CERN Accelerator School – 2023 St. Pölten, Austria

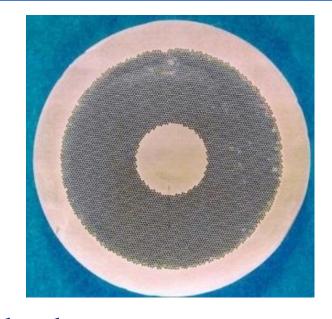
SC magnet fabrication and testing based on LHC and HL-LHC magnet production

Susana Izquierdo Bermúdez susana.izquierdo.bermudez@cern.ch

Additional slides

Strand and cable

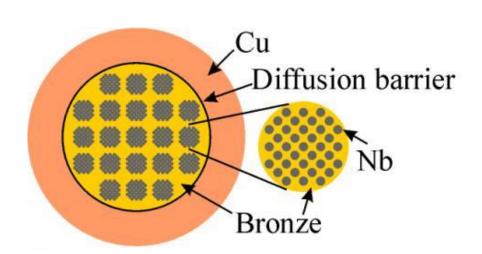
Strand: a multifilament wire

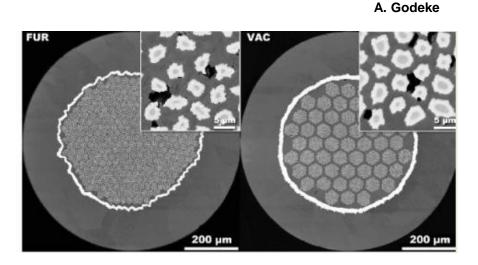

- The two practical superconductors that we have today for accelerator magnets are NbTi and Nb₃Sn
- The superconducting material is produced in small filaments and surrounded by a stabilizer (typically copper) to form a "multi-filament wire" o "strand"
- We small filaments are needed?
 - Stability (flux jumps)
 - Magnetic field quality
 - Persistent currents
 - Inter-filament coupling currents
- Why are they embedded in a copper matrix?
 - Stability (again)
 - Protection, to redistribute the current in case of quench

See lectures on Technical Superconductors (M. Eisterer), Quench protection (E. Todesco) and Hysteresis and dynamic effects (E. Todesco)

Strand manufacturing process (NbTi)

- The **copper to superconductor ratio** is specified for the application to ensure quench protection, without compromising the overall critical current of wire.
- The **filament diameter** is chosen to minimize flux jumps and field errors due to persistent currents, at the same time maintaining the wire processing cost down.

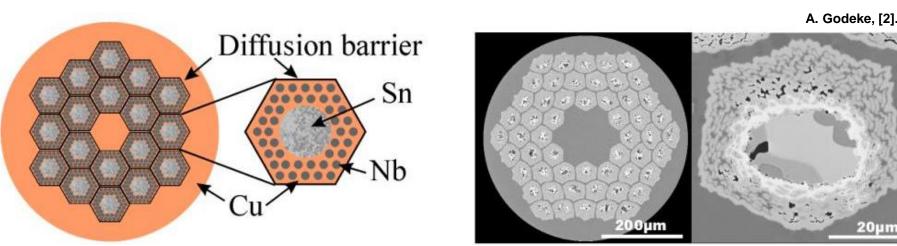

- The **inter-filament spacing** is kept small so that the filaments, harder than copper, support each other during drawing operation. At the same time, the spacing must be large enough to prevent filament couplings.
- A copper core and sheath is added to reduce cable degradation.
- The main manufacturing issue is the **piece length**.
 - It is preferable to wind coils with single-piece wire (to avoid welding). LHC required piece length longer than 1 km.



Fabrication of Nb₃Sn multifilament wires

Bronze process

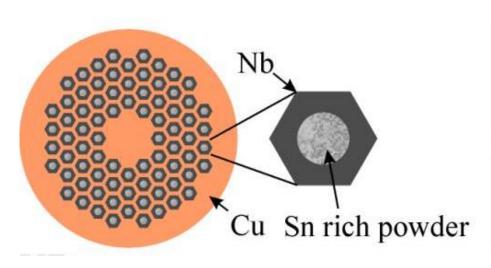
- Nb rods are inserted in a bronze (CuSn) matrix. Pure copper is put in the periphery and protected with a diffusion barrier (Ta) to avoid contamination.
- Advantage: small filament size
- Disadvantage: limited amount of Sn in bronze and annealing steps during wire fabrication to maintain bronze ductility.
- Non-Cu J_C up to 1000 A/mm² at 4.2 K and 12 T.

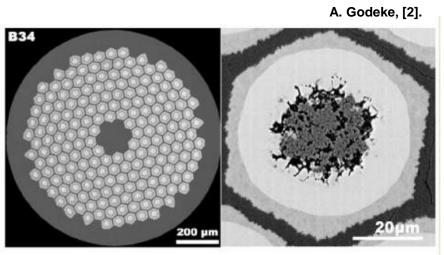


Fabrication of Nb₃Sn multifilament wires

Internal tin process

- A tin core is surrounded by Nb rods embedded in Cu (Rod Restack Process, RRP) or by layers of Nb and Cu (Modify Jelly Roll, MJR).
- Each sub-element has a diffusion barrier.
- Advantage: no annealing steps and not limited amount of Sn
- Disadvantage: small filament spacing results in large effective filament size (50 µm) and large magnetization effect and instability.
- Non-Cu J_C up to 3000 A/mm² at 4.2 K and 12 T.

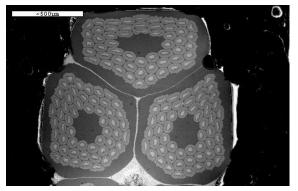


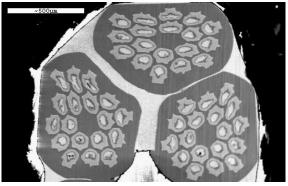


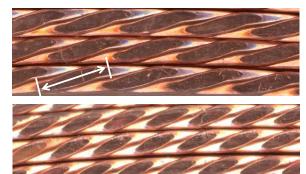
Fabrication of Nb₃Sn multifilament wires

Powder in tube (PIT) process

- NbSn₂ powder is inserted in a Nb tube, put into a copper tube.
- The un-reacted external part of the Nb tube is the barrier.
- Advantage: small filament size (30 μ m) and short heat treatment (proximity of tin to Nb).
- Disadvantage: fabrication cost.
- Non-Cu J_C up to 2400 A/mm² at 4.2 K and 12 T.

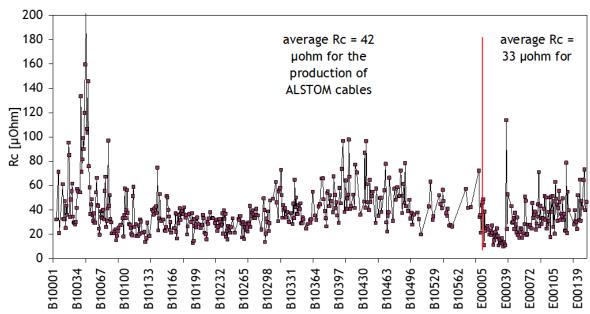


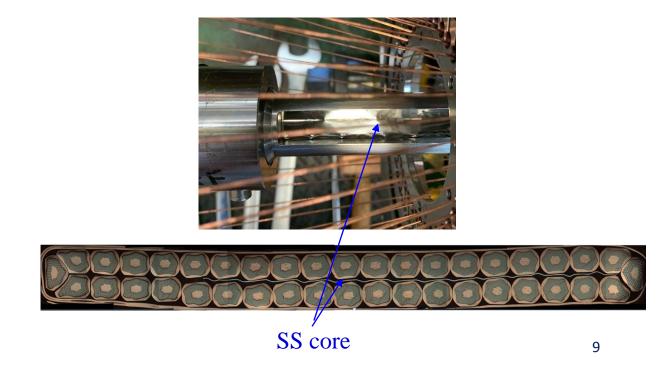




Fabrication of the Rutherford fable

- In the cable sides, the **strands are deformed**; the deformation determines
 - a reduction of the filament cross-sectional area (Nb-Ti) or
 - breakage of reaction barrier with incomplete tin reaction (Nb3Sn).
- In order to avoid degradation
 - The strand cross-section after cabling is investigated
 - Edge facets are measured. General rule: no overlapping of consecutive facets
- Keystone angle is usually limited to 1 or 2° .
- We define as narrow edge packing factor the ratio of the area of two non-deformed strands to that of a rectangle with dimensions of the narrow edge thickness times the wire diameter, that is $\pi d/2t_{\rm in}$.
- Usually, it ranges from 0.95 to 1.03.

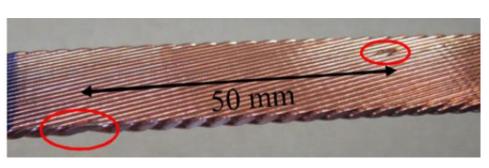


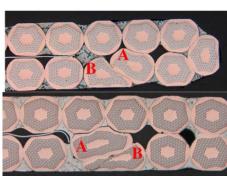


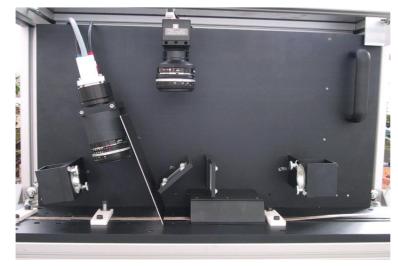
Controlling inter-strand contact resistance

- For the LHC Nb-Ti cables, CERN developed the controlled oxidation method
 - Value too low gives field errors
 - Too high may give instability
- For HL-LHC Nb₃Sn cables, stainless steel 25-µm-thick foil (core) in between strands to control the contact resistance

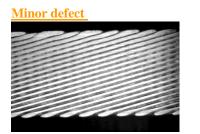
Rc measured by CERN on the cables for the inner dipole layer

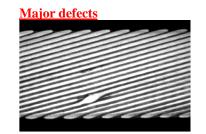


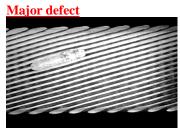


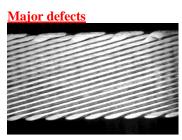

Cable QA

- Continuous monitoring of the thickness (CMM machine) and the quality (camera)
- Experience so far cabling Nb₃Sn rather positive in terms of yield
 - Yield is 96 % for MQXF, with 90 % of the production completed.



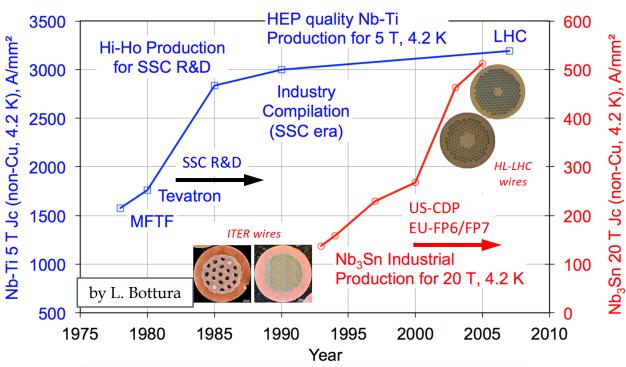





Example defect in LHC NbTi cables

HL-LHC strand testing infrastructure @ CERN

- 7 strand stations running in parallel.
 - 5 stations for Ic measurements
 - 1 station for RRR measurements
 - 1 station for magnetization measurements


Cable testing infrastructure @ CERN

A challenge

- HEP requires stringent performance requirements
 - Conductor development requires time and \$\$\$\$
 - Important to engage industry (i.e., potential market) and keep several vendors
- Other conductors emerging, but cost and production of long unit lengths is still a challenge

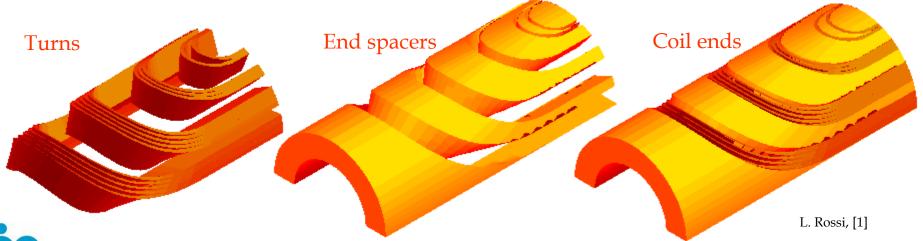
L. Cooley et al., https://doi.org/10.48550/arXiv.2208.12379

Table I: Magnet conductors available for procurement in length > 1 km				
SC material	Billet or batch mass	Annual production	Relative cost	Comments
Nb-Ti	200-400 kg	Hundreds of tons	1	Driven by MRI industry
Nb₃Sn RRP	45 kg	5–10 tons	5	Driven by general purpose and NMR magnets and by Hi-Lumi LHC
Nb ₃ Sn PIT	45 kg	< 1 ton	8	Cheaper RRP is also generally more capable
Bi-2212	20 kg	< 1 ton	20-50	See note (1).
REBCO	10 kg	< 1 ton; few tons for fusion	20–50	See note (2).
Bi-2223	20 kg	< 1 ton	20-30	Current leads (3).
MgB_2	20 kg	< 1 ton	2 [5]	Current transfer cables feeding magnets.

Additional slides

Coil fabrication and magnet assembly

Coil ends

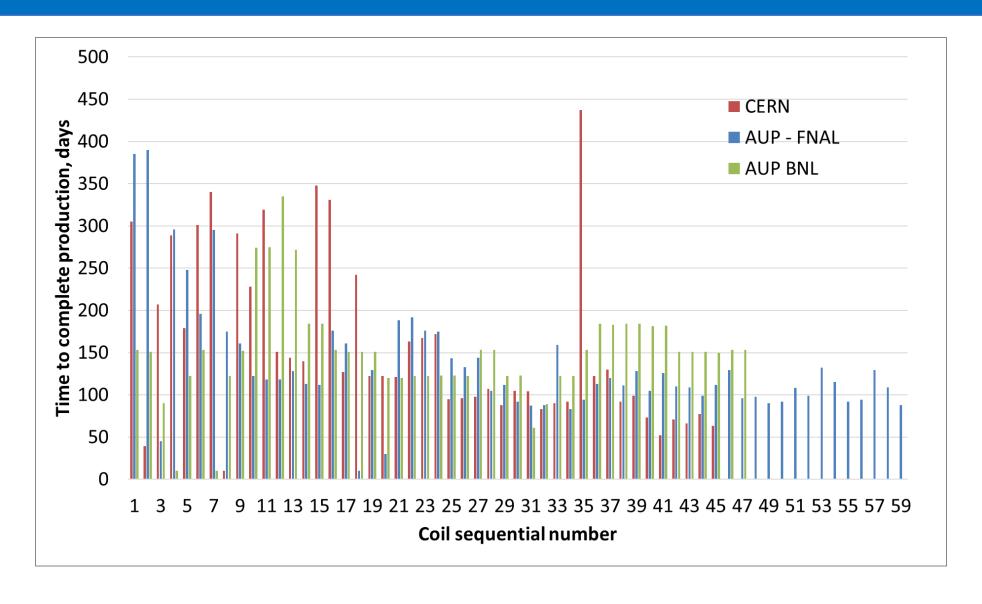

- In the **end region**, it is more difficult to constrain the turn which is bent over the narrow edge while moving around the mandrel.
- To improve the mechanical stability of the ends (and to reduce the peak field), spacers are precisely designed, using the constant **perimeter approach**.
 - The two narrow edges of the turn in the ends follow curves of equal lengths.
- In Nb-Ti magnets, end spacers are produced by 5-axis machining of **epoxy impregnated fiberglass**. Remaining voids are then typically filled by injection of loaded resins.
- In Nb₃Sn magnet, end-spacers are typically in aluminum bronze or stainless steel
 - To easy the winding, the pieces introduce some features to increase flexibility

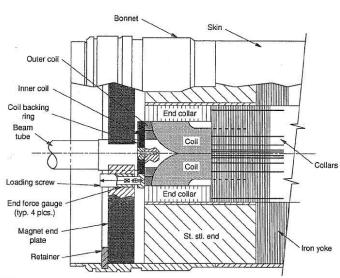
11 T end spacers, with 'flexible legs'

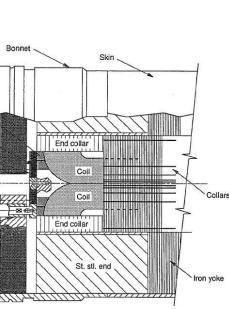
MQXF end spacers, with slits and Alumina coating

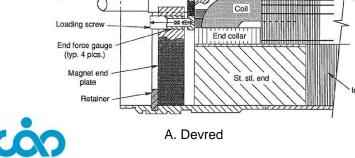
A snapshoot of industry during LHC MB production

A snapshoot of industry during LHC MB production


A snapshoot of industry during LHC MB production

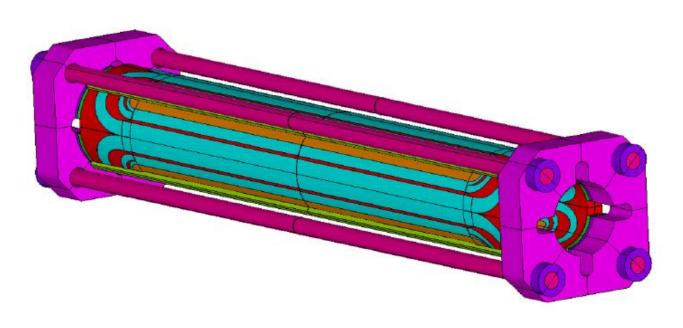

MQXF coil production





LHC-MB dipole: end plate

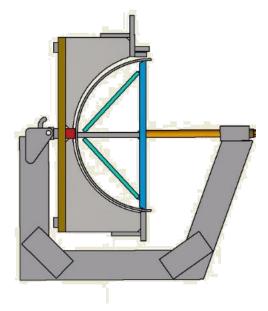
- The axial support is provided by the endplate, welded to the stainless-steel shell
 - Slight pre-load at room temperature, to guarantee that there is still contact coil to end plate at 1.9 K.
 - Goal: limit the coil displacements providing a rigid axial support



MQXF – axial pre-load

- Axial rods and end plate system for axial support, direct connection between the motion of the rod and the one of the coil ends
- Goal: limit the coil displacements providing a rigid axial support and keep the pole turn under compression during powering.

SS shell production



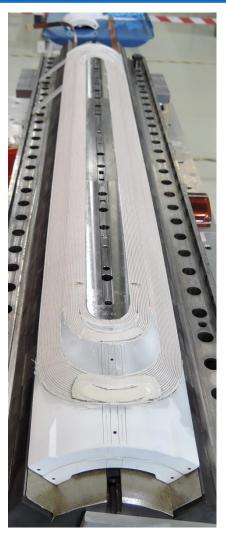
- Forming process in three steps rather than two used previously to improve shaping accuracy.
- Machining of the chamfer after forming, good clamping needed

HL-LHC magnets handling at CERN

MBRD (D2)

MCBRD (CCT)

Workflow LHC dipoles, by L. Rossi


Additional slides

The 12 T challenge

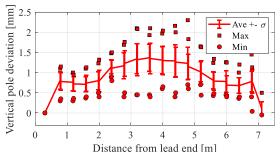
The 12 T challenge – coil fabrication

- Wind and react technology \rightarrow coil undergo a heat treatment step to ≈ 650 ° C to form the superconducting phase
 - Volumetric expansion of the conductor of ≈ 3 %, tooling must provide enough space to avoid over-compaction, potential cause of degraded performance
 - Limited choice of materials (operation range 1.9 K 950 K), but must provide good electrical insulation
- Stringent protection requirements (time margin to reach 350 K T_{hot} is 40 ms instead of 90 ms for the LHC-MB dipoles) call for quench protection heaters placed as close as possible to the coil

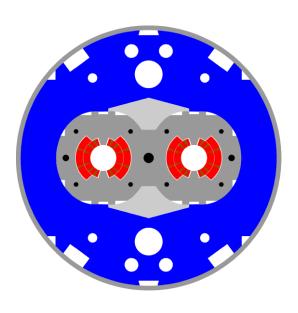
After curing

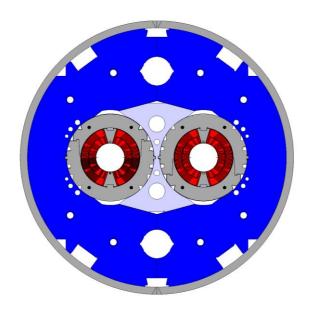
After reaction

After impregnation

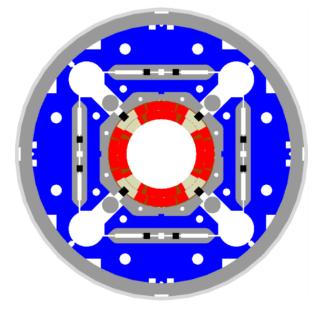

The 12 T challenge – length

- Management of thermal contractions and dilatations (from 1.9 K during magnet operation to 650 ° C during coil reaction) of the different components is still one of the main challenges
 - They scale with the magnet length, and need to be properly engineered with particular attention to transitions





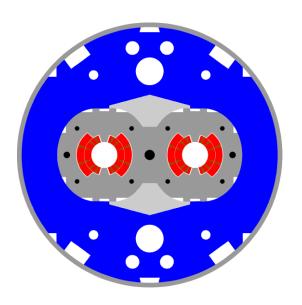
The 12 T challenge – current density


LHC MB

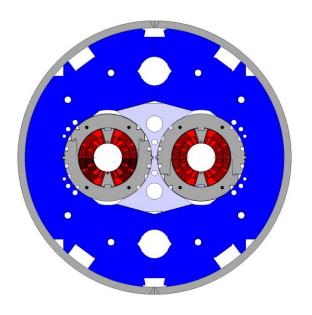
NbTi, $B_p = 8.6 \text{ T}$ Eq. coil width: 27 mm $J_{strand} = 475/616 \text{ A/mm}^2$

HL-LHC MBH 11 T

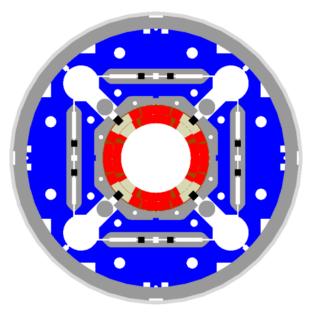
 Nb_3Sn , $B_p = 11.7 T$ Eq. coil width: 28 mm $J_{strand} = 770 A/mm^2$


HL-LHC MQXF

Nb₃Sn, B_p = 11.3 T Eq. coil width: 36 mm $J_{strand} = 715 \text{ A/mm}^2$


The 12 T challenge – e.m. forces

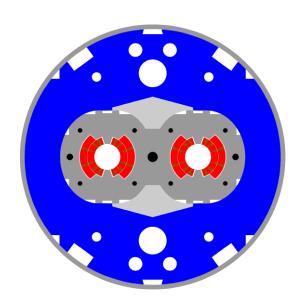
 \approx 2 times more force/stress than in the LHC-MB dipoles, in a brittle conductor


LHC MB

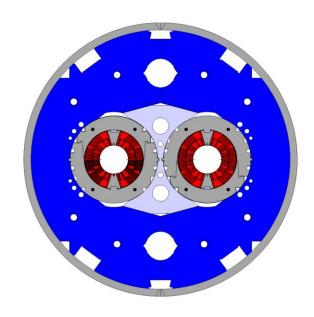
NbTi, $B_p = 8.6 \text{ T}$ $F_x = 3.4 \text{ MN/m}$ $\sigma_{\theta,\text{em}} = 50\text{-}60 \text{ MPa}$ $F_z = 265 \text{ kN}$

HL-LHC MBH 11 T

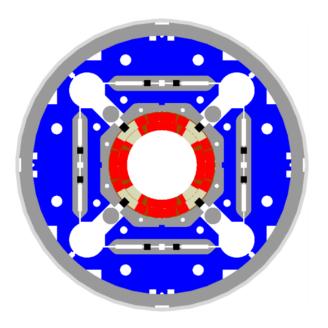
 Nb_3Sn , $B_p = 11.7 \text{ T}$ $F_x = 7.2 \text{ MN/m}$ $\sigma_{\theta,\text{em}} = 100\text{-}110 \text{ MPa}$ $F_z = 450 \text{ kN}$


HL-LHC MQXF

Nb₃Sn, B_p = 11.3 T $F_x = 6.8 \text{ MN/m}$ $\sigma_{\theta,\text{em}} = 100\text{-}110 \text{ MPa}$ $F_z = 1200 \text{ kN}$


The 12 T challenge – protection

 $T_{hot} \approx 100$ K higher than in the LHC-MB dipoles, half the time margin


LHC MB

NbTi, $B_p = 8.6 \text{ T}$ $J_{overall}(I_{nom}) = 356/442 \text{ A/mm}^2$ $J_{cu}(I_{nom}) = 763/932 \text{ A/mm}^2$ $e_m(I_{nom}) = 71 \text{ J/cm}^2$

HL-LHC MBH 11 T

 $Nb_3Sn, B_p = 11.7 T$ $J_{overall}(I_{nom}) = 522 A/mm^2$ $J_{cu}(I_{nom}) = 1440 A/mm^2$ $e_m(I_{nom}) = 124 J/cm^2$

HL-LHC MQXF

 $Nb_3Sn, B_p = 11.3 T$ $J_{overall}(I_{nom}) = 462 A/mm^2$ $J_{cu}(I_{nom}) = 1311 A/mm^2$ $e_m (I_{nom}) = 120 J/cm^2$

Additional slides

String test

HL-LHC String test

- The HL-LHC IT STRING will serve as a test bed for matters or conditions that either:
 - cannot be tested within the component's acceptance and characterization program, or
 - depend on the response of the integrated system.

• The HL-LHC IT STRING will validate operational modes and machine protection procedures, as well as the corresponding analysis, in view of the hardware

HL-LHC String: Infrastructure & warm powering

Power converters

Energy extraction

Demineralized water

Circuit disconnection boxes (CDB)

Water cooled cables

UPS UPS Switch Board Rack

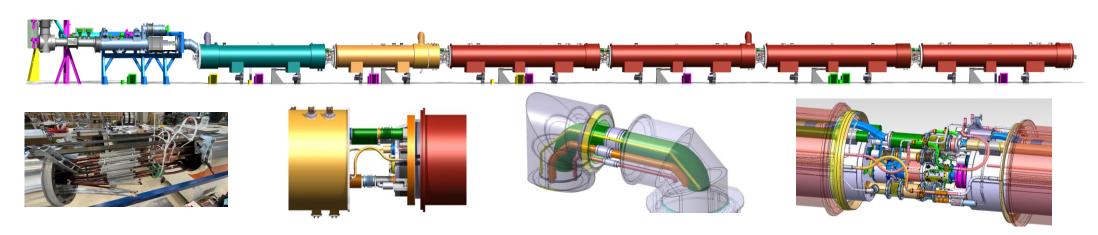
Cryogenic line (SQXL)

HL-LHC String: Cold powering


- ≈ 75 m long, ≈ 120 kA DC superconducting link (MgB₂ cables)
- The system will be first individually tested, and then installed in the string

HL-LHC String: Magnets

• All magnets needed for the string have been individually tested, and are getting ready for the final cold test, and then the string



• Still a 1ot of work to develop installation procedures and connections

