SC magnet design - EM part II

Stefania Farinon - INFN Genova

(stefania.farinon@ge.infn.it)
CERN Accelerator School, Normal and Superconducting Magnets - St. Pölten, Austria
November 2023
Lecture based on E. Todesco, "Masterclass -Design of superconducting magnets for particle accelerators", https:/ /indico.cern.ch/ category/12408/

- Which are the maximum performance of dipoles/quadrupoles?
- Critical surface
- Filling ratios
- Peak field on coils
- Load line
- short sample
- effect of iron yoke
- current grading
- The critical surface defines the boundaries between superconducting state and normal conducting state in the space defined by temperature, magnetic field, and current densities.
- For each superconducting material, this surface, which can only be determined experimentally, can be fitted with parameterization curves

- $\frac{J_{C, S C}(B, T)}{J_{C, \text { ref }}}=\frac{C_{0}}{B}\left[\frac{B}{B_{C 2}(T)}\right]^{\alpha}\left(1-\frac{B}{B_{C 2}(T)}\right)^{\beta}\left(1-\left(\frac{T}{T_{C 0}}\right)^{1.7}\right)^{\gamma}$
- $\quad T_{C 0}=9.2 \mathrm{~K} \quad B_{C 20}=14.5 \mathrm{~T} \quad B_{C 2}(T)=B_{C 20}\left(1-\left(\frac{T}{T_{c 0}}\right)^{1.7}\right)$
- $J_{C, \text { ref }}=J_{C}(5 \mathrm{~T}, 4.2 \mathrm{~K})=3000 \frac{\mathrm{~A}}{\mathrm{~mm}^{2}}$
- $C_{0}=31.4 T, \alpha=0.63, \beta=1, \gamma=2.3$ (fit parameters for LHC wires)
- The critical surface can be linearly approximated as follows:

$$
j_{C, S C}(B, T)=s(b(T)-B) \quad \text { s slope, } b(T) \text { field }
$$

- $\mathrm{NbTi} @ 4.2 \mathrm{~K}: \mathrm{s}=600 \mathrm{~A} /\left(\mathrm{T} \mathrm{mm}{ }^{2}\right), \quad \mathrm{b}=10 \mathrm{~T} \quad(5 \mathrm{~T}<\mathrm{B}<9 \mathrm{~T})$
- $\mathrm{NbTi} @ 1.9 \mathrm{~K}: \mathrm{s}=600 \mathrm{~A} /\left(\mathrm{T} \mathrm{mm}^{2}\right), \quad \mathrm{b}=12.9 \mathrm{~T} \quad(7 \mathrm{~T}<\mathrm{B}<11 \mathrm{~T})$

- $j_{C, S C}(B, T)=\frac{C_{0}}{B}\left(\frac{B}{B_{C 2}(T)}\right)^{0.5}\left(1-\frac{B}{B_{C 2}(T)}\right)^{2}\left(1-\left(\frac{T}{T_{C 0}}\right)^{1.52}\right)^{\alpha}\left(1-\left(\frac{T}{T_{C 0}}\right)^{2}\right)^{\alpha}$
- $T_{C 0}=16 \mathrm{~K}, B_{C 20}=29.38 \mathrm{~T}, \alpha=0.96, B_{C 2}(T)=B_{C 20}\left(1-\left(\frac{T}{T_{C 0}}\right)^{1.52}\right)$
- $C_{0}=178563 \mathrm{AT} / \mathrm{mm}^{2} \rightarrow j_{C, S C}(16 T, 4.2 K)=1000 \mathrm{~A} / \mathrm{mm}^{2}$
- The critical surface is better approximated with a hyperbole:

$$
j_{C, S C}=s\left(\frac{b(T)}{B}-1\right)
$$

- $\mathrm{Nb}_{3} \mathrm{Sn} @ 4.2 \mathrm{~K}: \mathrm{s}=2750 \mathrm{~A} / \mathrm{mm}^{2}, \mathrm{~b}=22 \mathrm{~T}$
- $\mathrm{Nb}_{3} \mathrm{Sn} @ 1.9 \mathrm{~K}: \mathrm{s}=3000 \mathrm{~A} / \mathrm{mm}^{2}, \mathrm{~b}=24 \mathrm{~T}$

- $j_{C, S C}$ is the critical current density of the superconducting filaments, but the critical current density of a coil is much lower, due to:
- superconducting filaments are embedded in a metal matrix (usually copper)
- if $v_{\mathrm{Cu} / \mathrm{no} \mathrm{Cu}}$ is the ratio between the copper and the superconductor (usually ranging from 1 to 2) then $j_{C, \text { strand }}=j_{C, S C} \frac{A_{S C}}{A_{\text {strand }}}=j_{C, S C} \frac{1}{\frac{A_{S C}+A_{C u}}{A_{S C}}}=j_{C, S C} \frac{1}{1+v_{\mathrm{Cu} / \mathrm{no} \mathrm{Cu}}}$

- if the strands are assembled in rectangular cables, there are voids:
- if κ_{w-c} is the fraction of cable occupied by strands (usually $\sim 85 \%$)

$$
j_{C, \text { cable }}=\kappa_{w-c} \cdot j_{C, \text { strand }}=\frac{1}{1+v_{\mathrm{Cu} / \mathrm{no} \mathrm{Cu}}} \kappa_{w-c} \cdot j_{C, \mathrm{SC}}
$$

- the cables are insulated:
- if κ_{c-i} is the fraction of insulated cable occupied by the bare cable ($\sim 85 \%$)

$$
j_{C, \text { ins. cable }}=\kappa_{c-i} \cdot j_{C, \text { cable }}=\frac{1}{1+v_{\mathrm{Cu} / \mathrm{no} \mathrm{Cu}}} \kappa_{w-c} \kappa_{c-i} \cdot j_{c, \mathrm{SC}}
$$

- The critical surface for j (overall current density) is $j_{C}(B)=\kappa j_{C, S C}(B)$

$$
\kappa=\frac{1}{1+\mathrm{v}_{\mathrm{Cu} / \mathrm{no} \mathrm{Cu}}} \kappa_{w-c} \kappa_{c-i}
$$

- Examples of filling factors in dipoles

- Generally:

- copper to superconductor ratio ranging from 1 to 2
- void fraction ranging from 10% to 20%
- insulation fraction from 10% to 20%
$\} \quad \kappa$ ranging from 0.2 to 0.4

DIPOLES

PEAK FIELD ON THE COILS

- The best performer is the $\cos \theta$ distribution, where the peak field is equal to the bore field: $B_{p}=B_{1}=\frac{\mu_{0} j w}{2}$
- For sector dipoles, the ratio between peak field and bore field $\lambda \frac{B_{p}}{B_{0}}$ follow the hyperbolic fit $\lambda(w, r) \sim 1+A \frac{r}{w}$ (r aperture radius, w coil width of sector coil)

- The location of the peak is always on the border of the coils

- The hyperbolic fit stands also for real magnets:

[^0]
EQUIVALENT WIDTH

- Any kind of dipole can be reduced to a 60° sector of thickness w_{eq} coil by equating the 2 total areas:
- $A=\frac{2 \pi}{3}\left[\left(r+\mathrm{w}_{\mathrm{eq}}\right)^{2}-r^{2}\right], \quad A$ is the total conductor area of the dipole
- $\mathrm{W}_{\mathrm{eq}}=r\left(\sqrt{1+\frac{3 A}{2 \pi r^{2}}}-1\right)$

- A dipole coil can be characterized by 2 lines:
- $B_{1}=\gamma_{c} j w$ and $B_{\mathrm{p}}=\lambda B_{1}=\lambda \gamma_{c} j w$
- In the $\left(j_{s c}, B\right)$ plane they can be represented by two lines called loadlines
- The intersection of the load line for the peak field and the critical current density is the so-called short sample
- The short sample is the maximum theoretical performance of the magnet

- Obviously, a magnet cannot operate on (or too close to) the critical surface
- Loadline fraction: ratio between operational current and short sample current
- Loadline margin: 1- loadline fraction
- Example:
- Let's consider a dipole operating at $T_{o p}$ and $j_{o p}=240 \mathrm{~A} / \mathrm{mm}^{2}$ with a peak field $B_{p}=6 \mathrm{~T}$
- The short sample is $j_{s s}=400 \mathrm{~A} / \mathrm{mm}^{2}$ and $B_{p, s s}=10 \mathrm{~T}$
- The loadline fraction is $\frac{j_{o p}}{j_{s s}}=\frac{B_{p}}{B_{p, s s}}=0.6$
- The loadline margin is $1-0.6=40 \%$

- The loadine margin concept:
- has no physical meaning and is difficult to generalize (only magnets of the same class have comparable margins)
- is widely used and so far has not yet been replaced by any other criterion.
- Examples:
- Main superconducting magnets have a 10-30\% loadline margin
- Correctors have about 50% margin

> Loadline margin of the main dipoles in four accelerators

	Nominal Temp. (K) Field (T)			Margin	Temp. (K)	Actual
Field (T)	Margin					
Heratron	4.6	4.3	4%	4.6	4.2	6%
RHIC	4.6	4.7	23%	3.9	5.3	23%
LHC	4.5	3.5	30%	4.5	3.5	30%

- The temperature margin is a more physical quantity
- It is the increase in temperature that would lead to the magnet transition:
$\mathrm{j}_{\mathrm{C}}\left(B_{p}, \mathrm{~T}_{o p}+\Delta \mathrm{T}\right)=j_{o p}$
- In the example:
- $\mathrm{T}_{o p}=1.9 \mathrm{~K}$
- ${ }_{\mathrm{c}}\left(B_{p}, 5.5 \mathrm{~K}\right)=j_{o p}$
- $\Delta \mathrm{T}=3.6 \mathrm{~K}$
- The temperature margin can be
 translated in energy density required to reach the critical surface
- We consider a sector coil of width w
- The equation for the bore field is $B_{1}=\gamma_{c} j w$, with $\gamma_{c}=6.5 \times 10^{-7}(\mathrm{~T} \mathrm{~m} / \mathrm{A})$ for a coil with one wedge setting to zero b_{3} to b_{7}
- The equation for the peak field is $B_{p}=\lambda B_{1}=\lambda \gamma_{c} j w$, with $\lambda \sim 1+A \frac{r}{w}(\mathrm{~A}=0.08)$
- The critical surface of NbTi can be linearly approximated as $j_{C, S C}=s(b-B)$
- The overall critical current density is $j_{C}=\kappa j_{C, S C}=\kappa S(b-B)$
- The short sample is defined as the intersection between the lines:

$$
B_{p, S S}=\lambda \gamma_{c} j_{S S} w \quad \text { and } \quad j_{S S}=\kappa s\left(b-B_{p, S S}\right)
$$

- Short sample limits are:

$$
j_{S S}=\frac{\kappa s b}{1+\lambda \gamma_{c} \kappa s w^{\prime}}, \quad B_{p, S S}=\frac{\kappa s b \lambda \gamma_{c} w}{1+\lambda \gamma_{c} \kappa s w}
$$

- The bore short sample field is:

$$
B_{S S}=\frac{B_{p, S S}}{\lambda}=\frac{\kappa s b \gamma_{c} w}{1+\lambda \gamma_{c} \kappa s w}
$$

- Final equation for short sample field can be generalized as:
- $B_{S S}=\frac{\kappa s b \gamma_{c} w_{e q}}{1+\lambda \gamma_{c} \kappa s w_{e q}}$ and $j_{S S}=\frac{\kappa s b}{1+\lambda \gamma_{c} \kappa s w_{e q}}$
- Superconductor parameters $\mathrm{s}, \mathrm{b} \quad$ (linear fit of j_{C} curve)
- cable parameters
$\kappa \quad$ (global filling factor)
- primary geometrical parameters
$\mathrm{r}, \mathrm{w}_{\mathrm{eq}}$ (aperture radius and coil width)
- derived geometrical parameters

$$
\gamma_{c}, \lambda=1+A \frac{r}{w}
$$

- The relevant quantity is $\mathrm{X}=\kappa s \gamma_{c} w_{e q}$ (adimensional), ${ }_{1200}$ so that $B_{S S}=\frac{b X}{1+\lambda X}$
- How efficient is increasing w to increase $\mathrm{B}_{\mathrm{SS}}=\frac{b X}{1+\lambda X}$?
- example: 60° degree sector, $\mathrm{r}=25 \mathrm{~mm}, \kappa=0.3$
- if $\mathrm{w} \rightarrow \infty$, then $\lambda \rightarrow 1, \mathrm{X} \rightarrow \infty$ and $\mathrm{B}_{\mathrm{SS}} \rightarrow \mathrm{b}$
- If $w>30 \mathrm{~mm}$, the increase in w has minimal benefit on B_{ss} :
- $\mathrm{B}_{\mathrm{SS}}(40 \mathrm{~mm}) / \mathrm{B}_{\mathrm{SS}}(30 \mathrm{~mm})=1.07$
- the benefit of reducing $\mathrm{T}_{\text {op }}$ is more relevant:
- $\mathrm{B}_{\mathrm{SS}}(1.9 \mathrm{~K}) / \mathrm{B}_{\mathrm{SS}}(4.2 \mathrm{~K})=1.3$

SENSITIVITY ANALYSIS: compaction factor

- How efficient is increasing κ to increase $\mathrm{B}_{\mathrm{SS}}=\frac{b X}{1+\lambda X}$?
- example: 60° degree sector, $\mathrm{r}=25 \mathrm{~mm}, \kappa=0.2-0.4, \mathrm{Nb}-\mathrm{Ti} @ 1.9 \mathrm{~K}$
- If $\mathrm{w}=30 \mathrm{~mm}$:
- $\mathrm{B}_{\mathrm{SS}}(0.4)-\mathrm{B}_{\mathrm{SS}}(0.3)=0.6 \mathrm{~T}$
- $\mathrm{B}_{\mathrm{SS}}(0.3)-\mathrm{B}_{\mathrm{SS}}(0.2)=0.8 \mathrm{~T}$

QUADRUPOLES

- The same approach can be used for a quadrupole
- The loadline is given by $G=\gamma_{c} j \ln \left(1+\frac{w}{R}\right)$, with $\gamma_{c}=\frac{2 \mu_{0}}{\pi} \sin 2 \alpha=6.9 \cdot 10^{-7} \mathrm{Tm} / \mathrm{A}\left(\right.$ sector quad $\left.\alpha=30^{\circ}\right)$
- The peak field is given by $B_{p}=\lambda R G$, with λ to be found and R aperture radius (magnetic field in the center of a quadrupole is 0)
- As done for dipoles, with a linear surface one has
- $j_{S S}=\frac{\kappa s b}{1+\lambda R \gamma_{C} \kappa \ln \left(1+\frac{w}{R}\right)^{\prime}}$,
- $B_{p, S S}=\frac{k s b \lambda R \gamma_{c} \ln \left(1+\frac{w}{R}\right)}{1+\lambda R \gamma_{c} K \sin \left(1+\frac{w}{R}\right)}$
- $G_{S S}=\frac{\kappa s b \gamma_{c} \ln \left(1+\frac{w}{R}\right)}{1+\lambda R \gamma_{c} \kappa s \ln \left(1+\frac{W}{R}\right)}$

PEAK FIELD ON THE COILS

- For sector quadrupoles, the ratio between peak field and bore field $\lambda=\frac{B_{p}}{B_{0}}$ follow the fit $\lambda(w, r) \sim 1+C_{1} \frac{r}{w}+C_{2} \frac{w}{r}$ (r aperture radius, w coil width of sector coil)
- the two constants can be derived from the position of the minimum ($\mathrm{x}_{\text {MIN }}, \mathrm{y}_{\text {MII }}$)

$$
\lambda(w, r) \sim 1+\frac{y_{M I N}-1}{2 x_{\text {MIN }}}\left(x_{M I N}^{2} \frac{r}{w}+\frac{w}{r}\right)
$$

- to be noted that if $0.4<\mathrm{w} / \mathrm{R}<1.8$ then $1.15<\lambda<1.2$

45° sector dipole

PEAK FIELD ON THE COILS

- as in dipoles, also for quadrupoles the fit stands also for real magnets

CURRENT GRADING

- The map of the field inside a coil is strongly non-uniform.

Two grading possibilities:

- In the outer layer the peak field can be lower than in the inner layer, therefore larger current density can be used, and thinner coil
- The same current density is kept, but lower performance material is used for the lower field blocks, saving money
- Example: 2 concentric 60° sector dipole
- Peak field 1st layer: 7.9 T
- Peak field 2nd layer: 6.4 T
- $\mathrm{A}_{\text {cond }}$ 1st layer: $2040 \mathrm{~mm}^{2}$

$$
\text { - } \mathrm{A}_{\text {cond }} 2 \text { nd layer: } 3110 \mathrm{~mm}^{2}
$$

$$
\begin{aligned}
& \mathrm{R}=25 \mathrm{~mm} \\
& \mathrm{w}=15 \mathrm{~mm} \\
& \mathrm{j}=350 \mathrm{~A} / \mathrm{mm}^{2} \\
& \mathrm{~B}_{0}=7.3 \mathrm{~T}
\end{aligned}
$$

GENOVA

- Example: 2 concentric 60° sector dipole
- Peak field 1st layer: 7.9 T $\rightarrow 24 \%$ LL margin
- Peak field 2nd layer: $6.4 \mathrm{~T} \rightarrow 35 \%$ LL margin $\mathrm{A}_{\text {cond }}$ 2nd layer: $3110 \mathrm{~mm}^{2}$
- We can change the slope of the second layer so to balance the 2 margins
- By increasing j from 350 to $550 \mathrm{~A} / \mathrm{mm}^{2}$ in the 2 nd layer and correspondingly decreasing w in the same proportion from 15 to $15 \times 350 / 550=9.5 \mathrm{~mm}$:
- Peak field 1st layer: 7.9 T $\rightarrow 24 \%$ LL margin
- Peak field 2nd layer: 6.8 T $\rightarrow 24 \%$ LL margin $\mathrm{A}_{\text {cond }} 2$ nd layer: $1860 \mathrm{~mm}^{2}$ (40% less conductor)

- Graded option
- 1st layer: $\mathrm{w}=15 \mathrm{~mm}, \mathrm{j}=350 \mathrm{~A} / \mathrm{mm}^{2}, \mathrm{~B}_{\mathrm{p}}=7.9 \mathrm{~T} \rightarrow 24 \%$ LL margin
- 2nd layer: $w=9.5 \mathrm{~mm}, \mathrm{j}=550 \mathrm{~A} / \mathrm{mm}^{2}, \mathrm{~B}_{\mathrm{p}}=6.8 \mathrm{~T} \rightarrow 24 \% \mathrm{LL}$ margin $\mathrm{A}_{\text {cond }} 2$ nd layer: $1860 \mathrm{~mm}^{2}$ (40% less conductor)
- Graded option with smaller outer angle
- 1st layer: $\mathrm{w}=15 \mathrm{~mm}, \mathrm{j}=350 \mathrm{~A} / \mathrm{mm}^{2}, \mathrm{~B}_{\mathrm{p}}=7.9 \mathrm{~T} \rightarrow 24 \%$ LL margin
- 2nd layer: $\mathrm{w}=10 \mathrm{~mm}, \mathrm{j}=600 \mathrm{~A} / \mathrm{mm}^{2}, \mathrm{~B}_{\mathrm{p}}=6.5 \mathrm{~T} \rightarrow 24 \% \mathrm{LL}$ margin $\mathrm{A}_{\text {cond }} 2$ nd layer: $1640 \mathrm{~mm}^{2}$ (47% less conductor)

INFN The EuroCirCol 16T Cosine-Theta Dipole Option for the FCC

- $\operatorname{Cos} \theta$ option of the 16 T dipole in the framework of the EuroCirCol Project
- DOI:10.1109/TASC.2016.2642982

Fig. 1. Critical current density on non-copper fraction at the operating temperature of 1.9 K . The rows indicate the load lines of the peak field points in low field (upper row) and high field (lower line) conductors. Dots show the operating points at 86% on the load lines.

Strand diameter H.F./L.F. (mm)	$1.1 / 0.71$
Strand number H.F./L.F.	$22 / 36$
Bare cable inner thickness H.F./L.F. (mm)	$1.892 / 1.204$
Bare cable outer thickness H.F./L.F. (mm)	$2.072 / 1.320$
Bare cable width H.F./L.F. (mm)	$13.2 / 13.3$

$|\mathbf{B |}|(\mathbf{T})$

Fig. 2. Field distribution on one coil cross section (double aperture configuration) for the updated cosine-theta solution at $\mathrm{Bo}=16 \mathrm{~T}$.
cóp

IRON YOKE EFFECT

- An iron yoke usually surrounds the collared coil - it has several functions
- Keeps the return magnetic flux, avoiding fringe fields
- could contribute to the mechanical structure
- Considerably enhance the field for a given current density
- The increase is relevant (10-30\%), getting higher for thin coils
- This allows using lower current density, reducing stress and easing protection
- Increase the short sample field
- The increase is small (a few percent) for "large" coils, but can be considerable for small widths
- This action is effective when we are far from reaching the asymptotic limit of b (thin coils)
- there are 2 regimes:
- $B_{1 I}=B_{1}\left(1+\Delta_{I}\right)$,
$\Delta_{I}=\frac{R(R+w)}{R_{I}^{2}}$,
- $B_{1 I}=B_{1}+\Delta B_{I}$,
$\Delta B_{I}=$ const. $\sim 0.5-1.5 \mathrm{~T}, \quad$ above saturation
below saturation $\left(B_{1} \Delta_{I}<\Delta B_{I}\right)$
- below saturation:
- $B_{S S}=\frac{b X \Delta_{I}}{1+\lambda X \Delta_{I}^{\prime}} \quad \mathrm{X}=\kappa s \gamma_{c} w_{e q}$ the increase of B_{1} always leads the increase of $B_{S S}$
- above saturation:
- $B_{S S}=\frac{b X+\Delta B_{I}}{1+\lambda X}, \quad \mathrm{X}=\kappa s \gamma_{c} w_{e q}$ the value of $B_{S S}$ is increased by a fixed amount

THANKS FOR THE ATTENTION

[^0]: Stefania Farinon, CAS - November 2023

