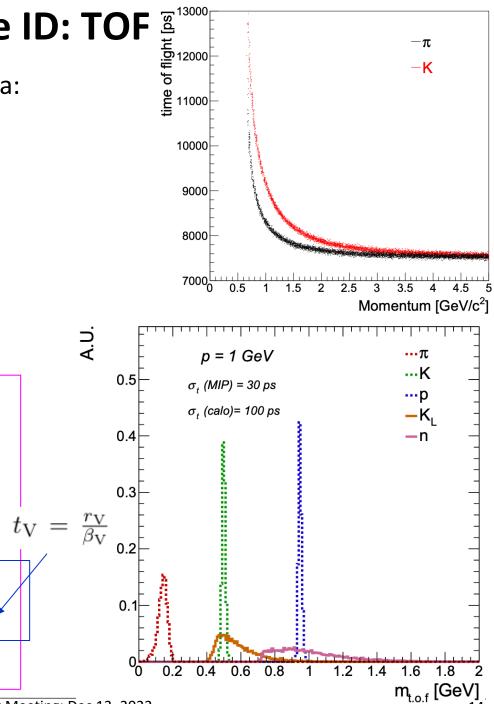
Time Of Flight Measurement

module TimeOfFlight TimeOfFlight {

1: assume vertex time tV = 0

set OutputArray tracks

set VertexTimeMode 2

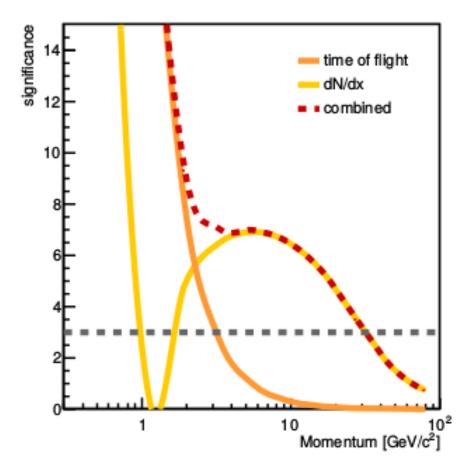


Loukas Gouskos

#

FCCee QCD Working Meeting: Dec 13, 2022

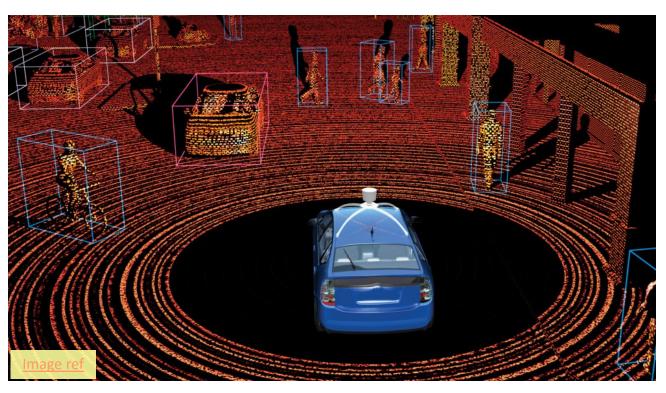
ParticleID: Combined



$3\sigma K/\pi$ separation for tracks w/ p<30 GeV

Designing a Graph-based tagger

- Jet as particle sequence: striking improvement in jet tagging performance
 - Important limitation: Must impose a "human-chosen" ordering [in p_T, displacement, etc..]
 - However, a <u>Jet</u> is an intrinsically <u>unordered set</u> of particles with relationships between the particles
- Beyond sequences: Point clouds



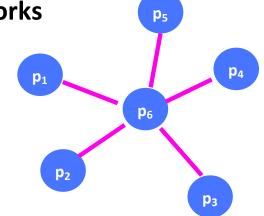
- A very active research area in ML community
- A set of <u>unordered</u> data points in space (x,y,z) with <u>no fixed</u> <u>structure</u>
- Points "close" in space represent physical objects

Designing a Graph-based tagger (II)

- Improve jet representation: "Particle Sequences" → "Particle Clouds"
 - Treat the jet as an <u>unordered set of particles</u>
 - Rich set of information per particle
 - can be "viewed" as the coordinates of each particle in an abstract space

Improved Network architecture: Graph Neural Networks

- Particle cloud represented as a graph
 - Each particle: **vertex** of the graph
 - Connections between particles: the edges

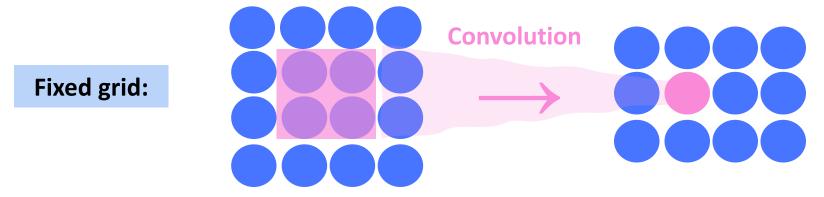


• **Build** the graph:

- One approach: Fully connected Graph [but computationally very expensive]
- Another possibility: apply some criteria
 - e.g., *k*-Nearest Neighbors (*k*NN)

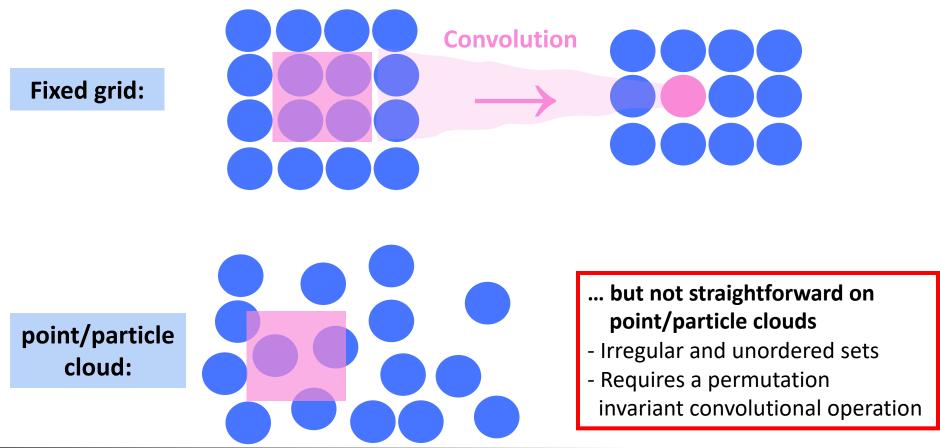
Designing a Graph-based tagger (III)

- Last step: Learn from the graphs
 - Follow a hierarchical learning approach:
 First learn local structures and then more global ones
- Convolution operations proven to be very powerful



Designing a Graph-based tagger (IV)

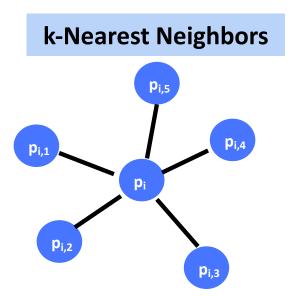
- Last step: Learn from the graphs
 - Follow a hierarchical learning approach:
 First learn local structures and then more global ones
- Convolution operations proven to be very powerful



EdgeConv: Convolution on point clouds

• Find the *k*-nearest neighbors of each point

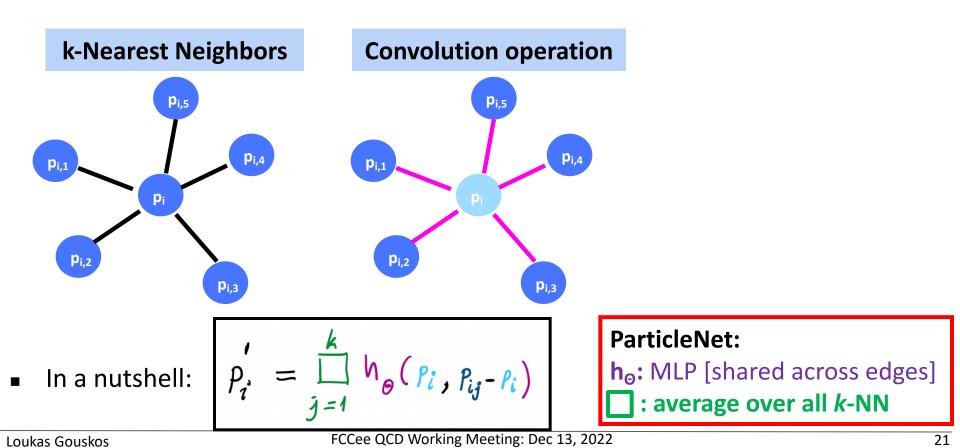
Y. Wang et al.



EdgeConv: Convolution on point clouds

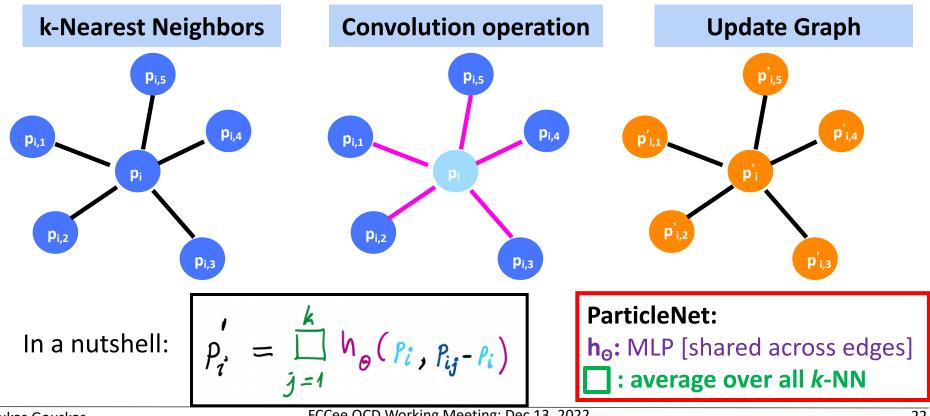
• Find the *k*-nearest neighbors of each point

- Design a permutation invariant **convolution operation**
 - ◆ Define an edge feature function → aggregate edge features w/ a symmetric func.



EdgeConv: Convolution on point clouds

- Find the *k*-nearest neighbors of each point
- Design a permutation invariant convolution operation
 - Define an edge feature function \rightarrow aggregate edge features w/ a symmetric func.
- Update Graph (ie Dynamic Graph CNN, DGCNN): Using kNN in the feature space produced after EdgeConv
 - Can be viewed as a mapping from one particle cloud to another



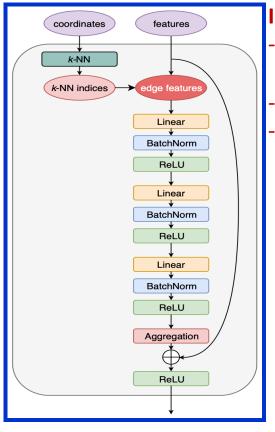
. Wang et al

ParticleNet for jet tagging

Based on EdgeConv and DGCNN

but customized for the jet tagging task

EdgeConv block



Introduced:

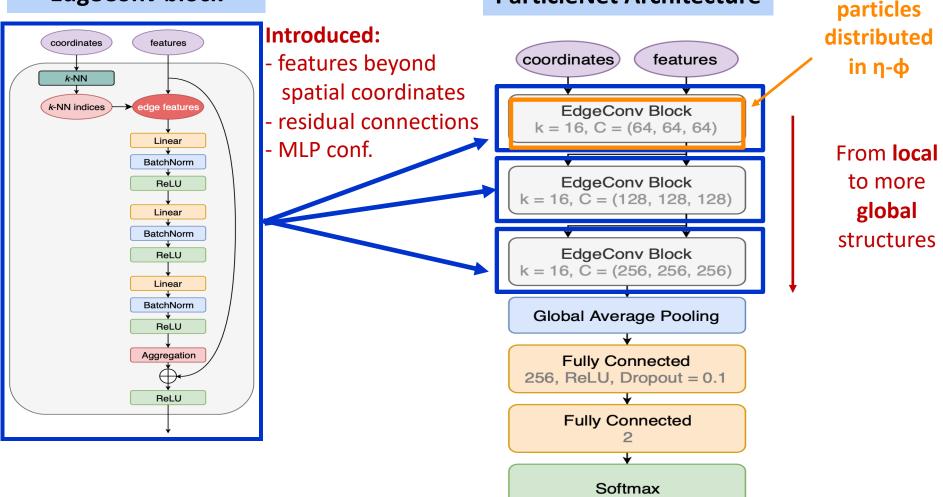
features beyond spatial coordinates
residual connections
MLP conf. H. Qu and LG PRD 101 056019 (2020)

ParticleNet for jet tagging (II)

ParticleNet Architecture

- Based on EdgeConv and DGCNN
 - but customized for the jet tagging task

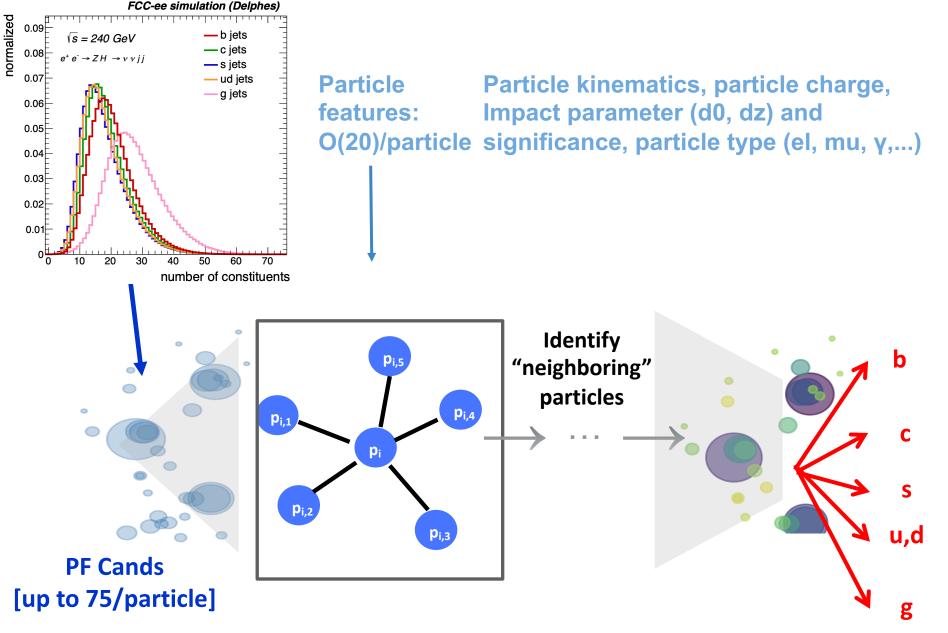
EdgeConv block



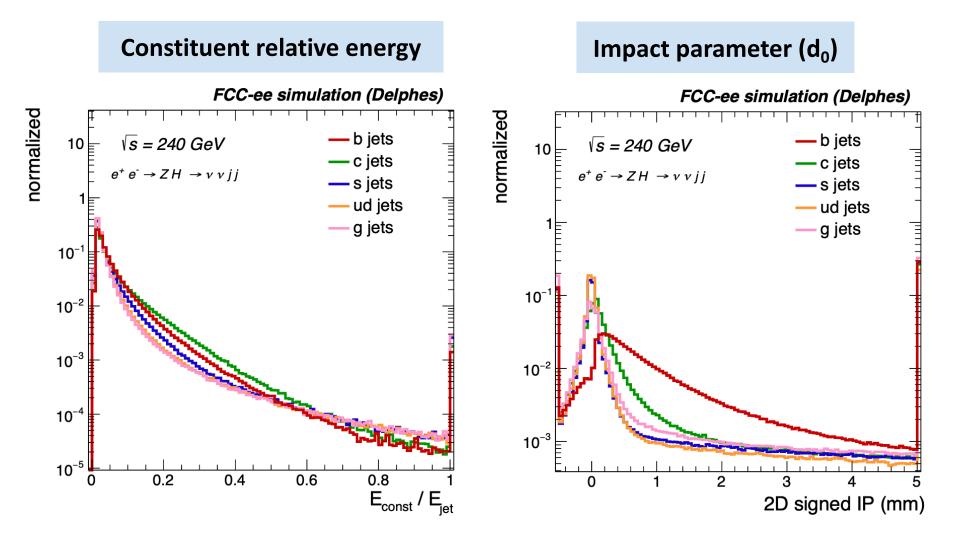
H. Qu and LG

PRD 101 056019 (2020)

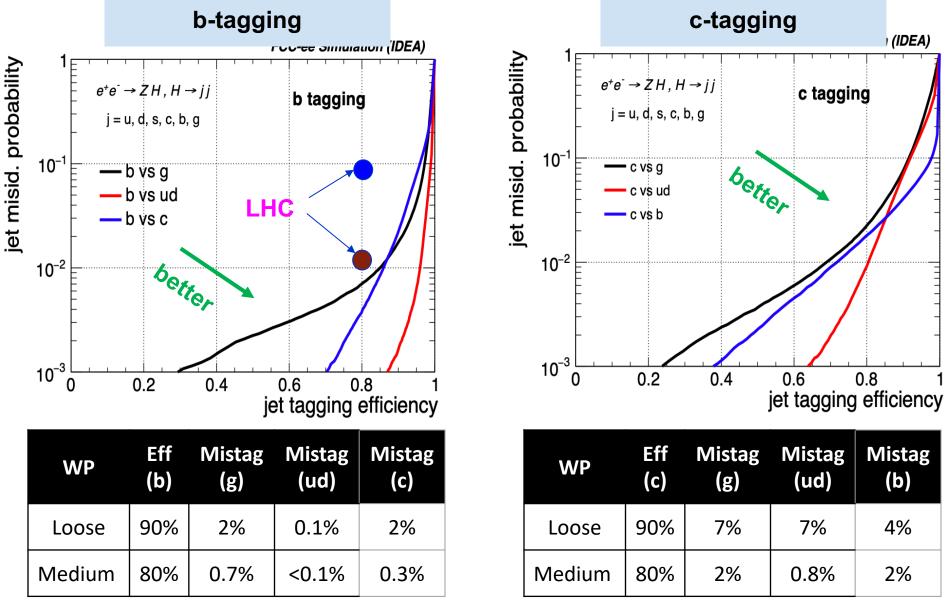
ParticleNet-ee



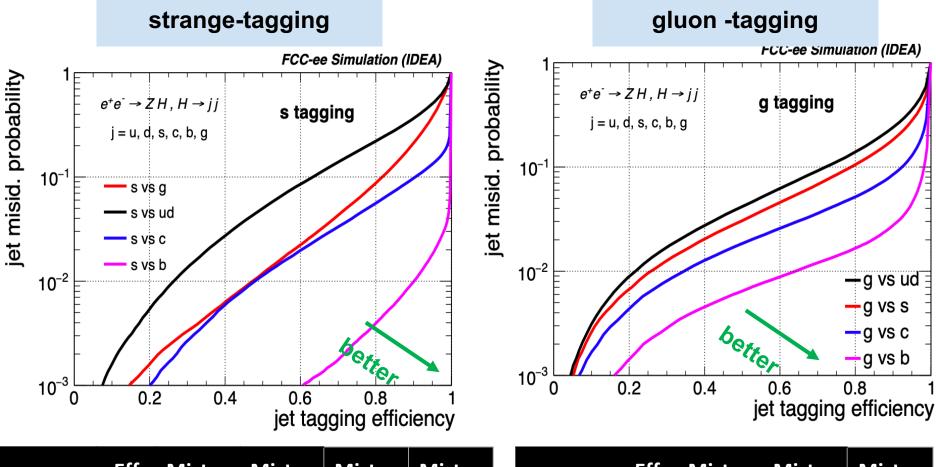
Example of input features



ParticleNet@FCCee: b/c tagging



ParticleNet@FCCee: s/g tagging

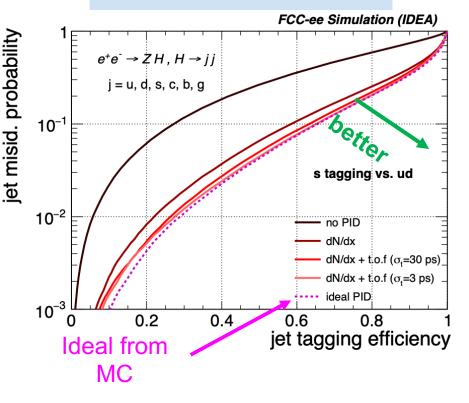


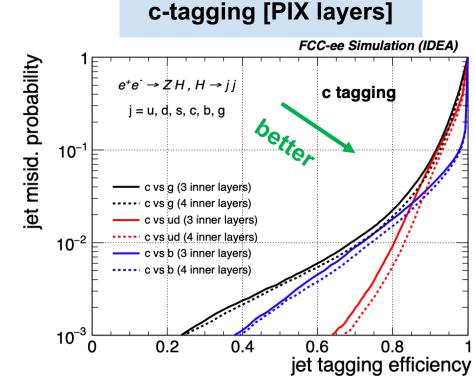
WP	Eff (s)	Mistag (g)	Mistag (ud)	Mistag (c)	Mistag (b)	WP
Loose	90%	20%	40%	10%	1%	Loose
Medium	80%	9%	20%	6%	0.4%	Medium

WP	Eff (g)	Mistag (ud)	Mistag (c)	Mistag (b)
Loose	90%	25%	7%	2.5%
Medium	80%	15%	5%	2%

Impact of detector configurations

Strange tagging [PID]



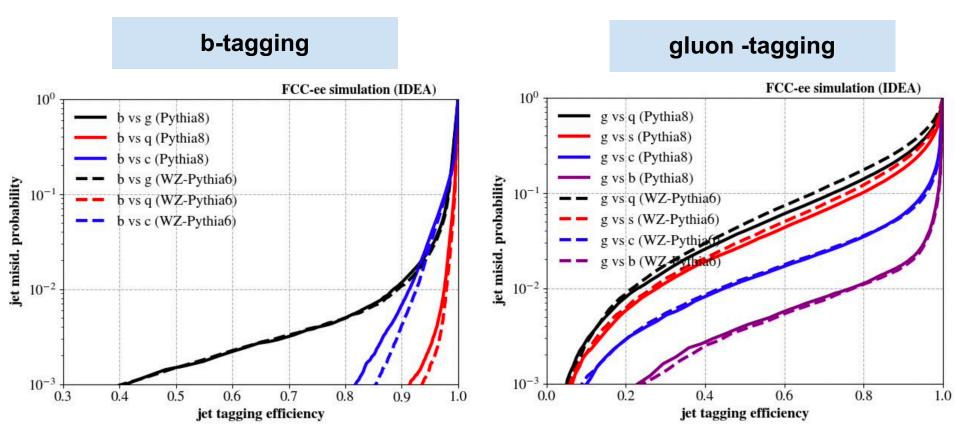


- dN/dx brings most of the gain additional gain w/ TOF (30ps)
 - TOF (3ps): marginal improvement
 - dN/dX + TOF(30ps) ~ perfect PID

- Additional pixel layer:
 - 2x improved BKG rejection in c-tagging
 - marginal/no improvement in b-tagging

Comparison b/w different generators

- ParticleNet-ee trained using *Pythia 8* samples
 - tested on *Pythia 8* [solid lines]
 - tested on WZ-Pythia6 [dashed lines]



- Modest dependence on choice of generator
 - still many tricks in our bag to further reduce the dependence

Part 3: Implementation in FCCSW

Mainly for reference More details: M. Selvaggi's talk on FCCee-Higgs meeting [Dec. 6, 2022]

Executive summary:

- All steps from <u>data preparation</u>, <u>training</u>, and <u>evaluation</u>: validated against original paper, implemented in FCCSW, and documented [link]
- Significant code-cleanup; sequences and selection controlled via configuration files
- Example analysis is place; tests show expected performance

ParticleNet-ee in FCCSW

Example: prepare training dataset

https://github.com/selvaggi/FCCAnalyses/tree/master/examples/FCCee/weaver

Quick tour

stage 1: produce event based tree (Whizard or Pythia8)

test produce input files for training (WHIZARD)
fccanalysis run examples/FCCee/weaver/stage1.py --output test_Hbb_wz.root --files-list /eos/experiment/fcc/ee/generation/Delp

test produce input files for training (PYTHIA8) fccanalysis run examples/FCCee/weaver/stage1.py --output test_Hbb_wz.root --files-list /eos/experiment/fcc/ee/generation/Delp

stage 2: produce jet based tree

python examples/FCCee/weaver/stage2.py test_Hbb_wz.root out_Hbb_wz.root 0 100
python examples/FCCee/weaver/stage2.py test_Hbb_py8.root out_Hbb_py8.root 0 100

31 October 2022

Andrea Del Vecchio | ParticleNet

3

ParticleNet-ee in FCCSW (II)

Example: run inference

https://github.com/selvaggi/FCCAnalyses/tree/master/examples/FCCee/weaver

test inference

bb
fccanalysis run examples/FCCee/weaver/analysis_inference.py --output inference_bb.root --files-list /eos/experiment/fcc/ee/ge
cc
fccanalysis run examples/FCCee/weaver/analysis_inference.py --output inference_cc.root --files-list /eos/experiment/fcc/ee/ge
ss
fccanalysis run examples/FCCee/weaver/analysis_inference.py --output inference_ss.root --files-list /eos/experiment/fcc/ee/ge
gg
fccanalysis run examples/FCCee/weaver/analysis_inference.py --output inference_gg.root --files-list /eos/experiment/fcc/ee/ge

31 October 2022

Andrea Del Vecchio | ParticleNet

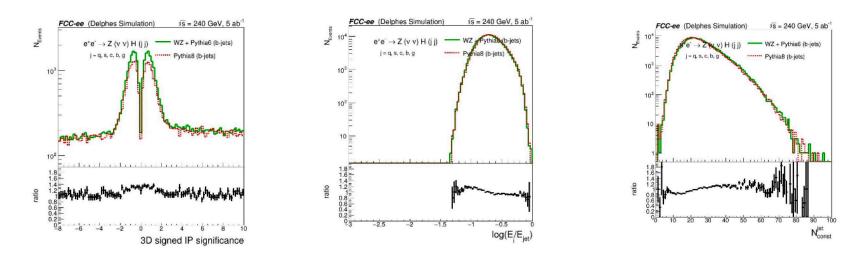
4

ParticleNet-ee in FCCSW (III)

Status update II (validation)

https://github.com/selvaggi/FCCAnalyses/tree/master/examples/FCCee/weaver

- included validation scripts <u>stage_plots.py</u>:
 - to validate all input variables to the tagger
 - run on jet trees used for training (output of stage2.py)



31 October 2022

Andrea Del Vecchio | ParticleNet

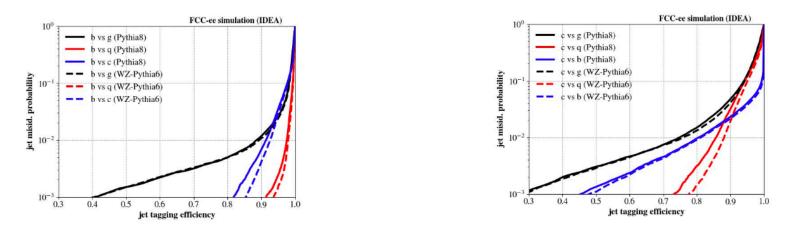
ParticleNet-ee in FCCSW (IV)

Status update II (rocs)

https://github.com/selvaggi/FCCAnalyses/tree/master/examples/FCCee/weaver

- included validation scripts <u>plot_rocs.py</u>:
 - to validate all input variables to the tagger
 - run on event trees used for physics analysis (output of analysis_inference.py)

python examples/FCCee/weaver/plot_rocs.py --indir /eos/experiment/fcc/ee/analyses/case-studies/higgs/flat_trees/zh_vvss_test/



31 October 2022

Andrea Del Vecchio | ParticleNet

6

Summary

- Precise jet flavour identification is essential for the success of the e⁺e⁻ physics program
- Large effort in both TH and EXP communities to improve existing / develop new jet tools
 - Key player in these developments: Advanced ML algorithms
 - Allows us see much more of the true detector potential
 - Still room for improvement / other ideas to try
 - Strong interest by the theory and experiment communities
- Effort pays off: Large gain in performance wrt traditional approaches
 - Results in collision data look encouraging
 - Lots of effort to better understand what the DNN learns
- Jet tagging methods developed at the LHC can be explored in e⁺e⁻ experiments and potentially enhance the e⁺e⁻ physics program
 - And/or motivate the design of future detectors