TECHNIS c 'T! E 7
UN IVERSIT__._..T

el 2 | |:|

/Bn naiAustrla S OMINSTITUT

Superconductivity

Michael Eisterer

Atominstitut, TU Wien, Vienna, Austria

CAS, St. Polten, November 21st 2023



Copyright statement and speaker 0s rel%r

The author consents to the photographic, audio and video recording of this
lecture at the CERN Accelerator School. The term fi | e ¢ includes @any
material incorporated therein including but not limited to text, images and
references.

The author hereby grants CERN a royalty-free license to use his image and
name as well as the recordings mentioned above, in order to post them on
the CAS website.

The material is used for the sole purpose of illustration for teaching or
scientific research. The author hereby confirms that to his best knowledge
the content of the lecture does not infringe the copyright, intellectual
property or privacy rights of any third party. The author has cited and
credited any third-party contribution in accordance with applicable
professional standards and legislation in matters of attribution.

SRy T
e !
el |
g}c\
fEthJ:?i

TR AT,
P i W ¥ N



B Outline

A What is superconductivity?
A Defining properties: zero resistivity, flux expulsion
A Important properties
A Condensation Energy, superfluid density
A FuxXoid) quantization
A Limitations of superconductivity
A Field (typel and typell superconductors)
A Ginzburg Landau theory
A Temperature
A Current
A Flux pinning, critical currents
A BCS theory



B What is superconductivity?

AThermodynamic state of the electron system

ADefining properties:
AZeroresistivity (at least at low magnetic fields and currents)

AMeissner effect: flux expulsion (at low magnetic fields)

Resistivity
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B Meissner Effect
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normal superconducting

APerfect flux expulsion (except for a small surface layer)
Aldeal diamagnet: ... pduo 7?0 O



B Meissner Effect
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Superconductivity disappears at a
certain field:

@ Thermodynamical critical field: 'O
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B Meissner Effect
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Phenomenological observation, however in
agreement with theory (within a few percent)

Independent of history:
thermodynamic state!
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B  What do we learn?

(from these basic properties)

t 1oH, tH,

1) Condensation energy O

Magnetization energy:
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B  What do we learn?

2) London penetration depth of the magnetic field _ :

Graphically: Long cylindrical, ideal conductor. Parallel magnetic field is applied.
Induction voltage *Y — Induces a screening current. Field decreases
towards the center. I

6
Formally: N&wtQ)y®6sp a@: 1stLondon equation. ‘

T p — 00 O YO — 0O
2nd | ondon equation: YO ———"0 d—"O(Meissner effect)
1 dimensional: — —"Q particular solution: 0 "0Q

Characteristic shielding length of the magnetic field: _ /— 9 %



B  What do we learn?

3) Canonical momentum (within London theory)

Skipping the time derivative earlier (in > — @ leads to

- — - -

_ p ‘0O @ or ‘" _p ®P T

Canonical momentum of a charged particle:ip ¢ nN® n—op &

For a superconductor within London theory:f° n ‘ _p &

Meissner effect: 1° 1t (momentum that is conserved in a magnetic field)
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B Fluxoid quantization

New ingredient: All superconducting particles are described by the same wave

function |

Momentumoperator: @ ( @ T AT ), i 02Q

[ is acomplex valued function:T  [[[Q, T Q | IFlQ Q— [ Q—
Q7 o — AT °UP -m
=) ) - n’_»p PAp

Closed path:?B‘ > Ap ¢ "
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B Fluxoid quantization
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Stokes theorem: AP ) DA %o
Fluxoid quantization:
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B Flux quantization

o Q.
% —— PADb £ — h & %o
€ N N

Region of shielding currents (fluxoid gantization)

Integration path inside the superconductor:

p Tt Flux quantization: %o € %o

Flux quantum:” — (experimental value)

- O paired electons (holes)
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B London Theory

Od ¢ hQ c¢B -(¢..density of condensed charge carriers)
. Q
London penetration depth: _ —
£Q
N

Superfluid density: € ® —

Shortcomings of London theory:

A Local theory (point particles,e.g.7” 1 ‘' _ 5 &)

A Superfluid density is assumed as constant.
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B Type-ll superconductors

o N
%0 — PAD  €%o0
€ n

Meissner state € Tt
- Flux penetrates only at the surface, shielding currents
given by fluxoid gantization.

High energy cost for magnetization:

@) 0 Q0
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B Type-ll superconductors

O
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e.g., & p:

A Ad another flux quantum in the from of a vortex.

A Field of vortex is generated by currents fulfilling
fluxoid quantization.

A Opposite orientation than surface currents.

A Flux (fluxuid) quantization is fulfilled everywhere.

A Seems to work!

16

AL

“ (235



B Type-ll superconductors

Does it happen?
A Energy O of this vortex (length ¢ :

a7 o O a7

A Average field: % 0 _ 0 —
AO — “& &

A Change of magnetization energy density in the
Meissner state O . 0 Qby increasing

magnetic field by Q' 0 —daO0 T0Q 0 —
A Change of magnetization energy of the sample:
A0 A Y“a OCwa
A Adding a vortex is energetically favorable for
A "O %o >
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B Type-ll superconductors

It does happen if O  "O: Type-Il superconductor

Problem: Phase of wave function in the very center of
the vortex! T and € have to be zero there!

Not describable within London theory!

Ginzburg-Landau theory
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B Ginzburg-Landau theory

ABased on Landaub6s theory of order pha
A Valid near the transition (Y

A Order parameter identified with |[ | 8

A Energy functional:

o~ e . P e, 0
oY) O Il il g @ " ®r | o
A Optimization with respect to[ and 0 leads to the two Ginzburg Landau

equations
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B Ginzburg-Landau theory

Solution:
A Two characteristic length scales
A Magnetic penetration depth _ (in general  _ )
A GL coherence length, (ingeneral , or, )
Variation length of the superconducting order parameter | |
A |r | isthe (local) density of condensed charge carriers. Equilibrium
value: € r | :

A _ / ; superfluid density: € ® — (cf. London theory)

A Ginzburg Landau parameter I -
Al
Al

. Type-| superconductor

Sl S

. Type-Il superconductor

20



B Ginzburg-Landau theory

Reversible (thermodynamic) magnetic properties are entirely described by

] and, .

A Thermodynamic critical field: 6 —F

A Lower critical field: 6 — 11

A Upper critical field: 6 _

Meissner state

\%/

Mixed (or Shubnikov) state

‘[ (1_D)Hc1 tHcl
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B Mixed state

A Flux penetrates in the form of vortices each carrying the elementary flux
quantum %o

A They arrange in a hexagonal lattice.

A The (average) magnetic field 6 is proportional to the number of vortices.

Order parameter | | Local magnetic field
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I Mixed state
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B Simplified (London-like) picture of single vortices

A Useful at low fields & T1@®06 betterd 1RO
A Normal conducting core ([ | ) with radius , .

A Undisturbed superconductivity outside core

at r i)

/N

A Currents outside the core build the field in / \[\
accordance with fluxoid quantization & i
——

http://www.oettinger-physics.de/vortex.html
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B Currents in superconductors

A Thermodynamic limit: depairing current density.

A Kinetic energy of the charge carriers exceeds the condensation energy.

A O
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A Ginzburg-Landau theory: 0
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B Currents in type-ll superconductors

A Three thermodynamic limitations:
Z2 o

H
1. Temperature ("Y) R By.o% 41t o3
. ....;'.::'.'.‘,
2. Magnetic field (0 , 0 y
<:x = ; ~

3. Current density (0 )

A Currents are not necessarily loss free in the mixed state

A Lorentz force acts on the superconducting condensate: 0 & &

A Losses due to the moving vortices (acceleration of normal electrons in the core)

A Flux pinning: loss free currents.

A Limit: Maximum pinning force: . d, 0 6Acritical statebd

"Ud DI h it o 0 diccinati )
A (OU6 DU " critical current density. 0 0 : dissipative currents 26 %



B Currents in type-ll superconductors

Supercritical currents:

0 O R¥e}2)

Inside of superconductor is free of current: Flux and current always penetrate
from the borders of the superconductor. Current free regions inside the

superconductor. (Bean model: 0 L or zero).
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B Critical current density: flux pinning

A Energy of vortex core per meter: 'O o,

Q [
A Critical state: 'O O |0 6|

A Highest possible pinning force per vortex and unit length: ‘

cylindrical defect with | ,
A Force balance for one vortex (6 U 0): 'Q "Q

0 "OAD O 6AD 0% 'O IJp tpo‘/oo ’ ii EE’EEE',&

A0 _ Yo w0

A Loss free currents are always limited by pinning, however, U

sets the scale.
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B Critical current density: flux pinning

The critical current density denpends on the defect structure and is hence an
extrinsic property.

A Quantitative predictions are very difficult

A Useful: scaling laws 8- BEEE T
O 06 @ p w wtho — . °

A n Tt planar defects (grain boundaries)

A 1 p spheric defects (artificial pinning) N
2

A 1 is expected to be 1 or 2, but is often higher. 2‘5



B Pinning contributions

'O 068 @ p W withw —
AR T,/ ¢ (grain boundaries): peak at ® TR
AN p, A ¢spheric defects (artificial pinning): peak at @ 1@

A Attempts to separate different pinning contributions.
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B The BCS explanation

AElectrons (holes) pair to form bosonic particles

(pairing electrons have opposite spin and momentum Wﬁ’?zﬁ)
APairing due to an attractive interaction via virtual phonons.
ACooper pairs immediately condense into one ground state.
AEIementary excitations: breaking pairs

ABreaking a Cooper pair requires a minimum energy of 29
3¢energy gap

ACopper pairs are mobile.
AThey cannot transfer moment (energy) to the lattice

31



Bl BCS predictions

AEnergy gap in the density of states at the Fermi level

N(E)

1
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Al s ot ope effecte.

AGinzburg Landau equations can be derived from BCS theory .,
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