Introduction to the use of FEMM

Attilio Milanese

CAS course on Normal- and Superconducting Magnets
19 Nov. – 2 Dec. 2023
St. Pölten, Austria

Thanks in particular to Herbert De Gersem, Thomas Zickler and Susana Izquierdo Bermudez
Installation
Finite Element Method Magnetics

Magnetics, Electrostatics, Heat Flow, and Current Flow

- Download
- Documentation
- FAQ
- Linux Support
- Examples
- User Contributions
- Miscellaneous
- Related Links
- Author
For the room temperature and superconducting magnets hands-on sessions we will use FEMM and its embedded scripting language Lua.

For Windows users: just install FEMM
For Linux or Mac users: see here
General comments
Electromagnetic field solvers

- commercial or academic or freeware
- low-frequency and/or high-frequency
- circuit and/or 2D fields and/or 3D fields
- problem specific or multi-purpose
- electromagnetic fields and/or multi-physics
- cheap or expensive

non-exhaustive list !!

CEDRAT
JMAG
infolytica corporation
operasimulation software
ANSYS
FEMM
FEKO
Comsol Multiphysics

https://roxie.docs.cern.ch

CERN
Poisson (Los Alamos)
Radia (ESRF)
Mermaid (Novosibirsk)
1. Finite Element Method Magnetics
 www.femm.info

 Field Solver lectures
 Magnetostatic Simulation of an Accelerator Magnet exercise
 (make your own finite-element solver)

3. T. Zickler, Numerical design of a normal-conducting, iron-dominated electromagnet using FEMM 4.2, JUAS
 Tutorial attached on indico
FEMM can be used in different ways

Through the GUI (Graphical User Interface)

Through scripting, either with the embedded Lua, or with MATLAB®, GNU Octave, Python, etc.

Through a mix of GUI and scripting

For details, see the excellent FEMM manual

In all cases, please check that the results make sense (flux lines, analytical estimates), exploit symmetries, run the model with different mesh sizes, check also the impact of the background dimensions
To script in FEMM with Lua, see the dedicated chapter “Lua scripting” in the excellent FEMM manual

No separate or additional installation for Lua shall be needed
Run a Lua script

Show / hide Lua console window
2.2.1 Preprocessor Drawing Modes

The key to using the preprocessor is that the preprocessor is always in one of five modes: the Point mode, the Segment mode, Arc Segment mode, the Block mode, or the Group mode. The first four of these modes correspond to the four types of entities that define the problems geometry: nodes that define all corners in the solution geometry, line segments and arc segments that connect the nodes to form boundaries and interfaces, and block labels that denote what material properties and mesh size are associated with each solution region. When the preprocessor is in one of the first four drawing modes, editing operations take place only upon the selected type of entity. The fifth mode, the group mode, is meant to glue different objects together into parts so that entire parts can be manipulated more easily.

One can switch between drawing modes by clicking the appropriate button on the Drawing Mode portion of the toolbar. This section of the toolbar is pictured in Figure 2.1. The buttons

![Figure 2.1: Drawing Mode toolbar buttons.](image)

...correspond to Point, Line Segment, Arc Segment, Block Label, and Group modes respectively. The default drawing mode when the program begins is the Point mode.
Point Mode Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>Edit the properties of selected point(s)</td>
</tr>
<tr>
<td>Tab</td>
<td>Display dialog for the numerical entry of coordinates for a new point</td>
</tr>
<tr>
<td>Escape</td>
<td>Unselect all points</td>
</tr>
<tr>
<td>Delete</td>
<td>Delete selected points</td>
</tr>
</tbody>
</table>

Line/Arc Segment Mode Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>Edit the properties of selected segment(s)</td>
</tr>
<tr>
<td>Escape</td>
<td>Unselect all segments and line starting points</td>
</tr>
<tr>
<td>Delete</td>
<td>Delete selected segment(s)</td>
</tr>
</tbody>
</table>

Block Label Mode Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>Edit the properties of selected block labels(s)</td>
</tr>
<tr>
<td>Tab</td>
<td>Display dialog for the numerical entry of coordinates for a new label</td>
</tr>
<tr>
<td>Escape</td>
<td>Unselect all block labels</td>
</tr>
<tr>
<td>Delete</td>
<td>Delete selected block label(s)</td>
</tr>
</tbody>
</table>

Group Mode Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>Edit group assignment of the selected objects</td>
</tr>
<tr>
<td>Escape</td>
<td>Unselect all</td>
</tr>
<tr>
<td>Delete</td>
<td>Delete selected block label(s)</td>
</tr>
</tbody>
</table>

View Manipulation Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Arrow</td>
<td>Pan left</td>
</tr>
<tr>
<td>Right Arrow</td>
<td>Pan right</td>
</tr>
<tr>
<td>Up Arrow</td>
<td>Pan up</td>
</tr>
<tr>
<td>Down Arrow</td>
<td>Pan down</td>
</tr>
<tr>
<td>Page Up</td>
<td>Zoom in</td>
</tr>
<tr>
<td>Page Down</td>
<td>Zoom out</td>
</tr>
<tr>
<td>Home</td>
<td>Zoom “natural”</td>
</tr>
</tbody>
</table>

Table 2.1: Magnetics Preprocessor hot keys

Table 2.2: Magnetics Preprocessor Mouse button actions

[from the FEMM manual]
Figure 2.13: Materials Library dialog.

[from the FEMM manual]
Typical boundary conditions (on lines)

B parallel

B perpendicular

(this is sort of implicit when using linear triangles, see FEMM documentation)
2.2.8 Exterior Region

One often desires to solve problems on an unbounded domain. Appendix [A.3.3] describes an easy-to-implement conformal mapping method for representing an unbounded domain in a 2D planar finite element analysis. Essentially, one models two disks—one represents the solution region of interest and contains all of the items of interest, around which one desires to determine the magnetic field. The second disk represents the region exterior to the first disk. If periodic boundary conditions are employed to link the edges of the two disks, it can be shown (see Appendix [A.3.3]) that the result is exactly equivalent to solving for the fields in an unbounded domain.

A.3.3 Kelvin Transformation

Figure A.8: Example input geometry.
Walk-through a FEMM example
A decalogue (in 8 points)

1. Create a new file and set main problem parameters
2. Declare a few variables (for parametric analyses)
3. Load or prepare material properties, boundary conditions and circuit elements
4. Define the geometry
5. Save and mesh
6. Solve
7. Post-process
8. Check flux lines, compare against analytical estimates, solve with a different mesh size, check with different background dimensions (in particular for “open” magnets), etc.
1. Create a new file and set main problem parameters

--- > File --- > New

--- > Problem

1 m depth, so results (energy, inductance, force, …) will be per m length

-- Creates a new preprocessor document (magnetics problem)
newdocument(0)

-- Main problem parameters
-- 0 frequency
-- mm units
-- planar problem
-- solver precision
-- depth, set to 1 m so to have results per m length
mi_probdef(0, "millimeters", "planar", 1e-8, 1000)
2. Declare a few variables (for parametric analyses)

Write (or copy & paste) in Lua console, then click Evaluate

```
-- A few variables
w_coil = 99
h_coil = 22
x_bck = 800
y_bck = 400
workfolder = "C:\\temp\\"
filename = "dipole"

-- Current and number of turns per coil block
current = 450
turns = 18

-- Mesh parameters
mshf = 1
msh_yoke = 10*mshf
msh_coil = 8*mshf
msh_gap = 1*mshf
msh_bck = 25*mshf
```

mesh size define via a scaling factor
3. Load or prepare material properties (from the available library), boundary conditions and circuit elements

```plaintext
-- Material properties, from the available library
mi_getmaterial("Air")
mi_getmaterial("Pure Iron")
mi_getmaterial("Copper")
```
3. Load or prepare material properties (from the available library), boundary conditions and circuit elements

--- Boundary conditions
mi_addboundprop("B parallel", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
mi_addboundprop("B perpendicular", 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0)
3. Load or prepare material properties (from the available library), boundary conditions and circuit elements

“current” is a previously defined variable, alternatively you can enter a number

```c
-- A circuit, multiple ones are possible
mi_addcircprop("Coil", current, 1)
```
4. Define the geometry (iron, coil, air, background)

Hot keys are particularly useful, also the grid can be handy
Previously defined variables can be used to describe the geometry
Copy and paste in the Lua console is also a possibility
Another approach is to import a DXF
4. Define the geometry (iron, coil, air, background)

-- Yoke (array of points, for convenience)

```plaintext
x_yoke, y_yoke = [], []
x_yoke[1], y_yoke[1] = 0, 25
x_yoke[3], y_yoke[3] = 71, 24.2
x_yoke[4], y_yoke[4] = 90, 24.2
x_yoke[5], y_yoke[5] = 105, 60
x_yoke[6], y_yoke[6] = 105, 295
x_yoke[7], y_yoke[7] = 55, 345
x_yoke[8], y_yoke[8] = -409, 345
x_yoke[9], y_yoke[9] = -459, 295
x_yoke[10], y_yoke[10] = -459, 0
x_yoke[11], y_yoke[11] = -249, 0
x_yoke[12], y_yoke[12] = -249, 127
x_yoke[13], y_yoke[13] = -105, 127
x_yoke[14], y_yoke[14] = -105, 60
x_yoke[15], y_yoke[15] = -90, 24.2
x_yoke[16], y_yoke[16] = -71, 24.2
x_yoke[17], y_yoke[17] = -71, 25
```

np_yoke = getn(x_yoke)

```plaintext
for ip_yoke = 1, np_yoke do
    mi_addnode(x_yoke[ip_yoke], y_yoke[ip_yoke])
end
```

```plaintext
for ip_yoke = 1, np_yoke-1 do
    mi_addsegment(x_yoke[ip_yoke], y_yoke[ip_yoke], x_yoke[ip_yoke+1], y_yoke[ip_yoke+1])
end
```

```plaintext
mi_addsegment(x_yoke[np_yoke], y_yoke[np_yoke], x_yoke[1], y_yoke[1])
--
```

```plaintext
mi_addblocklabel(0, 150)
mi_selectlabel(0, 150)
mi_setblockprop("Pure Iron", 0, msh_yoke)
mi_clearselected()
```
4. Define the geometry (iron, coil, air, background)

```plaintext
-- Coil
mi_addnode(127, 100)
mi_addnode(127+w_coil, 100)
mi_addnode(127+w_coil, 100+h_coil)
mi_addnode(127, 100+h_coil)
mi_addsegment(127, 100, 127+w_coil, 100)
mi_addsegment(127+w_coil, 100, 127+w_coil, 100+h_coil)
mi_addsegment(127+w_coil, 100+h_coil, 127, 100+h_coil)
mi_addsegment(127, 100+h_coil, 127, 100)

--
mi_addblocklabel(127+w_coil/2, 100+h_coil/2)
mi_selectlabel(127+w_coil/2, 100+h_coil/2)
mi_setblockprop("Copper", 0, msh_coil, "Coil", 0, 0, turns)
-- copies
mi_selectrectangle(127, 100, 127+w_coil, 100+h_coil, 4)
mi_copytranslate(0, -(h_coil+5), 2, 4)
mi_selectrectangle(127, 100-2*(h_coil+5), 127+w_coil, 100+h_coil, 4)
mi_copytranslate(-336, 0, 1, 4)
-- change sign of current on one side
mi_selectrectangle(127, 100-2*(h_coil+5), 127+w_coil, 100+h_coil, 2)
mi_setblockprop("Copper", 0, msh_coil, "Coil", 0, 0, -turns)
mi_clearselected()
```

for the current carrying region, assign the relevant circuit element and number of turns
4. Define the geometry (iron, coil, air, background)

-- Air region (background and gap)
mi_addnode(0, 0)
mi_addnode(130, 0)
mi_addnode(-130, 0)
mi_addsegment(130, 0, x_yoke[4], y_yoke[4])
mi_addsegment(-130, 0, x_yoke[15], y_yoke[15])
--
mi_addnode(-500, 0)
mi_addnode(x_bck, 0)
mi_addnode(x_bck, y_bck)
mi_addnode(-500, y_bck)
mi_addsegment(-500, 0, x_bck, 0)
mi_addsegment(x_bck, 0, x_bck, y_bck)
mi_addsegment(x_bck, y_bck, -500, y_bck)
mi_addsegment(-500, y_bck, -500, 0)
--
mi_addblocklabel(0, 10)
mi_selectlabel(0, 10)
mi_setblockprop("Air", 0, msh_gap)
mi_clearselected()
--
mi_addblocklabel(150, 150)
mi_selectlabel(150, 150)
mi_setblockprop("Air", 0, msh_bck)
mi_clearselected()
--
mi_addblocklabel(-150, 20)
mi_selectlabel(-150, 20)
mi_setblockprop("Air", 0, 6*msh_gap)
mi_clearselected()
4. Define the geometry (iron, coil, air, background)

-- hide lines in post-processor
mi_selectsegment((130+x_yoke[4])/2, y_yoke[4]/2)
mi_selectsegment((-130+x_yoke[15])/2, y_yoke[15]/2)
mi_setsegmentprop("", 0, 1, 1)
mi_clearselected()

-- Boundary conditions on segments
mi_selectrectangle(-500, 0, x_bck, 0, 1)
mi_setsegmentprop("B perpendicular")
mi_clearselected()
mi_selectsegment(x_bck, y_bck/2)
mi_selectsegment((x_bck-500)/2, y_bck)
mi_selectsegment(-500, y_bck/2)
mi_setsegmentprop("B parallel")
mi_clearselected()

-- Zoom out
mi_zoomnatural()
We should be here: a good moment for a break?

By the way, no need to model separate conductors or even coil blocks, for such designs
5. Save and mesh

Probably best to save before, in any case you need to save before you mesh

--- > Mesh --- > Create Mesh

```
-- Save
mi_saveas(workfolder .. filename .. ".fem")

-- Mesh
mi_createmesh()
```
Notice the finer mesh in the gap; sometimes a separate region can be created for the pole tip, to allow for a finer mesh. The background region can have a coarser mesh – the size of the element is inversely proportional to the field gradient.

Other meshing options are available in FEMM, see under segment and region properties.

[If you save via the script, the tab on the bottom left might still display “Untitled”]
6. Solve

--- Analysis --- Analyze

-- Solve
mi_analyze()
7. Post-processing: typical quantities of interest

- Flux lines
- Flux density, with or without flux lines
- Field in the center
- Polarity
- Field plots along a line (absolute or in relative w.r.t. the central field)
- Allowed harmonics
- Energy
- Inductance
- Lorentz forces on coil
- Fringe field
- Magnetic forces on yoke
...

7. Post-processing: load solution

---> Analysis ---+ View Results

```-- Post-processing
mi_loadsolution()```
7. Post-processing: flux lines and $B$ in the center (as a first check)

$$B \approx 0.98 \times 10^{-7} \pi \times 18 \times 6 \times 450 / 0.050 = 1.19702 \ T$$

(about 3% difference, we report so many digits just to compare, not because they are significant)
7. Post-processing: line plots

- Select a contour
  - Left mouse click for existing point
  - Right mouse click to add a point (snapping to grid points if convenient)
  - Del to remove the last selected node
  - Esc to unselect the contour
7. Post-processing: 2D plots

- mesh
- flux lines
- field density
- field vectors
7. Post-processing: integrals over a block
7. Post-processing: inductance (from concatenated flux)

\[ L = 2 \times 37.3 = 74.6 \text{ mH/m} \]

The factor 2 is because we model only half the dipole.

The result is per m, as we set 1 m depth; to get the total inductance, you can multiply by the magnetic length.

\[ L \approx 0.98 \times 4 \times 10^{-7} \times \pi \times (18 \times 6)^2 \times (180 + 1.2 \times 50)/50 = 68.9 \text{ mH/m} \]

In reality, the inductance is nonlinear and it depends on the current (and on the frequency), plus there is the contribution of the coil heads.
7. Post-processing: inductance (from energy)

\[
L = \frac{2 \times 2 \times 3729.23}{450^2} = 73.7 \text{ mH/m}
\]
7. Post-processing: a few Lua commands

-- Post-processing
-- The flux lines plot is loaded by default
mi_loadsolution()

-- mo_savebitmap(workfolder .. filename .. "_flux.bmp")
mo_savemetafile(workfolder .. filename .. "_flux.emf")

-- Field density plot
B_min = 0
B_max = 1.5
mo_showdensityplot(1, B_min, B_max, 0, "bmag")

-- Field at 0,0
A, B1, B2 = mo_getpointvalues(0, 0)
print("B @ x=0; y=0")
print("Bx = ", B1, " T")
print("By = ", B2, " T")

-- Plot field in the aperture
w_GFR = 120
mo_addcontour(-w_GFR/2, 0)
mo_addcontour(w_GFR/2, 0)

-- mo_makeplot(2, 200) -- plot in FEMM
mo_makeplot(2, 50, workfolder .. filename .. "_By_midplane.emf") -- save image
mo_makeplot(2, 50, workfolder .. filename .. "_By_midplane.txt", 0) -- print it to a file
mo_clearcontour()
7. Post-processing: a few Lua commands

```lua
-- Lorentz forces in the coil
mo_selectblock(127+w_coil/2, 100+h_coil/2)
mo_selectblock(127+w_coil/2, 100+h_coil/2-(h_coil+5))
mo_selectblock(127+w_coil/2, 100+h_coil/2-2*(h_coil+5))
Fx = mo_blockintegral(11)
print("Fx = ", Fx, " N")
Fy = mo_blockintegral(12)
print("Fy = ", Fy, " N")
mo_clearblock()

-- Energy
mo_groupselectblock()
U = mo_blockintegral(2)
print("Energy = ", U, " J")
mo_clearblock()

-- Inductance
-- --> from concatenated flux
curr, volts, flux_re = mo_getcircuitproperties("Coil")
print("Fy = ", flux_re, " N")
L_fl = 2*flux_re/curr
print("Inductance (from concatenated flux) = ", L_fl*1000, " mH")
-- alternative: select all coil blocks then get the flux linkage as mo_blockintegral(0)
-- --> from energy
mo_groupselectblock()
U = mo_blockintegral(2)
mo_clearblock()
L_en = 2*2*U/curr^2
print("Inductance (from energy) = ", L_en*1000, " mH")
```
7. Post-processing: allowed harmonics

--
-- LUA script to compute multipoles in FEMM
--
-- Few standard cases are considered:
-- * dipole 180 deg (ex. C shape)
-- * dipole 90 deg (ex. H shape)
-- * quadrupole 45 deg (ex. standard symmetric quadrupole)
--
-- In all cases, the center is 0, 0 and the skew coefficients are 0
--
-- The script computes two sets of multipoles:
-- * one from A (the vector potential)
-- * another one from a radial projection of B
-- They should be the same, so the difference in a way shows
-- how much to trust these numbers; the ones from A should be better,
-- as this is the finite element solution without further manipulations
-- (derivation, radial projection) while B is rougher (linear elements,
-- so B is constant over each triangle), but then it's smoothed out in the postprocessor
--

case_index = 1
-- 1 ===> dipole 180 deg (ex. C shape)
-- 2 ===> dipole 90 deg (ex. H shape)
-- 3 ===> quadrupole 45 deg (ex. standard symmetric quadrupole)

nh = 15 -- number of harmonics
np = 256 -- number of samples points
R = 2*25/3 -- reference radius
Rs = 0.95*25 -- sampling radius, can be the same as R or the largest still in the air
List of input files

*dipole.lua*: Lua script for this example of a resistive C dipole

*quad_PXMQNAHNAP.lua*: Lua script for a resistive quadrupole (the same that you will measure)

*corrector_PXMCCATWAP.fem*: FEMM file for a resistive dual plane corrector (the same that you will measure) [courtesy of A. Newborough]

*sector_dipole.lua*: Lua script for a superconducting sector dipole [courtesy of S. Izquierdo Bermudez]

*multipoles_femm.lua*: Lua script to compute multipoles
Thank you
Bonus
Field along the midplane and stray field

The stray field at the background limit should be a few $\%$ (or less) of the main field in the aperture – you can also check varying the background dimensions.
Energy is in the air!
Ampere’s law in action

\[ NI = 450 \times 18 \times 3 = 24300 \text{ A} \]

5-7% difference (with this mesh)
Force on iron via weighted stress sensor

check with magnetic pressure on pole

\[ F \approx \frac{B^2}{2\mu_0} \cdot w_{pole} = \frac{(1.20^2)}{(2 \cdot 4e^{-7} \cdot \pi)} \cdot (0.180 + 1.2 \cdot 0.05) = 137510 \text{ N/m} \]

8% difference, but the order of magnitude is correct
Getting areas

Integral Result

0.168059 meter^2

OK

Integral Result

0.002178 meter^2

OK
6.3 Field Smoothing

Since first-order triangles are used by FEMM, the resulting solution for $B$ and $H$ obtained by differentiating $A$ is constant over each element. If the raw $B$ and $H$ are used by the postprocessor, density plots of $B$ and 2-D plots of field quantities along user-defined contours look terrible. The values of $B$ and $H$ also are not so accurate at points in an element away from the element’s centroid.

The use of smoothing to recover the accuracy lost by differentiating $A$ is known as superconvergence. Of the greatest interest to FEMM are so-called “patch recovery” techniques. The basic idea is the the solutions for $B$ are most accurate at the centroid of the triangular element (known as its Gauss Point). One desires a continuous profile of $B$ that can be interpolated from nodal values, in the same way that vector potential $A$ can be represented. The problem is, the “raw” solution of $B$ is multivalued at any node point, those values being the different constant values of $B$ in each element surrounding the node point. The general approach to estimating the “true” value of $B$ at any node point is to fit a least-squares plane through the values of $B$ at the Gauss points of all elements that surround a node of interest, and to take the value of the plane at the node point’s location as its smoothed value of $B$ [16].

However, this approach to patch recovery has a lot of shortcomings. For the rather irregular meshes that can arise in finite elements, the least-squares fit problem can be ill-conditioned, or even singular, at some nodes in the finite element mesh. Furthermore, the superconvergence solution can actually be less accurate than the piece-wise constant solution in the neighborhood of boundaries and interfaces.

One can note that the patch recovery method is merely a weighted average of the flux densities in all of the elements surrounding a given node. Instead of a least-squares fit, FEMM simply weights the values of flux density in each adjacent element’s Gauss point with a value inversely proportional to the distance from the Gauss point to the node point of interest. Away from boundaries, the results seem to be nearly as good as a least-squares fit. At boundaries and interfaces, the smoothed solution is no worse than the unsmoothed solution.
Results (gradient and harmonics) as a function of mesh density

\begin{tabular}{|c|c|}
\hline
\textbf{mshf (mesh factor)} & \textbf{[\dag]} \ 1 \ 0.5 \ 0.25 \\
\textbf{npAB (points in hyperb. part)} & \textbf{[\dag]} \ 10 \ 20 \ 40 \\
\textbf{B' (By/x @ 30 mm)} & \textbf{[T/m]} \ 2.5489 \ 2.5386 \ 2.5410 \\
\textbf{B' (B2/R)} & \textbf{[T/m]} \ 2.5336 \ 2.5360 \ 2.5366 \\
\textbf{B' (By/x @ 30 mm) / B' (formula)} & \textbf{[\dag]} \ 1.0035 \ 0.9994 \ 1.0003 \\
\textbf{B' (B2/R) / B' (formula)} & \textbf{[\dag]} \ 0.9974 \ 0.9984 \ 0.9986 \\
\textbf{b6} & \textbf{[1e-4]} \ 2.2 \ 0.9 \ 0.6 \\
\textbf{b10} & \textbf{[1e-4]} \ -0.2 \ 0.1 \ 0.1 \\
\textbf{b14} & \textbf{[1e-4]} \ 0.0 \ 0.0 \ 0.0 \\
\hline
\end{tabular}