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B Outline

A TechnicalO
A Stabilization
A Multifilamentary wires
A Superconducting materials used for conductors
A NbTi
A Nb,Sn
A (MgB)

A Effect of forces on superconductors



B Technical I,

ADissipation In superconductors
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B Resistive transition

A Transition can be often approximated by O O (—) or'® O (—)

A Linear on a double logarithmic scale
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A Two main reasons for a brdé’f’dening of the transition

A Intrinsic: thermal activation of vortices out of the pinning potential Y
Y
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A Material iInhomogeneities € ¢
A AVell-behavedosuperconductors: € mo Tt
A Important for applications: predictable (extremely) low loss behavior. AR



B Requirements on a superconducting wire

A high current densitys a necessary condition for
applications, but It isnot sufficient.

Other crucial requirements:

A Have high tolerance to stres¥"" s

A Be safe in case of magnet queng"" detecton NPV

A Have low magnetizatiorf\pplications to NMR, MRI, HEP magnets
A Have a persistent joint technologfppications o NMR, MR

A Stability against small thermal perturbances



B Stabilization

A A technical conductor needs stabilization

otherwise: Critical current (A)
A A small disturbance leads to dissipation '

A The superconductor heats up

A Dissipation increases

A Quench
A ldea: Current can bypass the disturbed area  *
A Allows the superconductor to recover
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B Multifilamentary wires

Filaments Matrix
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A Thin filaments: Large surface to volume fraction

A Efficient heat and current transfer
A Matrix

A Low resistivity

A Compatible properties
A Twisted filaments

A Avoid inductions loops



B Multifilamentary wires

A Induction loops
A store energy that may trigger an instability
A distort the field quality

A Self screening of filaments cannot be avoided
A Transport current only flows in a small part of the
filament when ramping a magnet at low fields
A Remaining part shields any field changes

A Current loops can close over the low ohmic matrix
driven by the induction voltage (or over bridges)

A Twisting reduces inductive filament coupling efficiently
A Current loops become smaller (longitudinally and
transversal)
A A local disturbance releases less energy




B LTS materials (typical values)

K Tt | J4(MA/cm?)! | Advantages Disadvantages
c( ) c2( ) d g g

NbTi A easy to handle
A optimized
A cheap

Nb,Sn 18 27 200 A higher T,
A high B,,

MgB, 39 10 130 ARAHiI §.hi
A cheap?

A low T,
A small BC2

A brittle

A in-situ process

A wind and react

A expensive

A under optimization

A small B,

A wind and react?
A expensive

A not optimized




NDbTI

Life is easy



Nb-Ti: the King of the Hill

Type IT T. K] | noHey” [T] w Enabling technology for the large
Nb (metals) 05 0.2% RAT¥dzaAzy 2F awl oI nQnn
NbTi (alloys) 9.8 10.5§

w 1200+tonnesof Nb-Tiin LHC
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Nb-47wt%Ti : How to get higl.

O Nb-47Ti with round
6000 BNi/4Cu pins

Ni/Cu X No4Tet%Ti with Nb a-Ti- hcp

APC Nb pins (Heussner ef al.

5000 1 = A;:c 5 No4bwl3Ti, Very b—Tl - bCC

Long HT,5T, 42 K

(Chemnyi et al. 2001)
O Nb47TWt%TIL 5T,

4000 A 42K (Lee ef al. 1990)
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a . (Chernyi et al, 2001)
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y = 35x + 580 1990))

0
0 5§ 10 15 20 25 30 35

Volume of precipitate or APC (%)

FIGURE 11.15: TEM image of the microstructure (transverse cross-section) of the first
3700 A/mm? (5 T, 4.2 K) multifilamentary strand from a US manufacturer (OST). This previously
unpublished image taken on September 5™ 1986, shows the dense array of folded -Ti ribbons
(lighter contrast) that create the strong vortex pinning.

a-Tiprecipitates are adjusted to the proper dimensions in order to
pin vortices




Nb,Sn

| t 0s a hard |1 fe



B Nb,Sn : the LTS conductor for high fields

Influence of the Sn content on.and B,

Critical temperature [K]
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Nb;,, Sn_, remainssupercond
ducting when it deviates from
stoichiometry
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https://www.sciencedirect.com/science/article/abs/pii/S001122750800088X

B HowtoriseH,¢[ SGQa LX & Al RANI

Upper critical field of a superconductor
F 0
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Disorder reduces the electron mean free path , which in turn
leads to decrease af
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An useful expression of Hin the dirty limit
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B Alloying (doping) NBSn to rise H,

The additions of Ta andli are particularly beneficial H_~ g i
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https://www.sciencedirect.com/science/article/abs/pii/S001122750800088X
https://doi.org/10.1063/1.336607
https://www.nature.com/articles/s41598-018-22924-3

Bl Vortex pinning at the grain boundaries in N8n

Grain boundaries impede vortex motion to increase
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https://iopscience.iop.org/article/10.1088/0953-2048/19/8/R02/pdf

Artificial pinning in NQSn

Introduction of ZrO, nanoparticles

A Alloy Zr to Nb ‘ ﬁ K ‘N

Intra- glanulal

A Add an oxygen source . * 7O ‘patfidles
(e.g. NbO, or SnO,) RQ

A ZrO, forms during heat treatment ; l',’,tel._(,,.anular P
( Ai n toxdatiord |) | ZrO, Pa"icles“

NZE-700x55h_007
NZE-700x55h

100 nm

Xu et al, Adv. Mat. 27 (2015) 1346



B Artificial pinning in NQSn

| | | | | 180 | -
40000 N | Sn0,-625x800h
160
Sn0,-625x800h 'E
NE 30000 I s z 140 =
£ % ol Sn0,-650x400h
< Sn0,-650x400h o i
> 20000 = 100
% . , ) =
= L9600 A/mm TQ 80 }
10000 - - 8500 A.f'mmj & 60 | Nb02‘6257(800h
4400 A/mm’
40 - 42 K
0 I 1 1 1 | I 1 1 1 1
4 6 8 10 12 14 2 4 6 8 10 12 14
Magnetic field, B, T Magnetic field, B, T

J. Increases due to both a grain refinement and pinning on nanoparticles.

Not commercially available yet. Xu etal, Adv. Mat. 27 (2015) 1346 i&%



Nb,Sn

Production routes
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Industrial fabrication of NQSn wires

Three technologies have been developed at industrial scale

) Bronze route Sn
Nb

w Internal Sn diffusion

The Sn source is
the main difference

w PowderIn-Tube (PIT)

Presently produced by-%n




