

Three-Loop Scattering Amplitudes in full-color QCD

results in the IR and Regge limits

Collaborators: Piotr Bargiela Amlan Chakraborty Fabrizio Caola Andreas von Manteuffel Lorenzo Tancredi

Giulio Gambuti - 26/06/2023 - Loopfest, SLAC

2-loop

Anastasiou, Glover, Oleari, Tejeda-Yeomans : <u>0101304</u>, <u>0011094</u> Glover, Oleari, Tejeda-Yeomans : <u>0102201</u> Bern, De Freitas, Dixon : 0109078, 0201161, 0304168 Bern, De Freitas, Dixon, Wong : 0202271

2-loop

Anastasiou, Glover, Oleari, Tejeda-Yeomans : <u>0101304</u>, <u>0011094</u> Glover, Oleari, Tejeda-Yeomans : <u>0102201</u> Bern, De Freitas, Dixon : 0109078, 0201161, 0304168 Bern, De Freitas, Dixon, Wong : 0202271

3-loop now complete! -----

2-loop

Anastasiou, Glover, Oleari, Tejeda-Yeomans : <u>0101304</u>, <u>0011094</u> Glover, Oleari, Tejeda-Yeomans : <u>0102201</u> Bern, De Freitas, Dixon : 0109078, 0201161, 0304168 Bern, De Freitas, Dixon, Wong : 0202271

3-loop now complete! ----

2 partons

Caola, von Manteuffel, Tancredi: 2011.13946(PRL)

Bargiela, Caola, von Manteuffel, Tancredi: <u>2111.13595(JHEP)</u>

2-loop

Anastasiou, Glover, Oleari, Tejeda-Yeomans : <u>0101304</u>, <u>0011094</u> Glover, Oleari, Tejeda-Yeomans : <u>0102201</u> Bern, De Freitas, Dixon : 0109078, 0201161, 0304168 Bern, De Freitas, Dixon, Wong : 0202271

3-loop now complete! -

2 partons

Caola, von Manteuffel, Tancredi: <u>2011.13946(PRL)</u>

Bargiela, Caola, von Manteuffel, Tancredi: <u>2111.13595(JHEP)</u>

Bargiela, Chakraborty, GG:

3 partons

2212.14069(PRD)

2-loop

Anastasiou, Glover, Oleari, Tejeda-Yeomans : <u>0101304</u>, <u>0011094</u> Glover, Oleari, Tejeda-Yeomans : <u>0102201</u> Bern, De Freitas, Dixon : 0109078, 0201161, 0304168 Bern, De Freitas, Dixon, Wong : 0202271

3-loop now complete!

2 partons

Caola, von Manteuffel, Tancredi: <u>2011.13946(PRL)</u>

Bargiela, Caola, von Manteuffel, Tancredi: <u>2111.13595(JHEP)</u>

3 partons

Bargiela, Chakraborty, GG: 2212.14069(PRD)

4 partons

Chakraborty, Caola, GG, Tancredi, von Manteuffel: 2108.00055(JHEP), 2207.03503(JHEP), 2112.11097(PRL)

The amplitudes

$$A^{a_1 a_2 a_3 a_4} = \sum_{c=1}^{6} A_c \ \mathcal{C}_c^{a_1 a_2 a_3 a_4}$$

$$A^{a_{1}a_{2}a_{3}a_{4}} = \sum_{c=1}^{6} A_{c} \mathscr{C}_{c}^{a_{1}a_{2}a_{3}a_{4}}$$
Partial
Amplitudes

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum_{j} F_c^j T_j^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

Transversality $\epsilon_i \cdot p_i = 0$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

Transversality $\epsilon_i \cdot p_i = 0$

Reference choice $\epsilon_i \cdot p_{i+1} = 0$

 $138 \rightarrow 10$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

Transversality $\epsilon_i \cdot p_i = 0$

 $p_{3}^{\mu_{1}}p_{1}^{\mu_{2}}g_{1}^{\mu_{3}\mu_{4}} \qquad p_{3}^{\mu_{1}}p_{2}^{\mu_{4}}g_{2}^{\mu_{2}\mu_{3}} \qquad p_{1}^{\mu_{2}}p_{1}^{\mu_{3}}g_{1}^{\mu_{1}\mu_{4}}$ $p_{3}^{\mu_{1}}p_{1}^{\mu_{2}}p_{1}^{\mu_{3}}p_{2}^{\mu_{4}} \qquad p_{3}^{\mu_{1}}p_{1}^{\mu_{3}}g_{2}^{\mu_{2}\mu_{4}} \qquad p_{1}^{\mu_{2}}p_{2}^{\mu_{4}}g_{1}^{\mu_{1}\mu_{3}} \qquad p_{1}^{\mu_{3}}p_{3}^{\mu_{4}}g_{1}^{\mu_{1}\mu_{2}}$ $g_{1}^{\mu_{1}\mu_{2}}g_{1}^{\mu_{3}\mu_{4}} \qquad g_{1}^{\mu_{1}\mu_{3}}g_{1}^{\mu_{2}\mu_{4}} \qquad g_{1}^{\mu_{1}\mu_{4}}g_{1}^{\mu_{2}\mu_{3}}$

138 → 10

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum' F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

Transversality $\epsilon_i \cdot p_i = 0$

 $p_3^{\mu_1}p_1^{\mu_2}g^{\mu_3\mu_4}$ $p_3^{\mu_1}p_2^{\mu_4}g^{\mu_2\mu_3}$ $p_3^{\mu_1} p_1^{\mu_2} p_1^{\mu_3} p_2^{\mu_4} = p_3^{\mu_1} p_1^{\mu_3} g^{\mu_2 \mu_4} = p_1^{\mu_2} p_2^{\mu_4} g^{\mu_1 \mu_3}$

 $p_1^{\mu_2} p_1^{\mu_3} g^{\mu_1 \mu_4}$

 $p_1^{\mu_3} p_3^{\mu_4} g^{\mu_1 \mu_2}$

 $g^{\mu_1\mu_2}g^{\mu_3\mu_4} + g^{\mu_1\mu_3}g^{\mu_2\mu_4} + g^{\mu_1\mu_4}g^{\mu_2\mu_3}$

Tancredi, Peraro: 1906.03298, 2012.00820

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum' F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

Transversality $\epsilon_i \cdot p_i = 0$

 $p_3^{\mu_1}p_1^{\mu_2}g^{\mu_3\mu_4}$ $p_3^{\mu_1}p_2^{\mu_4}g^{\mu_2\mu_3}$

 $p_{2}^{\mu_{1}}p_{1}^{\mu_{2}}p_{1}^{\mu_{3}}p_{2}^{\mu_{4}}$

 $138 \rightarrow 10 \rightarrow 8$

 $p_3^{\mu_1} p_1^{\mu_3} g^{\mu_2 \mu_4} \quad p_1^{\mu_2} p_2^{\mu_4} g^{\mu_1 \mu_3}$

 $p_1^{\mu_2} p_1^{\mu_3} g^{\mu_1 \mu_4}$

 $p_1^{\mu_3} p_2^{\mu_4} g^{\mu_1 \mu_2}$

 $g^{\mu_1\mu_2}g^{\mu_3\mu_4} + g^{\mu_1\mu_3}g^{\mu_2\mu_4} + g^{\mu_1\mu_4}g^{\mu_2\mu_3}$

Tancredi, Peraro: 1906.03298, 2012.00820

 $A_{\vec{h}}^{a_1 a_2 a_3 a_4} = \sum_{c} F_c^i T_i^{\vec{h}} \mathcal{C}_c^{a_1 a_2 a_3 a_4}$ c,i

$$A_{\vec{h}}^{a_1 a_2 a_3 a_4} = \sum_{c,i} F_c^i T_i^{\vec{h}} \mathscr{C}_c^{a_1 a_2 a_3 a_4}$$

True to all orders

$$A_{\vec{h}}^{a_1 a_2 a_3 a_4} = \sum_{c,i} \vec{F_c} T_i^{\vec{h}} \, \mathscr{C}_c^{a_1 a_2 a_3 a_4}$$

rue to all orders

$$F_{c}^{i} \sim \int \frac{\mathrm{d}^{d}\{k_{j}\}}{(2\pi)^{dl}} \frac{\mathcal{N}(\{p\},\{k\})}{D_{1}^{n_{1}}D_{2}^{n_{2}}\dots D_{N}^{n_{N}}}$$

$$F_{c}^{i} \sim \int \frac{\mathrm{d}^{d}\{k_{j}\}}{(2\pi)^{dl}} \frac{\mathcal{N}(\{p\}, \{k\})}{D_{1}^{n_{1}} D_{2}^{n_{2}} \dots D_{N}^{n_{N}}}$$

$$F_{c}^{i} \sim \int \frac{\mathrm{d}^{d}\{k_{j}\}}{(2\pi)^{dl}} \frac{\mathcal{N}(\{p\}, \{k\})}{D_{1}^{n_{1}}D_{2}^{n_{2}}\dots D_{N}^{n_{N}}}$$

$$(k_{1} \cdot p_{1})(k_{2} \cdot k_{3}) + (k_{1} \cdot p_{2})(k_{3} \cdot p_{3}) + \dots$$

RECEIVED: March 13, 2020 ACCEPTED: March 28, 2020 PUBLISHED: April 24, 2020

Constructing d-log integrands and computing master integrals for three-loop four-particle scattering

Johannes Henn,^a Bernhard Mistlberger,^b Vladimir A. Smirnov^{c,e} and Pascal Wasser^d

^a Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, D-80805 München, Germany
^b Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
^c Skobeltsyn Institute of Nuclear Physics of Moscow State University, 119991, Moscow, Russia
^d PRISMA+ Cluster of Excellence, Johannes Gutenberg University, D-55099 Mainz, Germany
^e Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia *E-mail:* henn@mpp.mpg.de, bernhard.mistlberger@gmail.com, smirnov@theory.sinp.msu.ru, wasserp@uni-mainz.de

ABSTRACT: We compute all master integrals for massless three-loop four-particle scattering amplitudes required for processes like di-jet or di-photon production at the LHC. We present our result in terms of a Laurent expansion of the integrals in the dimensional regulator up to 8^{th} power, with coefficients expressed in terms of harmonic polylogarithms. As a basis of master integrals we choose integrals with integrands that only have logarithmic poles — called *d*log forms. This choice greatly facilitates the subsequent computation via the method of differential equations. We detail how this basis is obtained via an improved algorithm originally developed by one of the authors. We provide a public implementation of this algorithm. We explain how the algorithm is naturally applied in the context of unitarity. In addition, we classify our *d*log forms according to their soft and collinear properties.

(e)

Crossing the Amplitudes

Infrared Structure

$\boldsymbol{\mathcal{H}}_{\mathrm{ren}}(\epsilon, \{p\}) = \boldsymbol{\mathcal{Z}}(\epsilon, \{p\}, \mu) \ \boldsymbol{\mathcal{H}}_{\mathrm{fin}}(\mu, \{p\})$

$\mathcal{H}_{\mathrm{ren}}(\epsilon, \{p\}) = \mathcal{Z}(\epsilon, \{p\}, \mu) \mathcal{H}_{\mathrm{fin}}(\mu, \{p\})$

IR-divergent

$\mathcal{H}_{\mathrm{ren}}(\epsilon, \{p\}) = \mathcal{Z}(\epsilon, \{p\}, \mu) \mathcal{H}_{\mathrm{fin}}(\mu, \{p\})$

IR-divergent

IR-finite

 $\mathcal{H}_{\rm ren}(\epsilon, \{p\}) = \mathcal{Z}(\epsilon, \{p\}, \mu) \mathcal{H}_{\rm fin}(\mu, \{p\})$

IR-divergent

IR "renormalisation"

IR-finite

Gardi, Magnea: <u>0901.1091</u>, <u>0908.3273</u>; Becher, Neubert: <u>0903.1126</u>

$$\boldsymbol{\mathcal{H}}_{\mathrm{ren}}(\epsilon, \{p\}) = \boldsymbol{\mathcal{Z}}(\epsilon, \{p\}, \mu) \; \boldsymbol{\mathcal{H}}_{\mathrm{fin}}(\mu, \{p\})$$

IR-divergent

IR "renormalisation" IR-finite

$$\boldsymbol{\mathcal{Z}}(\epsilon, \{p\}, \mu) = \mathbb{P} \exp\left[\int_{\mu}^{\infty} \frac{\mathrm{d}\mu'}{\mu'} \boldsymbol{\Gamma}(\{p\}, \mu')\right]$$

$$\boldsymbol{\mathcal{H}}_{\mathrm{ren}}(\epsilon, \{p\}) = \boldsymbol{\mathcal{Z}}(\epsilon, \{p\}, \mu) \; \boldsymbol{\mathcal{H}}_{\mathrm{fin}}(\mu, \{p\})$$

IR-divergent

IR "renormalisation" IR-finite

$$\boldsymbol{\mathcal{Z}}(\epsilon, \{p\}, \mu) = \mathbb{P} \exp\left[\int_{\mu}^{\infty} \frac{\mathrm{d}\mu'}{\mu'} \boldsymbol{\Gamma}(\{p\}, \mu')\right]$$

$$\boldsymbol{\Gamma}(\{p\},\mu) = \boldsymbol{\Gamma}_{\text{dipole}}(\{p\},\mu) + \boldsymbol{\Delta}_4(\{p\})$$

$$\mathcal{H}_{\mathrm{ren}}(\epsilon, \{p\}) = \mathcal{Z}(\epsilon, \{p\}, \mu) \mathcal{H}_{\mathrm{fin}}(\mu, \{p\})$$

IR-divergent

IR "renormalisation" IR-finite

$$\boldsymbol{\mathcal{Z}}(\epsilon, \{p\}, \mu) = \mathbb{P} \exp\left[\int_{\mu}^{\infty} \frac{\mathrm{d}\mu'}{\mu'} \boldsymbol{\Gamma}(\{p\}, \mu')\right]$$

$$\boldsymbol{\Gamma}(\{p\},\mu) = \boldsymbol{\Gamma}_{\text{dipole}}(\{p\},\mu) + \boldsymbol{\Delta}_4(\{p\})$$

$$\boldsymbol{\mathcal{H}}_{\mathrm{ren}}(\epsilon, \{p\}) = \boldsymbol{\mathcal{Z}}(\epsilon, \{p\}, \mu) \ \boldsymbol{\mathcal{H}}_{\mathrm{fin}}(\mu, \{p\})$$

IR-divergent

IR "renormalisation" IR-finite

$$\boldsymbol{\mathcal{Z}}(\epsilon, \{p\}, \mu) = \mathbb{P} \exp\left[\int_{\mu}^{\infty} \frac{\mathrm{d}\mu'}{\mu'} \boldsymbol{\Gamma}(\{p\}, \mu')\right]$$

$$\boldsymbol{\Gamma}(\{p\},\mu) = \boldsymbol{\Gamma}_{\text{dipole}}(\{p\},\mu) + \boldsymbol{\Delta}_{4}(\{p\})$$

$$\Gamma_{\text{dipole}}(\{p\},\mu) = \sum_{1 \le i < j \le 4} \mathbf{T}_i^a \ \mathbf{T}_j^a \ \gamma^{\text{cusp}}(\alpha_{\text{s}}) \ \log\left(\frac{\mu^2}{-s_{ij} - i\delta}\right) \ + \ \sum_{i=1}^4 \ \gamma^i(\alpha_{\text{s}})$$

$$\mathbf{\Gamma}_{\text{dipole}}(\{p\},\mu) = \sum_{1 \le i < j \le 4} \mathbf{T}_i^a \ \mathbf{T}_j^a \ \gamma^{\text{cusp}}(\alpha_{\text{s}}) \ \log\left(\frac{\mu^2}{-s_{ij} - i\delta}\right) \ + \ \sum_{i=1}^4 \ \gamma^i(\alpha_{\text{s}})$$

$$\begin{split} \mathbf{\Delta}_{4}^{(3)} &= 128 \ f_{abe} \ f_{cde} \ \left[\mathbf{T}_{1}^{a} \ \mathbf{T}_{2}^{c} \ \mathbf{T}_{3}^{b} \ \mathbf{T}_{4}^{d} \ D_{1}(x) - \mathbf{T}_{4}^{a} \ \mathbf{T}_{1}^{b} \ \mathbf{T}_{2}^{c} \ \mathbf{T}_{3}^{d} \ D_{2}(x) \right] \\ &- 16 \ C \ f_{abe} \ f_{cde} \ \sum_{i=1}^{4} \sum_{\substack{1 \le j < k \le 4 \\ j, k \ne i}} \left\{ \mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d} \right\} \ \mathbf{T}_{j}^{b} \ \mathbf{T}_{k}^{c} \ , \\ & \text{Almelid, Duhr, Gardi: 1507.00047} \end{split}$$

Henn, Mistlberger: 1608.00850

$$\mathbf{\Gamma}_{\text{dipole}}(\{p\},\mu) = \sum_{1 \le i < j \le 4} \mathbf{T}_i^a \ \mathbf{T}_j^a \ \gamma^{\text{cusp}}(\alpha_{\text{s}}) \ \log\left(\frac{\mu^2}{-s_{ij} - i\delta}\right) \ + \ \sum_{i=1}^4 \ \gamma^i(\alpha_{\text{s}})$$

$$\begin{split} \mathbf{\Delta}_{4}^{(3)} &= 128 \ f_{abe} \ f_{cde} \ \left[\mathbf{T}_{1}^{a} \ \mathbf{T}_{2}^{c} \ \mathbf{T}_{3}^{b} \ \mathbf{T}_{4}^{d} \ D_{1}(x) - \mathbf{T}_{4}^{a} \ \mathbf{T}_{1}^{b} \ \mathbf{T}_{2}^{c} \ \mathbf{T}_{3}^{d} \ D_{2}(x) \right] \\ &- 16 \ C \ f_{abe} \ f_{cde} \ \sum_{i=1}^{4} \sum_{\substack{1 \le j < k \le 4 \\ j, k \ne i}} \left\{ \mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d} \right\} \ \mathbf{T}_{j}^{b} \ \mathbf{T}_{k}^{c} \ , \\ & \text{Almelid, Duhr, Gardi: 1507.00047} \end{split}$$

Henn, Mistlberger: 1608.00850

$$\Gamma_{\text{dipole}}(\{p\},\mu) = \sum_{1 \le i < j \le 4} \mathbf{T}_i^a \ \mathbf{T}_j^a \ \gamma^{\text{cusp}}(\alpha_{\text{s}}) \ \log\left(\frac{\mu^2}{-s_{ij} - i\delta}\right) \ + \ \sum_{i=1}^4 \ \gamma^i(\alpha_{\text{s}})$$

$$\begin{split} \mathbf{\Delta}_{4}^{(3)} &= 128 \ f_{abe} \ f_{cde} \ \left[\mathbf{T}_{1}^{a} \ \mathbf{T}_{2}^{c} \ \mathbf{T}_{3}^{b} \ \mathbf{T}_{4}^{d} \ D_{1}(x) - \mathbf{T}_{4}^{a} \ \mathbf{T}_{1}^{b} \ \mathbf{T}_{2}^{c} \ \mathbf{T}_{3}^{d} \ D_{2}(x) \right] \\ &- 16 \ C \ f_{abe} \ f_{cde} \ \sum_{i=1}^{4} \sum_{\substack{1 \le j < k \le 4 \\ j, k \ne i}} \left\{ \mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d} \right\} \ \mathbf{T}_{j}^{b} \ \mathbf{T}_{k}^{c} \ , \\ & \text{Almelid, Duhr, Gardi: 1507.00047} \end{split}$$

Henn, Mistlberger: 1608.00850

Now confirmed in QCD:

Chakraborty, Caola, GG, Tancredi, von Manteuffel: 2207.03503, 2112.11097

High Energy Limit

Regge Limit: $s \gg |t|$

$s \gg |t|$

$s \gg |t|$

$s \gg |t|$

$$\log^{\#}\left(\frac{-t}{s}\right) = L^{\#}$$

 $\tau_g(\alpha) = \alpha \tau^{(1)} + \alpha^2 \tau^{(2)} + \alpha^3 \tau^{(3)}$

Reggeized gluon

Reggeized gluon

 $e^{L\tau_g(\alpha)} = \dots + L\alpha^3 \tau^{(3)} + \dots$

Falcioni, Gardi, Maher, Milloy, Vernazza: 2112.11098

Regge Limit as a check

00000000

contribution to N^3LO

See Federico's Talk for a second step..

confirmation of QCD quadrupole radiation

contribution to N^3LO

See Federico's Talk for a second step..

3-loop gluon Regge Trajectory

contribution to N^3LO

See Federico's Talk for a second step..

confirmation of QCD quadrupole radiation

3-loop gluon Regge Trajectory

playground for new ideas

and a second and a second second second and a second second second second second second second second second s The second sec

Thank you !!

Backup Slides

# of QCD # of QCD Feynman diagrams diagrams	000000	8000000 000000 000000 00000000000000000
tree level		
1-loop		
2-loop		
3-loop		

# of QCD # of QCD Feynman Hiagrams diagrams		0000000	9000000 000000 0000000 0000000000000000
tree level	1	3	4
1-loop			
2-loop			
3-loop			

# of QCD # of QCD Feynman diagrams diagrams		0000000	8000000 000000 000000 00000000000000000
tree level	1	3	4
1-loop	9	3	81
2-loop			
3-loop			

# of QCD # of QCD Feynman diagrams		0000000	9000000 000000 000000 00000000000000000
tree level	1	3	4
1-loop	9	3	81
2-loop	158	595	1771
3-loop			

# of QCD # of QCD Feynman diagrams		0000000	9000000 000000 0000000 0000000000000000
tree level	1	3	4
1-loop	9	3	81
2-loop	158	595	1771
3-loop	358	14971	48723

 $A = \sum_{i=1}^{6} A_i \mathscr{C}_i$

$$A = \sum_{i=1}^{6} A_i \mathscr{C}_i$$

$$\mathscr{C}_1 = Tr(\mathbf{T}^{a_1}\mathbf{T}^{a_2}\mathbf{T}^{a_3}\mathbf{T}^{a_4})$$

$$A = \sum_{i=1}^{6} A_i \mathscr{C}_i$$

 $\mathscr{C}_1 = Tr(\mathbf{T}^{a_1}\mathbf{T}^{a_2}\mathbf{T}^{a_3}\mathbf{T}^{a_4}) + Tr(\mathbf{T}^{a_4}\mathbf{T}^{a_3}\mathbf{T}^{a_2}\mathbf{T}^{a_1})$

$$i=1$$

$$a_{2}^{\circ}$$

$$\mathscr{C}_{1} = Tr(\mathbf{T}^{a_{1}}\mathbf{T}^{a_{2}}\mathbf{T}^{a_{3}}\mathbf{T}^{a_{4}}) + Tr(\mathbf{T}^{a_{4}}\mathbf{T}^{a_{3}}\mathbf{T}^{a_{2}}\mathbf{T}^{a_{1}})$$

$$\mathscr{C}_{2} = Tr(\mathbf{T}^{a_{1}}\mathbf{T}^{a_{2}}\mathbf{T}^{a_{4}}\mathbf{T}^{a_{3}}) + Tr(\mathbf{T}^{a_{3}}\mathbf{T}^{a_{4}}\mathbf{T}^{a_{2}}\mathbf{T}^{a_{1}})$$

$$\mathscr{C}_{3} = Tr(\mathbf{T}^{a_{1}}\mathbf{T}^{a_{4}}\mathbf{T}^{a_{2}}\mathbf{T}^{a_{3}}) + Tr(\mathbf{T}^{a_{3}}\mathbf{T}^{a_{2}}\mathbf{T}^{a_{4}}\mathbf{T}^{a_{1}})$$

$$\mathscr{C}_{4} = Tr(\mathbf{T}^{a_{1}}\mathbf{T}^{a_{2}})Tr(\mathbf{T}^{a_{3}}\mathbf{T}^{a_{4}})$$

$$A = \sum_{i=1}^{6} A_i \mathscr{C}_i$$

$$A = \sum_{i=1}^{n} A_i \mathscr{C}_i$$

$$a_2 \overset{(a_2, a_3, a_4)}{=} Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_2} \mathbf{T}^{a_3} \mathbf{T}^{a_4}) + Tr(\mathbf{T}^{a_4} \mathbf{T}^{a_3} \mathbf{T}^{a_2} \mathbf{T}^{a_1})$$

$$\mathscr{C}_2 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_2} \mathbf{T}^{a_4} \mathbf{T}^{a_3}) + Tr(\mathbf{T}^{a_3} \mathbf{T}^{a_4} \mathbf{T}^{a_2} \mathbf{T}^{a_1})$$

$$\mathscr{C}_3 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_4} \mathbf{T}^{a_2} \mathbf{T}^{a_3}) + Tr(\mathbf{T}^{a_3} \mathbf{T}^{a_2} \mathbf{T}^{a_4} \mathbf{T}^{a_1})$$

$$\mathscr{C}_4 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_2}) Tr(\mathbf{T}^{a_3} \mathbf{T}^{a_4})$$

$$\mathscr{C}_5 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_3}) Tr(\mathbf{T}^{a_2} \mathbf{T}^{a_4})$$

$$\mathscr{C}_6 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_4}) Tr(\mathbf{T}^{a_2} \mathbf{T}^{a_3})$$

$$A = \sum_{i=1}^{6} A_i \mathscr{C}$$

$$A = \sum_{i=1}^{A_i \otimes i} A_i \otimes i$$

$$C_1 = Tr(\mathbf{T}^{a_1}\mathbf{T}^{a_2}\mathbf{T}^{a_3}\mathbf{T}^{a_4}) + Tr(\mathbf{T}^{a_4}\mathbf{T}^{a_3}\mathbf{T}^{a_2}\mathbf{T}^{a_1})$$

$$C_2 = Tr(\mathbf{T}^{a_1}\mathbf{T}^{a_2}\mathbf{T}^{a_4}\mathbf{T}^{a_3}) + Tr(\mathbf{T}^{a_3}\mathbf{T}^{a_4}\mathbf{T}^{a_2}\mathbf{T}^{a_1})$$

$$C_3 = Tr(\mathbf{T}^{a_1}\mathbf{T}^{a_4}\mathbf{T}^{a_2}\mathbf{T}^{a_3}) + Tr(\mathbf{T}^{a_3}\mathbf{T}^{a_2}\mathbf{T}^{a_4}\mathbf{T}^{a_1})$$

$$C_4 = Tr(\mathbf{T}^{a_1}\mathbf{T}^{a_2}) Tr(\mathbf{T}^{a_3}\mathbf{T}^{a_4})$$

$$C_5 = Tr(\mathbf{T}^{a_1}\mathbf{T}^{a_3}) Tr(\mathbf{T}^{a_2}\mathbf{T}^{a_4})$$

$$C_6 = Tr(\mathbf{T}^{a_1}\mathbf{T}^{a_4}) Tr(\mathbf{T}^{a_2}\mathbf{T}^{a_3})$$

Second Contraction

 a_4

$$A = \sum_{i=1}^{6} A_i \mathscr{C}_i$$

$$A = \sum_{i=1}^{6} A_i \mathscr{C}_i$$

$$\mathscr{C}_1 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_2} \mathbf{T}^{a_3} \mathbf{T}^{a_4}) + Tr(\mathbf{T}^{a_4} \mathbf{T}^{a_3} \mathbf{T}^{a_2} \mathbf{T}^{a_1})$$

$$\mathscr{C}_2 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_2} \mathbf{T}^{a_4} \mathbf{T}^{a_3}) + Tr(\mathbf{T}^{a_3} \mathbf{T}^{a_4} \mathbf{T}^{a_2} \mathbf{T}^{a_1})$$

$$\mathscr{C}_3 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_4} \mathbf{T}^{a_2} \mathbf{T}^{a_3}) + Tr(\mathbf{T}^{a_3} \mathbf{T}^{a_2} \mathbf{T}^{a_4} \mathbf{T}^{a_1})$$

$$\mathscr{C}_4 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_2}) Tr(\mathbf{T}^{a_3} \mathbf{T}^{a_4})$$

$$\mathscr{C}_5 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_3}) Tr(\mathbf{T}^{a_2} \mathbf{T}^{a_4})$$

$$\mathscr{C}_6 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_4}) Tr(\mathbf{T}^{a_2} \mathbf{T}^{a_3})$$

. Accelere

 a_4

 a_3

$$A = \sum_{i=1}^{6} A_i \mathscr{C}_i$$

$$\mathscr{C}_1 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_2} \mathbf{T}^{a_3} \mathbf{T}^{a_4}) + Tr(\mathbf{T}^{a_4} \mathbf{T}^{a_3} \mathbf{T}^{a_2} \mathbf{T}^{a_1})$$

$$\mathscr{C}_2 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_2} \mathbf{T}^{a_4} \mathbf{T}^{a_3}) + Tr(\mathbf{T}^{a_3} \mathbf{T}^{a_4} \mathbf{T}^{a_2} \mathbf{T}^{a_1})$$

$$\mathscr{C}_3 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_4} \mathbf{T}^{a_2} \mathbf{T}^{a_3}) + Tr(\mathbf{T}^{a_3} \mathbf{T}^{a_2} \mathbf{T}^{a_4} \mathbf{T}^{a_1})$$

$$\mathscr{C}_4 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_2}) Tr(\mathbf{T}^{a_3} \mathbf{T}^{a_4})$$

$$\mathscr{C}_5 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_3}) Tr(\mathbf{T}^{a_2} \mathbf{T}^{a_4})$$

$$\mathscr{C}_6 = Tr(\mathbf{T}^{a_1} \mathbf{T}^{a_4}) Tr(\mathbf{T}^{a_2} \mathbf{T}^{a_3})$$

* CEEEEEEE

 a_4

6666666666

 $A = \sum A_i \mathscr{C}_i = A_1 \mathscr{C}_1 + A_4 \mathscr{C}_4 + (perms)$ i=1 $\mathscr{C}_1 = Tr(\mathbf{T}^{a_1}\mathbf{T}^{a_2}\mathbf{T}^{a_3}\mathbf{T}^{a_4}) + Tr(\mathbf{T}^{a_4}\mathbf{T}^{a_3}\mathbf{T}^{a_2}\mathbf{T}^{a_1})$ $\mathscr{C}_2 = Tr(\mathbf{T}^{a_1}\mathbf{T}^{a_2}\mathbf{T}^{a_4}\mathbf{T}^{a_3}) + Tr(\mathbf{T}^{a_3}\mathbf{T}^{a_4}\mathbf{T}^{a_2}\mathbf{T}^{a_1}) \checkmark$ $\mathscr{C}_3 = Tr(\mathbf{T}^{a_1}\mathbf{T}^{a_4}\mathbf{T}^{a_2}\mathbf{T}^{a_3}) + Tr(\mathbf{T}^{a_3}\mathbf{T}^{a_2}\mathbf{T}^{a_4}\mathbf{T}^{a_1}) \mathbf{I}$ $\mathscr{C}_4 = Tr(\mathbf{T}^{a_1}\mathbf{T}^{a_2}) Tr(\mathbf{T}^{a_3}\mathbf{T}^{a_4}) \cdot$ $\mathscr{C}_5 = Tr(\mathbf{T}^{a_1}\mathbf{T}^{a_3}) Tr(\mathbf{T}^{a_2}\mathbf{T}^{a_4}) \checkmark$ $\mathscr{C}_{6} = Tr(\mathbf{T}^{a_{1}}\mathbf{T}^{a_{4}}) Tr(\mathbf{T}^{a_{2}}\mathbf{T}^{a_{3}}) \checkmark$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum_{j} F_c^j T_j^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum_{j} F_c^j T_j^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $p_1^{\mu_1} p_2^{\mu_2} p_3^{\mu_3} p_3^{\mu_4}$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $p_1^{\mu_1} p_2^{\mu_2} p_3^{\mu_3} p_3^{\mu_4}$ $p_{2}^{\mu_{1}}p_{2}^{\mu_{2}}p_{3}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_3^{\mu_1} p_1^{\mu_2} p_1^{\mu_3} p_2^{\mu_4}$ $p_{2}^{\mu_{1}}p_{1}^{\mu_{2}}p_{3}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_3^{\mu_1} p_2^{\mu_2} p_1^{\mu_3} p_2^{\mu_4}$ • 81

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $p_1^{\mu_1} p_2^{\mu_2} p_3^{\mu_3} p_3^{\mu_4}$ $p_{2}^{\mu_{1}}p_{2}^{\mu_{2}}p_{3}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_3^{\mu_1} p_1^{\mu_2} p_1^{\mu_3} p_2^{\mu_4}$ $p_{2}^{\mu_{1}}p_{1}^{\mu_{2}}p_{3}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_3^{\mu_1} p_2^{\mu_2} p_1^{\mu_3} p_2^{\mu_4}$ • 81

 $p_{3}^{\mu_{1}}p_{3}^{\mu_{2}}g^{\mu_{3}\mu_{4}}$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $=\sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $p_1^{\mu_1} p_2^{\mu_2} p_3^{\mu_3} p_3^{\mu_4}$ $p_{2}^{\mu_{1}}p_{2}^{\mu_{2}}p_{3}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_3^{\mu_1} p_1^{\mu_2} p_1^{\mu_3} p_2^{\mu_4}$ $p_{2}^{\mu_{1}}p_{1}^{\mu_{2}}p_{3}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_3^{\mu_1} p_2^{\mu_2} p_1^{\mu_3} p_2^{\mu_4}$ • 81

 $p_3^{\mu_1} p_3^{\mu_2} g^{\mu_3 \mu_4}$ $g^{\mu_1\mu_2}p_1^{\mu_3}p_1^{\mu_4}$ $g^{\mu_1\mu_3}p_1^{\mu_2}p_2^{\mu_4}$ • 54

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $p_{1}^{\mu_{1}}p_{2}^{\mu_{2}}p_{3}^{\mu_{3}}p_{3}^{\mu_{4}}$ $p_{2}^{\mu_{1}}p_{2}^{\mu_{2}}p_{3}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_{3}^{\mu_{1}}p_{1}^{\mu_{2}}p_{1}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_{2}^{\mu_{1}}p_{1}^{\mu_{2}}p_{3}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_{3}^{\mu_{1}}p_{2}^{\mu_{2}}p_{1}^{\mu_{3}}p_{2}^{\mu_{4}}$ $\vdots 81$

 $p_{3}^{\mu_{1}}p_{3}^{\mu_{2}}g^{\mu_{3}\mu_{4}}$ $g^{\mu_1\mu_2}p_1^{\mu_3}p_1^{\mu_4}$ $g^{\mu_1\mu_3}p_1^{\mu_2}p_2^{\mu_4}$ • 54

 $g^{\mu_1\mu_2}g^{\mu_3\mu_4}$ $g^{\mu_1\mu_3}g^{\mu_2\mu_4}$ $g^{\mu_1\mu_4}g^{\mu_2\mu_3}$ **3**

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $p_{1}^{\mu_{1}}p_{2}^{\mu_{2}}p_{3}^{\mu_{3}}p_{3}^{\mu_{4}}$ $p_{2}^{\mu_{1}}p_{2}^{\mu_{2}}p_{3}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_{3}^{\mu_{1}}p_{1}^{\mu_{2}}p_{1}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_{2}^{\mu_{1}}p_{1}^{\mu_{2}}p_{3}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_{3}^{\mu_{1}}p_{2}^{\mu_{2}}p_{1}^{\mu_{3}}p_{2}^{\mu_{4}}$ $\vdots 81$

 $p_3^{\mu_1} p_3^{\mu_2} g^{\mu_3 \mu_4}$ $g^{\mu_1\mu_2}p_1^{\mu_3}p_1^{\mu_4}$ $g^{\mu_1\mu_3}p_1^{\mu_2}p_2^{\mu_4}$ • 54

 $g^{\mu_1\mu_2}g^{\mu_3\mu_4}$ $g^{\mu_1\mu_3}g^{\mu_2\mu_4}$ $g^{\mu_1\mu_4}g^{\mu_2\mu_3}$ **3**

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $p_1^{\mu_1} p_2^{\mu_2} p_3^{\mu_3} p_3^{\mu_4}$ $p_{2}^{\mu_{1}}p_{2}^{\mu_{2}}p_{3}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_{3}^{\mu_{1}}p_{1}^{\mu_{2}}p_{1}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_{2}^{\mu_{1}}p_{1}^{\mu_{2}}p_{3}^{\mu_{3}}p_{2}^{\mu_{4}}$ $p_3^{\mu_1} p_2^{\mu_2} p_1^{\mu_3} p_2^{\mu_4}$ • 81

 $g^{\mu_1\mu_2}g^{\mu_3\mu_4}$ $p_{3}^{\mu_{1}}p_{3}^{\mu_{2}}g^{\mu_{3}\mu_{4}}$ $g^{\mu_1\mu_3}g^{\mu_2\mu_4}$ $g^{\mu_1\mu_2}p_1^{\mu_3}p_1^{\mu_4}$ $g^{\mu_1\mu_3}p_1^{\mu_2}p_2^{\mu_4}$ $g^{\mu_1\mu_4}g^{\mu_2\mu_3}$ • 54 3

Transversality $\epsilon_i \cdot p_i = 0$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $g^{\mu_1\mu_2}g^{\mu_3\mu_4}$ $p_{3}^{\mu_{1}}p_{3}^{\mu_{2}}g^{\mu_{3}\mu_{4}}$ $g^{\mu_1\mu_3}g^{\mu_2\mu_4}$ $g^{\mu_1\mu_2}p_1^{\mu_3}p_1^{\mu_4}$ $g^{\mu_1\mu_3}p_1^{\mu_2}p_2^{\mu_4}$ $g^{\mu_1\mu_4}g^{\mu_2\mu_3}$ • 54 3

Transversality $\epsilon_i \cdot p_i = 0$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $g^{\mu_1\mu_2}g^{\mu_3\mu_4}$ $p_{3}^{\mu_{1}}p_{3}^{\mu_{2}}g^{\mu_{3}\mu_{4}}$ $g^{\mu_1\mu_3}g^{\mu_2\mu_4}$ $g^{\mu_1\mu_2}p_1^{\mu_3}p_1^{\mu_4}$ $g^{\mu_1\mu_3}p_1^{\mu_2}p_2^{\mu_4}$ $g^{\mu_1\mu_4}g^{\mu_2\mu_3}$ • • 54 3

Transversality $\epsilon_i \cdot p_i = 0$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $p_{3}^{\mu_{1}}p_{3}^{\mu_{2}}g^{\mu_{3}\mu_{4}}$ $g^{\mu_{1}\mu_{2}}p_{1}^{\mu_{3}}p_{1}^{\mu_{4}}$ $g^{\mu_{1}\mu_{3}}p_{1}^{\mu_{2}}p_{2}^{\mu_{4}}$ $\cdot 54$

Transversality $\epsilon_i \cdot p_i = 0$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

Transversality $\epsilon_i \cdot p_i = 0$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

138 → 10

 $p_{3}^{\mu_{1}}p_{3}^{\mu_{2}}g^{\mu_{3}\mu_{4}}$ $g^{\mu_{1}\mu_{2}}p_{1}^{\mu_{3}}p_{1}^{\mu_{4}}$ $g^{\mu_{1}\mu_{3}}p_{1}^{\mu_{2}}p_{2}^{\mu_{4}}$ $\vdots 54$

$$g^{\mu_1\mu_2}g^{\mu_3\mu_4} \ g^{\mu_1\mu_3}g^{\mu_2\mu_4} \ g^{\mu_1\mu_4}g^{\mu_2\mu_3}$$

3

Transversality $\epsilon_i \cdot p_i = 0$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $p_3^{\mu_1} p_1^{\mu_2} g^{\mu_3 \mu_4} \quad p_3^{\mu_1} p_2^{\mu_4} g^{\mu_2 \mu_3} \quad p_1^{\mu_2} p_1^{\mu_3} g^{\mu_1 \mu_4}$ $p_3^{\mu_1} p_1^{\mu_3} g^{\mu_2 \mu_4} p_1^{\mu_2} p_2^{\mu_4} g^{\mu_1 \mu_3} p_1^{\mu_3} p_3^{\mu_4} g^{\mu_1 \mu_2}$ $g^{\mu_1\mu_2}g^{\mu_3\mu_4}$ $g^{\mu_1\mu_3}g^{\mu_2\mu_4}$ $g^{\mu_1\mu_4}g^{\mu_2\mu_3}$

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum F_c^j T_j^{\mu_1\mu_2\mu_3\mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $p_3^{\mu_1} p_1^{\mu_2} g^{\mu_3 \mu_4} p_3^{\mu_1} p_2^{\mu_4} g^{\mu_2 \mu_3} p_1^{\mu_2} p_1^{\mu_3} g^{\mu_1 \mu_4}$ $p_{3}^{\mu_{1}}p_{1}^{\mu_{3}}g^{\mu_{2}\mu_{4}}$ $p_{1}^{\mu_{2}}p_{2}^{\mu_{4}}g^{\mu_{1}\mu_{3}}$ $p_{1}^{\mu_{3}}p_{3}^{\mu_{4}}g^{\mu_{1}\mu_{2}}$ $g^{\mu_1\mu_2}g^{\mu_3\mu_4}$ $g^{\mu_1\mu_3}g^{\mu_2\mu_4}$ $g^{\mu_1\mu_4}g^{\mu_2\mu_3}$

 $138 \rightarrow 10$

Tancredi, Peraro: 1906.03298, 2012.00820

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum' F_c^j T_j^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $p_3^{\mu_1} p_1^{\mu_2} g^{\mu_3 \mu_4} p_3^{\mu_1} p_2^{\mu_4} g^{\mu_2 \mu_3} p_1^{\mu_2} p_1^{\mu_3} g^{\mu_1 \mu_4}$ $p_{3}^{\mu_{1}}p_{1}^{\mu_{3}}g^{\mu_{2}\mu_{4}}$ $p_{1}^{\mu_{2}}p_{2}^{\mu_{4}}g^{\mu_{1}\mu_{3}}$ $p_{1}^{\mu_{3}}p_{3}^{\mu_{4}}g^{\mu_{1}\mu_{2}}$ $g^{\mu_1\mu_2}g^{\mu_3\mu_4} + g^{\mu_1\mu_3}g^{\mu_2\mu_4} + g^{\mu_1\mu_4}g^{\mu_2\mu_3}$

 $138 \rightarrow 10$

Tancredi, Peraro: 1906.03298, 2012.00820

 $A_c = A_c^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$ $= \sum' F_c^j T_j^{\mu_1 \mu_2 \mu_3 \mu_4} \epsilon_{\mu_1} \epsilon_{\mu_2} \epsilon_{\mu_3} \epsilon_{\mu_4}$

 $p_3^{\mu_1} p_1^{\mu_2} g^{\mu_3 \mu_4} p_3^{\mu_1} p_2^{\mu_4} g^{\mu_2 \mu_3} p_1^{\mu_2} p_1^{\mu_3} g^{\mu_1 \mu_4}$ $p_{3}^{\mu_{1}}p_{1}^{\mu_{3}}g^{\mu_{2}\mu_{4}}$ $p_{1}^{\mu_{2}}p_{2}^{\mu_{4}}g^{\mu_{1}\mu_{3}}$ $p_{1}^{\mu_{3}}p_{3}^{\mu_{4}}g^{\mu_{1}\mu_{2}}$ $g^{\mu_1\mu_2}g^{\mu_3\mu_4} + g^{\mu_1\mu_3}g^{\mu_2\mu_4} + g^{\mu_1\mu_4}g^{\mu_2\mu_3}$

 $138 \rightarrow 10 \rightarrow 8$

Tancredi, Peraro: 1906.03298, 2012.00820

$$\mathbf{T}^a X^c = -if^a_{cc'} X^{c'}$$

$$\Gamma_{\text{dipole}}(\{p\},\mu) = \sum_{1 \le i < j \le 4} \mathbf{T}_i^a \ \mathbf{T}_j^a \ \gamma^{\text{cusp}}(\alpha_{\text{s}}) \ \log\left(\frac{\mu^2}{-s_{ij} - i\delta}\right) \ + \ \sum_{i=1}^4 \ \gamma^i(\alpha_{\text{s}})$$

$$\Gamma_{\text{dipole}}(\{p\},\mu) = \sum_{1 \le i < j \le 4} \mathbf{T}_i^a \ \mathbf{T}_j^a \ \gamma^{\text{cusp}}(\alpha_{\text{s}}) \ \log\left(\frac{\mu^2}{-s_{ij} - i\delta}\right) \ + \ \sum_{i=1}^4 \ \gamma^i(\alpha_{\text{s}})$$

$$\Gamma_{\text{dipole}}(\{p\},\mu) = \sum_{1 \le i < j \le 4} \mathbf{T}_i^a \ \mathbf{T}_j^a \ \gamma^{\text{cusp}}(\alpha_{\text{s}}) \ \log\left(\frac{\mu^2}{-s_{ij} - i\delta}\right) \ + \ \sum_{i=1}^4 \ \gamma^i(\alpha_{\text{s}})$$

$$\Gamma_{\text{dipole}}(\{p\},\mu) = \sum_{1 \le i < j \le 4} \mathbf{T}_i^a \ \mathbf{T}_j^a \ \gamma^{\text{cusp}}(\alpha_{\text{s}}) \ \log\left(\frac{\mu^2}{-s_{ij} - i\delta}\right) + \sum_{i=1}^4 \ \gamma^i(\alpha_{\text{s}})$$

$$F_{c}^{i} = \sum e^{-n} r_{i} \mathbb{T}_{i}$$

Divergent Logarithms
 $\sim \log^{\#} \left(\frac{-t}{s}\right) = L^{\#}$

Spoiled expansion

 $\mathbf{A}^{(0)} + \alpha \mathbf{A}^{(1)} + \alpha^2 \mathbf{A}^{(2)} + \alpha^3 \mathbf{A}^{(3)} + \dots$

$$F_{c}^{i} = \sum e^{-n} r_{i} \mathbb{T}_{i}$$

Divergent Logarithms
 $\sim \log^{\#} \left(\frac{-t}{s}\right) = L^{\#}$

$$\mathbf{A}^{(0)} + \alpha \mathbf{A}^{(1)} + \alpha^2 \mathbf{A}^{(2)} + \alpha^3 \mathbf{A}^{(3)} + \dots$$

$$A^{(0)} = \#$$

$$A^{(1)} = \#L + \#$$

$$A^{(2)} = \#L^{2} + \#L + \#$$

$$A^{(3)} = \#L^{3} + \#L^{2} + \#L + \#$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$F_{c}^{i} = \sum e^{-n} r_{i} \mathbb{T}_{i}$$

Divergent Logarithms
 $\sim \log^{\#} \left(\frac{-t}{s}\right) = L^{\#}$

Spoiled expansion

$$\mathbf{A}^{(0)} + \alpha \mathbf{A}^{(1)} + \alpha^2 \mathbf{A}^{(2)} + \alpha^3 \mathbf{A}^{(3)} + \dots$$

$$A^{(0)} = \#$$

$$A^{(1)} = \#L + \#$$

$$A^{(2)} = \#L^{2} + \#L + \#$$

$$A^{(3)} = \#L^{3} + \#L^{2} + \#L + \#L + \#$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$F_{c}^{i} = \sum e^{-n} r_{i} \mathbb{T}_{i}$$

Divergent Logarithms
 $\sim \log^{\#} \left(\frac{-t}{s}\right) = L^{\#}$

Spoiled expansion

$$\mathbf{A}^{(0)} + \alpha \mathbf{A}^{(1)} + \alpha^2 \mathbf{A}^{(2)} + \alpha^3 \mathbf{A}^{(3)} + \dots$$

$$A^{(0)} = \# \qquad \text{NLL}$$

$$A^{(1)} = \# L \qquad + \# \qquad \\ A^{(2)} = \# L^2 \qquad + \# L \qquad + \# \qquad \\ A^{(3)} = \# L^3 \qquad + \# L^2 \qquad + \# L + \# \qquad \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \\ \end{bmatrix}$$

$$F_{c}^{i} = \sum e^{-n} r_{i} \mathbb{T}_{i}$$

Divergent Logarithms
 $\sim \log^{\#} \left(\frac{-t}{s}\right) = L^{\#}$

Spoiled expansion

$$\mathbf{A}^{(0)} + \alpha \mathbf{A}^{(1)} + \alpha^2 \mathbf{A}^{(2)} + \alpha^3 \mathbf{A}^{(3)} + \dots$$

$$A^{\pm,(0)} = \#$$

 $A^{\pm,(1)} = \# L + \#$ $A^{\pm,(2)} = \# L^2 + \# L + \#$ $A^{\pm,(3)} = \# L^3 + \# L^2 + \# L + \#$

Falcioni, Gardi, Maher, Milloy, Vernazza: 2112.11098

 $A^X = \sum_{i=1}^N F_i T_i^X$

$$A^X = \sum_{i=1}^N F_i T_i^X$$

 $T_{1} = \bar{u}(p_{2})\gamma_{\mu_{1}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}u(p_{3})$ $T_{2} = \bar{u}(p_{2})\not\!\!\!p_{3}u(p_{1}) \times \bar{u}(p_{4})\not\!\!\!p_{1}u(p_{3})$

qQ → qQ

$$A^X = \sum_{i=1}^N F_i T_i^X$$

 $T_{1} = \bar{u}(p_{2})\gamma_{\mu_{1}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}u(p_{3})$ $T_{2} = \bar{u}(p_{2})\not{p}_{3}u(p_{1}) \times \bar{u}(p_{4})\not{p}_{1}u(p_{3})$

 $T_{3} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}u(p_{3})$ $T_{4} = \bar{u}(p_{2})\gamma_{\mu_{1}}\not{p}_{3}\gamma_{\mu_{3}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\not{p}_{1}\gamma^{\mu_{3}}u(p_{3})$

 $qQ \rightarrow qQ$

$$A^X = \sum_{i=1}^N F_i T_i^X$$

 $T_{3} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}u(p_{3})$ $T_{4} = \bar{u}(p_{2})\gamma_{\mu_{1}}\not{p}_{3}\gamma_{\mu_{3}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\not{p}_{1}\gamma^{\mu_{3}}u(p_{3})$

 $T_{5} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}\gamma_{\mu_{4}}\gamma_{\mu_{5}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}\gamma^{\mu_{4}}\gamma^{\mu_{5}}u(p_{3})$ $T_{6} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\not{p}_{3}\gamma_{\mu_{4}}\gamma_{\mu_{5}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\not{p}_{1}\gamma^{\mu_{4}}\gamma^{\mu_{5}}u(p_{3})$

 $qQ \rightarrow qQ$

$$A^X = \sum_{i=1}^N F_i T_i^X$$

- $T_{1} = \bar{u}(p_{2})\gamma_{\mu_{1}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}u(p_{3})$ $T_{2} = \bar{u}(p_{2})\not p_{3}u(p_{1}) \times \bar{u}(p_{4})\not p_{1}u(p_{3})$
- $T_{3} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}u(p_{3})$ $T_{4} = \bar{u}(p_{2})\gamma_{\mu_{1}}\not{p}_{3}\gamma_{\mu_{3}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\not{p}_{1}\gamma^{\mu_{3}}u(p_{3})$
- $T_{5} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}\gamma_{\mu_{4}}\gamma_{\mu_{5}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}\gamma^{\mu_{4}}\gamma^{\mu_{5}}u(p_{3})$ $T_{6} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\not{p}_{3}\gamma_{\mu_{4}}\gamma_{\mu_{5}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\not{p}_{1}\gamma^{\mu_{4}}\gamma^{\mu_{5}}u(p_{3})$

 $T_{7} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}\gamma_{\mu_{4}}\gamma_{\mu_{5}}\gamma_{\mu_{6}}\gamma_{\mu_{7}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}\gamma^{\mu_{4}}\gamma^{\mu_{5}}\gamma^{\mu_{6}}\gamma^{\mu_{7}}u(p_{3})$ $T_{8} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}\not{p}_{3}\gamma_{\mu_{5}}\gamma_{\mu_{6}}\gamma_{\mu_{7}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}\not{p}_{1}\gamma^{\mu_{5}}\gamma^{\mu_{6}}\gamma^{\mu_{7}}u(p_{3})$

 $qQ \rightarrow qQ$

$$A^X = \sum_{i=1}^N F_i T_i^X$$

 $T_{3} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}u(p_{3})$ $T_{4} = \bar{u}(p_{2})\gamma_{\mu_{1}}\not{p}_{3}\gamma_{\mu_{3}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\not{p}_{1}\gamma^{\mu_{3}}u(p_{3})$

 $T_{5} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}\gamma_{\mu_{4}}\gamma_{\mu_{5}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}\gamma^{\mu_{4}}\gamma^{\mu_{5}}u(p_{3})$ $T_{6} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\not{p}_{3}\gamma_{\mu_{4}}\gamma_{\mu_{5}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\not{p}_{1}\gamma^{\mu_{4}}\gamma^{\mu_{5}}u(p_{3})$

 $T_{7} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}\gamma_{\mu_{4}}\gamma_{\mu_{5}}\gamma_{\mu_{6}}\gamma_{\mu_{7}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}\gamma^{\mu_{4}}\gamma^{\mu_{5}}\gamma^{\mu_{6}}\gamma^{\mu_{7}}u(p_{3})$ $T_{8} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}\not{p}_{3}\gamma_{\mu_{5}}\gamma_{\mu_{6}}\gamma_{\mu_{7}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}\not{p}_{1}\gamma^{\mu_{5}}\gamma^{\mu_{6}}\gamma^{\mu_{7}}u(p_{3})$

- •
- •
- ullet

qQ → qQ

$$A^X = \sum_{i=1}^N F_i T_i^X$$

 $T_1 = \bar{u}(p_2)\gamma_{\mu_1}u(p_1) \times \bar{u}(p_4)\gamma^{\mu_1}u(p_3)$ in d=4 $T_2 = \bar{u}(p_2) p_3 u(p_1) \times \bar{u}(p_4) p_1 u(p_3)$ $T_3 = \bar{u}(p_2)\gamma_{\mu_1}\gamma_{\mu_2}\gamma_{\mu_3}u(p_1) \times \bar{u}(p_4)\gamma^{\mu_1}\gamma^{\mu_2}\gamma^{\mu_3}u(p_3)$ $T_{5} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}\gamma_{\mu_{4}}\gamma_{\mu_{5}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}\gamma^{\mu_{4}}\gamma^{\mu_{5}}u(p_{3})$ $T_{6} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}} p_{3}\gamma_{\mu_{4}}\gamma_{\mu_{5}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}} p_{1}\gamma^{\mu_{4}}\gamma^{\mu_{5}}u(p_{3})$ $T_{7} = \bar{u}(p_{2})\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}\gamma_{\mu_{4}}\gamma_{\mu_{5}}\gamma_{\mu_{6}}\gamma_{\mu_{7}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}\gamma^{\mu_{4}}\gamma^{\mu_{5}}\gamma^{\mu_{6}}\gamma^{\mu_{7}}u(p_{3})$

 $qQ \rightarrow qQ$

$$A^X = \sum_{i=1}^N F_i T_i^X$$

 $T_{3} = T_{3}^{4} + (d - 4)T_{3}^{-2\epsilon}$ $T_{4} = T_{4}^{4} + (d - 4)T_{4}^{-2\epsilon}$ $T_{5} = T_{5}^{4} + (d - 4)T_{5}^{-2\epsilon}$ $T_{6} = T_{6}^{4} + (d - 4)T_{6}^{-2\epsilon}$ $T_{7} = T_{7}^{4} + (d - 4)T_{7}^{-2\epsilon}$ $T_{8} = T_{8}^{4} + (d - 4)T_{8}^{-2\epsilon}$

 $qQ \rightarrow qQ$

$$A^X = \sum_{i=1}^N F_i T_i^X$$

$$\bar{u}(p_2) \dots u(p_1)$$
 $\bar{u}(p_4) \dots u(p_3)$
 p_1

 $T_{1} = \bar{u}(p_{2})\gamma_{\mu_{1}}u(p_{1}) \times \bar{u}(p_{4})\gamma^{\mu_{1}}u(p_{3})$ $T_{2} = \bar{u}(p_{2})p_{3}u(p_{1}) \times \bar{u}(p_{4})p_{1}u(p_{3})$ $T_{3} = T_{3}^{*} + (d - 4)T_{3}^{-2\epsilon}$ $T_{4} = T_{4}^{*} + (d - 4)T_{4}^{-2\epsilon}$ $T_{5} = T_{5}^{*} + (d - 4)T_{5}^{-2\epsilon}$ $T_{6} = T_{6}^{*} + (d - 4)T_{6}^{-2\epsilon}$ $T_{7} = T_{7}^{4} + (d - 4)T_{7}^{-2\epsilon}$ $T_{8} = T_{8}^{4} + (d - 4)T_{8}^{-2\epsilon}$

L. Tancredi, T. Peraro: <u>arXiv:1906.03298</u>, <u>arXiv:2012.00820</u>

 $qQ \rightarrow qQ$

$$A^X = \sum_{i=1}^N F_i T_i^X$$

 $\overline{T}_3 = (d-4)T_3^{-2\epsilon}$ $\overline{T}_4 = (d-4)T_4^{-2\epsilon}$ $\overline{T}_5 = (d-4)T_5^{-2\epsilon}$ $\overline{T}_6 = (d-4)T_6^{-2\epsilon}$ $\overline{T}_7 = (d-4)T_7^{-2\epsilon}$ $\overline{T}_8 = (d-4)T_8^{-2\epsilon}$

 $qQ \rightarrow qQ$

$$A^X = \sum_{i=1}^N F_i T_i^X$$

 $\overline{T}_3 = (d-4)T_3^{-2\epsilon}$ $\overline{T}_4 = (d-4)T_4^{-2\epsilon}$ $\overline{T}_5 = (d-4)T_5^{-2\epsilon}$ $\overline{T}_6 = (d-4)T_6^{-2\epsilon}$ $\overline{T}_7 = (d-4)T_7^{-2\epsilon}$ $\overline{T}_8 = (d-4)T_8^{-2\epsilon}$

 $qQ \rightarrow qQ$

$$A^X = \sum_{i=1}^N F_i T_i^X$$

L. Tancredi, T. Peraro: <u>arXiv:1906.03298</u>, <u>arXiv:2012.00820</u>

 $qQ \rightarrow qQ$

$$A^X = \sum_{i=1}^N F_i T_i^X$$

