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ÅWhat is superconductivity?

ÅDefining properties: zero resistivity, flux expulsion

Å Important properties

ÅCondensation Energy, superfluid density

ÅFux(oid) quantization

ÅLimitations of superconductivity

ÅField (type-I and type-II superconductors)

ÅGinzburg Landau theory

ÅTemperature

ÅCurrent

ÅFlux pinning, critical currents

ÅBCS theory

Outline
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What is superconductivity?
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ÅThermodynamic state of the electron system

ÅDefining properties: 

ÅZero-resistivity (at least at low magnetic fields and currents)

ÅMeissner effect: flux expulsion (at low magnetic fields)
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Meissner Effect
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normal     superconducting

ÅPerfect flux expulsion (except for a small surface layer)

ÅIdeal diamagnet: … ρȡὓ ʔὌ Ὄ



Meissner Effect
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ὄ ‘ Ὄ ὓ ὓ Ὄ π

Superconductivity disappears at a 

certain field:

Thermodynamical critical field: Ὄ2



Meissner Effect
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Ὄ Ὄ πὑ ρ
Ὕ
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Phenomenological observation, however in 

agreement with theory (within a few percent) 

ideal conductor

or

superconductor

superconductor

Independent of history: 

thermodynamic state!



What do we learn?
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(from these basic properties)

1) Condensation energy Ὁ:

Magnetization energy:

Ὁ ‘ὓὨὌ ‘ ὌὨὌ
‘Ὄ

ς

Ὁ+ Ὁ πat Ὄ Ὄ ᴼ

╔╬
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What do we learn?
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2) London penetration depth of the magnetic field ‗:

Graphically: Long cylindrical, ideal conductor. Parallel magnetic field is applied.

Induction voltageὟ induces a screening current. Field decreases 

towards the center.

Formally: Newtonôs law: ά ᴆὺ ήὉᴼ ᴆ Ὁé1st London equation.

​ ᴆ ​ Ὁᴼ​ ​Ὄ ЎὌ ‘Ὄ

2nd London equation: ЎὌ Ὄ ȡ Ὄ(Meissner effect)

1 dimensional: Ὄ; particular solution: Ὄ ὌὩ

Characteristic shielding length of the magnetic field: ‗

ὄ
” π



What do we learn?

10

3) Canonical momentum (within London theory)

Skipping the time derivative earlier (in ​ ᴆ ‘Ὄ) leads to

‘‗​ ᴆ ‘Ὄ ​ ᴆὃ or   ​ (‘‗ᴆ ᴆὃ π

One possible choice: ‘‗ᴆ ᴆὃ(London gauge)

Canonical momentum of a charged particle: ᴆὴ άᴆὺ ήᴆὃ ή ᴆ ᴆὃ

For a superconductor within London theory: ὴ ή ‘‗ᴆ ᴆὃ

Meissner effect: ὴ π(momentum that is conserved in a magnetic field)



Fluxoid quantization
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New ingredient: All superconducting particles are described by the same wave

function‪!

Momentum operator: Ὥᴐ​ Ὥᴐ​‪ ὴ‪ ,  ὴ ᴐὯ

‪is a complex valued function: ‪ ‪Ὡ ,  ​‪ Ὡ ​‪ ‪Ὡ Ὥ​— ‪Ὥ​—

Ὥᴐ​‪ ᴐ‪​— ὴ‪ᴼ♩Ᵽ
ᴐ
▬▼

—ὶ —ὶ
ρ

ᴐ
ή ‘‗ᴆ ᴆὃÄᴆὶ

Closed path: 
ᴐ
Ḃ‘‗ᴆ ᴆὃÄᴆὶ ὲς“



Fluxoid quantization
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‘‗ᴆ ᴆὃÄᴆὶ ὲ
Ὤ

ή

Stokes theorem: ᴆὃÄᴆὶ ​ ᴆὃÄᴆὪ ᴆὄÄᴆὪ ‰

Fluxoid quantization:

‰
ά

ὲή
ᴆÄᴆὶ ὲ

Ὤ

ή



Flux quantization
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Region of shielding currents (fluxoid qantization)

Integration path inside the superconductor:

ᴆ π: Flux quantization: ‰ ὲ‰

Flux quantum: ꜚ
▐

▄
(experimental value)

ᴼpaired electons (holes)



London Theory
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ᴼά ςά ȟὩ ςὩȟὲ (ὲ...density of condensed charge carriers)

London penetration depth:

Superfluid density: ὲᶿ

‗
ά

‘ὲὩ

Shortcomings of London theory: 

ÅLocal theory (point particles, e.g. ὴ ή ‘‗ᴆ ᴆὃ)

ÅSuperfluid density is assumed as constant. 



Type-II superconductors
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‰
ά

ὲή
ᴆÄᴆὶ ὲ‰

Meissner stateὲ π:
Flux penetrates only at the surface, shielding currents

given by fluxoid qantization.

High energy cost for magnetization:

Ὁ ‘ὓὨὌ

What aboutὲ πȩ

‰ ὲ‰
ά

ὲή
ᴆÄᴆὶ ὲ‰



Type-II superconductors
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e.g., ὲ ρ:

ÅAd another flux quantum in the from of a vortex.

ÅField of vortex is generated by currents fulfilling 

fluxoid quantization.

ÅOpposite orientation than surface currents.

Å Flux (fluxuid) quantization is fulfilled everywhere.

ÅSeems to work!

‰ ‰
ά

ὲή
ᴆÄᴆὶ ‰



Type-II superconductors
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Does it happen?

ÅEnergy Ὁ of this vortex (length ὰ:

ÅAverage field: ‰ ὄ‗“ᴼὄ

ÅὉ ‗“ὰ ὰ

ÅChange of magnetization energy density in the 

Meissner state Ὁ ᷿ ‘ὓὨὌ) by increasing 

magnetic field by ὨὌ ȡὨὉ ὌὨὌ

ÅChange of magnetization energy of the sample:

ὨὉ ὨὉὙ“ὰ Ὄ‰ὰ
ÅAdding a vortex is energetically favorable for 

ÅὌ‰>



Type-II superconductors
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It does happen if Ὄ Ὄ : Type-II superconductor

Problem: Phase of wave function in the very center of 

the vortex! ‪and ὲhave to be zero there!

Not describable within London theory! 

Ginzburg-Landau theory 



Ginzburg-Landau theory
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ÅBased on Landauôs theory of order phase transition.

ÅValid near the transition (Ὕ
ÅOrder parameter identified with ‪ Ȣ
ÅEnergy functional: 

Ὂ Ὕȟὃ Ὂ ‌‪ ɼ‪
ρ

ςά
Ὥᴐ​ ήᴆὃ‪

ὄ

ς‘
ÅOptimization with respect to ‪and ὃleads to the two Ginzburg Landau 

equations 

‌‪ ɼ‪ ‪
ρ

ςά
Ὥᴐ​ ήᴆὃ‪ π

ᴆ
ήᴐ

ςάὭ
‪ᶻ​‪ ‪​‪ᶻ

ή

ά
‪ ᴆὃ



Ginzburg-Landau theory
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Solution:

ÅTwo characteristic length scales

ÅMagnetic penetration depth ‗(in general ‗)

ÅGL coherence length ‚(in general ‚ or ‚)

Variation length of the superconducting order parameter ‪
Å ‪ is the (local) density of condensed charge carriers. Equilibrium 

value: ὲ ‪ ;

Å‗ ; superfluid density: ὲᶿ (cf. London theory)

ÅGinzburg Landau parameter ‖

Å‖ : Type-I superconductor

Å‖ : Type-II superconductor



Ginzburg-Landau theory
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Reversible (thermodynamic) magnetic properties are entirely described by 

ʇand ‚.

ÅThermodynamic critical field: ὄ

ÅLower critical field: ὄ ÌÎ‖

ÅUpper critical field: ὄ

Meissner state Mixed (or Shubnikov) state



Mixed state
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ÅFlux penetrates in the form of vortices each carrying the elementary flux 

quantum ‰
ÅThey arrange in a hexagonal lattice.

ÅThe (average) magnetic field ὄis proportional to the number of vortices.

Order parameter ‪ Local magnetic field



Mixed state
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ÅUseful at low fields ὄ πȢυὄ better ὄ πȢςὄ

ÅNormal conducting core ( ‪ π) with radius ‚.

ÅUndisturbed superconductivity outside core 

( ‪ ‪ ) 

ÅCurrents outside the core build the field in 

accordance with fluxoid quantization

Simplified (London-like) picture of single vortices
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http://www.oettinger-physics.de/vortex.html



ÅThermodynamic limit: depairing current density.

ÅKinetic energy of the charge carriers exceeds the condensation energy.

ÅὉ

ÅὉ Ὦ ὲὩὺ ὲ

ÅὉ Ὁ ȡ ‘‗ὮᴼὮ

ÅGinzburg-Landau theory:ὐ

Currents in superconductors

25
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ÅThree thermodynamic limitations:

1. Temperature (Ὕ)

2. Magnetic field (ὄ, ὄ

3. Current density (ὐ)

ÅCurrents are not necessarily loss free in the mixed state

ÅLorentz force acts on the superconducting condensate: Ὂ ᴆὐ ὄ

ÅLosses due to the moving vortices (acceleration of normal electrons in the core)

ÅFlux pinning: loss free currents. 

ÅLimit: Maximum pinning force: ᴆὊȟ ȡ ὐ ὄñcritical stateò

Å(ὐṶὄ Ḋὐ
ȟ

: critical current density. ὐ ὐ: dissipative currents

Currents in type-II superconductors
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Supercritical currents:

Ὅ Ὅ ὐὨᴆὪ

Inside of superconductor is free of current: Flux and current always penetrate 

from the borders of the superconductor. Current free regions inside the 

superconductor. (Bean model: ὐ ὐor zero).

Currents in type-II superconductors

27



Critical current density: flux pinning

ÅEnergy of vortex core per meter: Ὁ Ὁ‚“

Ὢ Ґ

ÅCritical state: Ὂ Ὂ ὐ ὄ

ÅHighest possible pinning force per vortex and unit length: 

cylindrical defect withὶ ‚

ÅForce balance for one vortex (ὄṶὐ): Ὢ Ὢ

Ὢ ὊÄὃ ὐ ὄÄὃ ὐ‰ Ὢ Ґ
‰

ρφ“‘‗‚

Åὐ ὐ πȢσςὐ

ÅLoss free currents are always limited by pinning, however, ὐ
sets the scale.



The critical current density denpends on the defect structure and is hence an 

extrinsic property.

ÅQuantitative predictions are very difficult

ÅUseful: scaling laws

Ὂ ὐὄᶿὦ ρ ὦ with ὦ

Åὴ πȢυplanar defects (grain boundaries)

Åὴ ρspheric defects (artificial pinning)

Åήis expected to be 1 or 2, but is often higher.

Critical current density: flux pinning



Ὂ ὐὄᶿὦ ρ ὦ with ὦ

Åὴ πȢυ, ή ς(grain boundaries): peak at ὦ πȢς

Åὴ ρ, ή ςspheric defects (artificial pinning): peak at ὦ πȢσ

ÅAttempts to separate different pinning contributions. 

Pinning contributions

Ortinoet al., Supercond. Sci. Technol. 34 (2021) 035028



The BCS explanation
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ÅElectrons (holes) pair to form bosonic particles

(pairing electrons have opposite spin and momentum Ὧ ȟᴻὯ )Ȣ

ÅPairing due to an attractive interaction via virtual phonons.

ÅCooper pairs immediately condense into one ground state.

ÅElementary excitations: breaking pairs

ÅBreaking a Cooper pair requires a minimum energy of 2◕
ɝéenergy gap

ÅCopper pairs are mobile.

ÅThey cannot transfer moment (energy) to the lattice   



BCS predictions
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ÅEnergy gap in the density of states at the Fermi level

ÅὯὝ ρȢρσᴐ‫ Ὡ

Åςɝπ σȢυτὯὝ

ÅIsotope effecté.
ÅGinzburg Landau equations can be derived from BCS theory


