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INTRODUCTION: ampLITUDES AND FEYNMAN INTEGRALS

Feynman integrals are everywhere
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Feynman Integrals are difficult, but also beautiful objects, their calculation manifests
regularities and structures in physical observables



ANALYTIC STRUCTURES: speciaL uncrioNs IN PARTICLE PHYSICS

The “most famous calculation” in pQFT: the g-2 of the electron
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The “most famous calculation” in pQFT: the g-2 of the electron

20 =0 (2) ran(®) +en() ve) van(2) v

s (s s

Ci = A = +0.50000000...
Cy = AAA = —(0.328478965...

Cs = QAA = +1.181241456...

O, — = —1.912245764...

lots of Feynman diagrams [impressive analytic 4loop by S. Laporta]
[impressive numeric 5 loop by Kinoshita et al]
Cs = — +6.737(159)
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The “most famous calculation” in pQFT: the g-2 of the electron

20 =0 (2) ran(®) +en() ve) van(2) v

s s s

C = _

1
= 5 [Schwinger *48]

Cy = A A A — % + %72 _ %WQ In2 + ZC(3) [Petermann, Sommerfield ’57]
B 83 , 215 100 ! In* 2 7%In? 2
o QA\A = mregpeoe (1 (3) ) S

239 , 139 2098 17101 ., 28259
_ 2 227 A3) — 222 210 9
60" T g B T g in2+ "

810 + 5184
[Laporta, Remiddi ’97]

from analytic results order by order in ¢, iterated patterns emerges:

multiple polylogarithms evaluated at special (rational) points



DIFFERENTIAL EQUATION METHOD

We compute Feynman integrals as series in ¢ = (4 —d)/2

Iterated integral structure in € made manifest by differentiation — powerful technique:
(Scalar) Feynman Integrals
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DIFFERENTIAL EQUATION METHOD

We compute Feynman integrals as series in ¢ = (4 —d)/2

Iterated integral structure in € made manifest by differentiation — powerful technique:

(Scalar) Feynman Integrals Basis of Master Integrals (Mls)
L D b b
=JH d kl Sll...Smm ﬁ
27)P DL Do [={I N /
=1 (27) ! " Integration by Parts etc I=hG&e).... Iyz o)

Jﬁ dPk, o SPr. .. Shn .
v a a -
LLQmP ok | “ D D
By differentiating MIs and re-expressing derivatives through MlIs, we get system of diff. equations

Gauss-Manin connection d_l — GM (_Z9 6)_1 \

Matrix of differential forms, all / Basis of master integrals
rational functions (from IBPs) [Kotikov *93; Remiddi ’97; Gehrmann Remiddi ’99, ... ]
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dl = GM (Z, 6) I In this form, iterated structure hidden in arbitrary dependence on ¢
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dl = GM (Z, 6) I In this form, iterated structure hidden in arbitrary dependence on ¢

Imagine to be able to perform a series of rotations R; on the original basis

J=R(z,¢6)I with R(z,¢) =R, (z,¢)---Ra(z,¢)Rqi(z,¢€)

Such that

dJ =eGM (2)J, where eGM (z) = [R(z,¢)GM(z,¢) + dR(z,€)]R(z,€) !



EPSILON-FACTORISED BASES

dl = GM (Z, 6) I In this form, iterated structure hidden in arbitrary dependence on ¢

Imagine to be able to perform a series of rotations R; on the original basis

J=R(z,¢6)I with R(z,¢) =R, (z,¢)---Ra(z,¢)Rqi(z,¢€)

Such that
dJ =eGM (z)J, where eGM (z) = [R(z,6)GM(z,¢€) + dR(z,€)] R(z,€)*

Since GM(z) does not depend on ¢, the iterated structure in € becomes manifest

We refer to such a basis as in epsilon-factorised form [Kotikov ’10; J. Henn ’13; Lee "13, ... ]




EPSILON-FACTORISED OR CANONICAL?

What can we say about GM(z) ?

CL_] =€ GM(_Z)_] - Is GM(z) unique ?

- Are there e-factorized bases that are better than others?
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The basis J often won’t have unique properties, depends on [/ ...
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EPSILON-FACTORISED OR CANONICAL?

What can we say about GM(z) ?

d._] =€ GM(_Z)_] - Is GM(z) unique ?

- Are there e-factorized bases that are better than others?

— Can we define an optimal basis of master integrals for a given problem?

We understand a lot if solutions can be expressed in terms of Multiple Polylogarithms (MPLs)

MPLs span the space of iterated integrals of rational functions on complex plane C

Simplest example: J di x ! : : [ ar x log(x — ¢)
t—c n—1@Gx—-c)! t—c

[ Every simple pole — non trivial residue
— “new” multivalued function ]



MULTIPLE POLYLOGARITHMS

MPLs can be defined as iterated integrals of rational functions
with single poles on Riemann Sphere CP' ~ CU {0}

— They have at most logarithmic singularities

dtq

G(Cl,CQ,...,Cn, / : CQ,...,Cn,tl)
— U

dt1 /tl dts /tn—l dt,,
1—C1 Jg t2—cC2 0 tn — Cn

n = length or transcendental weight [

...,Remiddi, Vermaseren ’99, Goncharov ’00,...]



MULTIPLE POLYLOGARITHMS

MPLs can be defined as iterated integrals of rational functions

with single poles on Riemann Sphere CP' ~ CU {0}

= — They have at most logarithmic singularities

dtq

G(Cl,CQ,...,Cn, / CQ,...,Cn,tl)
/ dty /tl dts /tn—l dty,
1 —C1 Jo t2_02.“ 0 tn—Cn

[...,Remiddi, Vermaseren ’99, Goncharov ’00,...]

n = length or transcendental weight

They fulfil extremely simple (inhomogeneous!) differential equations: unipotent

d 1

dx X —

G(cy,...,CpX) by diff. we lower the weight & length



CANONICAL BASES: 1 porvLocariamic case

If master integrals J can be expressed through MPLs, it makes sense to ask for more

Look for basis that gives only pure MPLs of uniform weight

d] =ecGM(2)J . . -
— = = Require that GM(z) is in d-log form (only simple poles)

If this is the case, we say GM(z) is in Canonical Form
[Arkani Hamed et al ’10; Kotikov ‘10; J. Henn ’13]
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Riemann sphere: conjecturally we can find it by analysing leading singularities in d = 2n, n € N



CANONICAL BASES: 1 porvLocariamic case

If master integrals J can be expressed through MPLs, it makes sense to ask for more

Look for basis that gives only pure MPLs of uniform weight
dJ =eGM(z)J . o
- - = Require that GM(z) is in d-log form (only simple poles)

If this is the case, we say GM(z) is in Canonical Form
[Arkani Hamed et al ’10; Kotikov ‘10; J. Henn ’13]

How do we get a canonical form instead of any e-factorized form?

Riemann sphere: conjecturally we can find it by analysing leading singularities in d = 2n, n € N

A Feynman Integral can be parametrized in d = 2n — 2€ as (Feynman-Schwinger, Lee-Pomeransky, Baikov...)

ik can be neglected
- o D —
i—1 expanding in € gives on logs !
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1=1 can be written as ! T

Leading Singularities ~ iterative residues
of the integrand in all integration variables



CANONICAL BASES: 1 porvLocariamic case

Focusing on parametrization ind = 2n, n € N

i if | | |
]N/dei]—“(xi,g) — ~ch-[dlogfl’[dlogﬁ...Jdlogf,j; c,eQ
1=1 can be written as i

Leading Singularities ~ iterative residues
of the integrand in all integration variables

Conjecturally, these integrals fulfil canonical differential equations [Arkani Hamed et al *10; Kotikov ‘10; J. Henn *13]

Recipe (in a nutshell):
1. choose integrals whose integrands have only simple poles and are in d-log form

2. choose integrals whose iterated residues at all simple poles can be normalized to numbers

[Arkani-Hamed et al’10; Henn, Mistlberger, Smirnov, Wasser ’20]



BEYOND POLYLOGARITHMS: concepruaL niFrerences

Even with MPLs, insisting on simple poles in the integrand (neglecting integration contour) is too strong
of a requirement, as it forces us to exclude any squared propagator!
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Double poles often imply power-like singularities in the IR which should be excluded in gauge theories

—P  Typically true when dealing with massless propagators

Massive propagators can be squared at will, without changing IR behaviour and (actually)
improving UV behaviour



BEYOND POLYLOGARITHMS: concepruaL niFrerences

Even with MPLs, insisting on simple poles in the integrand (neglecting integration contour) is too strong
of a requirement, as it forces us to exclude any squared propagator!

Physics:

Double poles often imply power-like singularities in the IR which should be excluded in gauge theories

—P  Typically true when dealing with massless propagators

Massive propagators can be squared at will, without changing IR behaviour and (actually)
improving UV behaviour

Mathematics:

Differential forms with simple poles are intrinsically not enough to span full space for more general
problems (elliptic curves or Tori, K3, Calabi-Yaus etc)

—P  Think about independent integrands in the elliptic case:

1

dt by —xt?
K(x) = J has no poles while E(x) = J dt =" has double pole at infinity
0 /(I =2)(1 = x?) 0o y1-1¢2



BEYOND POLYLOGARITHMS: concepruaL niFrerences

In fact, trying to apply MPL recipe to Elliptic Feynman Integrals (or beyond) fails...
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In fact, trying to apply MPL recipe to Elliptic Feynman Integrals (or beyond) fails...

2
=1 S, m=; €
ny,Nny,N3,—nNy,—nN;g nl,nz,n3,—n4,—n5( ’ ’ )

_ [ d’k, dk, (ky — p)*"(ky — p)*"s
2m)P 2r)P (k¥ — m?yn(k3 — m?)2((k; + ky — p)> — m?)"s

ki+ko—p

k1
, mp I ~

Tadpole + 2 Master Integrals I=1Ip11,00, Io=I11100 and I3=111200

Y/

If we try to analyse iterated residues we get to (define Py(x) = (x — a;)(x — a,)(x — a3)(x — a,) )

dZ4
L1100~ / A dlog f3(z3, z4) A dlog fa(22, 23, 24) A dlog f1(21, 22, 23, 24)
\/P4(Z4)

T

differential of 1st kind —>
K(x) It has no poles at all!
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In fact, trying to apply MPL recipe to Elliptic Feynman Integrals (or beyond) fails...

_ J d’k, dk, (ky — p)*"(ky — p)*"s
2m)P 2r)P (k¥ — m?yn(k3 — m?)2((k; + ky — p)> — m?)"s

2
=1 S, m=; €
ny,Nny,N3,—nNy,—nN;g nl,nz,n3,—n4,—n5( ’ ’ )

k1
, mp I ~

ki+ko—p

Tadpole + 2 Master Integrals I=1Ip11,00, Io=I11100 and I3=111200

Y/

If we try to analyse iterated residues we get to (define Py(x) = (x — a;)(x — a,)(x — a3)(x — a,) )

dZ4
L1100~ / A dlog f3(z3, z4) A dlog fa(22, 23, 24) A dlog f1(21, 22, 23, 24)
\/P4(Z4)

T

differential of 1st kind
K(x) It has no poles at all!

S Looking for a second candidate in this way we
will always need candidates with double poles!
(this is a theorem!)
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In fact, trying to apply MPL recipe to Elliptic Feynman Integrals (or beyond) fails...

2
=1 S, m=; €
ny,Nny,N3,—nNy,—nN;g nl,nz,n3,—n4,—n5( ’ ’ )

_ J d’k, dk, (ky — p)*"(ky — p)*"s
2m)P 2r)P (k¥ — m?yn(k3 — m?)2((k; + ky — p)> — m?)"s

ki+ko—p

k1
, mp I ~

Tadpole + 2 Master Integrals I=1Ip11,00, Io=I11100 and I3=111200

Y/

If we try to analyse iterated residues we get to (define Py(x) = (x — a;)(x — a,)(x — a3)(x — a,) )

dZ4
L1100~ / A dlog f3(z3, z4) A dlog fa(22, 23, 24) A dlog f1(21, 22, 23, 24)
\/P4(Z4)

Notice that in this and other (single-scale) cases, eps-factorised basis found by an Ansatz

[Weinzierl, Adams ’16] [Frellesvig, Weinzierl 23]
[Pogel, Wang, Weinzierl ’22, ’23]
[Jian, Wang, Yang, Zhao ’23]



BEYOND POLYLOGARITHMS: concepruaL niFrerences

Get inspiration from construction of Elliptic polylogarithms (eMPLs)

[Brown Levin ’11; Brodel, Mafra, Matthes, Schlotterer ’14]
[Brodel, Dulat, Duhr, Penante, Tancredi ’17, ’18]

We can insist on single poles < logarithmic singularities (Gauge Theory)
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0



BEYOND POLYLOGARITHMS: concepruaL niFrerences

Get inspiration from construction of Elliptic polylogarithms (eMPLs)

[Brown Levin ’11; Brodel, Mafra, Matthes, Schlotterer ’14]
[Brodel, Dulat, Duhr, Penante, Tancredi ’17, ’18]

We can insist on single poles < logarithmic singularities (Gauge Theory)

Eql et ek, d) dt\Ifn1 C1,t, @) Eq( 2 ekt ad)
0

Price to pay: infinite tower of transcendental kernels [can’t be obtained from “residue of integrand”]



BEYOND POLYLOGARITHMS: concepruaL niFrerences

Get inspiration from construction of Elliptic polylogarithms (eMPLs)

[Brown Levin ’11; Brodel, Mafra, Matthes, Schlotterer ’14]
[Brodel, Dulat, Duhr, Penante, Tancredi ’17, ’18]

We can insist on single poles < logarithmic singularities (Gauge Theory)

Eq(el ek, d) / dt Wy, (c1,t,a) E4( 2 2 kst a)
0

Price to pay: infinite tower of transcendental kernels [can’t be obtained from “residue of integrand”]

Important property of eMPLs is that they still satisfy generalized unipotent differential equations

l

(ZU dzz> Where U/(z) are Nilpotent matrices: U;- U;- -+-- - U, =0




GENERAL STRATEGY: THE MPoRTANCE OF BEING UNIPOTENT

Let’s go back to sunrise case: diff equations for standard basis are coupled in d = 2n

k1
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5 P W m nm will not produce unipotent results]

W w2> [Solving by variation of constants
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Let’s go back to sunrise case: diff equations for standard basis are coupled in d = 2n

k1

Y 0 (3 0 ’
> > > a2 |~ — s—3m? 52 —20m?s+27m*
v om? \ T3 ) () (s m) (s om)

ki1 4+ ke —p

QXX

W w2> [Solving by variation of constants

Matrix of homog. sol. is not unipotent =
5 P W m nm will not produce unipotent results]

A non-unipotent matrix can be split (in a non-unique way) into Unipotent and Semi-Simple part

w; 0 1 2
W=S-U —_— S = i and U = ] (Using Legendre Relation)
0 1

Define a new basis rotating only by semi-simple part [ =5§-J

What remains is unipotent — indeed rotated J can be expressed in terms of pure eMPLs!
[Brodel, Duhr, Dulat, Penante, LT ’18]
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Same finding confirmed by evaluating various two- and three-point functions by direct integration
to first few @(6 ) [Brodel, Duhr, Dulat, Penante, LT ’18]

Can we generalize it to all orders at the diff eq level?




GENERAL STRATEGY: THE MPoRTANCE OF BEING UNIPOTENT

Same finding confirmed by evaluating various two- and three-point functions by direct integration
to first few @(6 ) [Brodel, Duhr, Dulat, Penante, LT ’18]

Can we generalize it to all orders at the diff eq level?

STRATEGY: [Gorges, Nega, LT, Wagner ’23]
1. Start with a basis of MIs which has no double poles in UV and IR

2. For every non-polylogarithmic sector, choose a minimally coupled basis [achieved by analysing
residues and choosing as many master integrals as possible to decouples minimally coupled block]

3. For coupled sectors, choose first integral whose residues involve differential of first kind

4. Perform a rotation of this minimally coupled basis to remove semi-simple part

5. Conjecture 1: after this rotation, matrix can be put in e-factorized form by integrating out
remaining terms that are not in the right form

6. Conjecture 2: The form so achieved will be a generalization of a canonical form beyond MPLs



EXAMPLE 1: powvLocarmumic case

It works in the (simple) polylogarithmic case: Sunrise with 2 massive and 1 massless propagator

It =1p1100, Io=1I11100 and I3=111200

Differential equations read: dI = [AO + €A, + @(62)] 1

o 0 (J2) _ 0 2
Homogeneous equation in d=2 Im2 35 | 1 —s5+10m?
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EXAMPLE 1: powvLocarmumic case

It works in the (simple) polylogarithmic case: Sunrise with 2 massive and 1 massless propagator

It =1p1100, Io=1I11100 and I3=111200

Differential equations read: dI = [AO + €A, + @(62)] 1

o 0 (J2) _ 0 2
Homogeneous equation in d=2 Im2 35 | 1 —s5+10m?

m2(s—4m?) m?2(s—4m?)

QX X

2
3
Matrix of homogeneous solutions contains algebraic functions and logs

Split it in semi-simple and unipotent W = W* . W*

1 s—r(s,m?)
WSS — 7"(378""2) (1) and WY = 1 log (S+T(Sam2)) r(s,m?) = +/s(s — 4m?)
r(s,m?)3 2m?2(s—4m?) 0 1
I 00
Rotate away semi-simple part I'=1|0 (W)~ I
0



EXAMPLE 1: powvLocarmumic case
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Clean up remaining non-factorised dependence with a rotation T = |0 1 0 0 €0
0 _ 2(s+2m?) 1 00 ¢
r(s,m?)

dJ = e GM‘J with J=(Ji,Js,J3) =TI,

—20&1 0 0
GM* = 0 2041 — X2 — 3043 g
2001 — 2009 —06ay —3aq + o

o 2
0 = dlog(m2) , ag =dlog(s), ag=dlog (3 — 4m2) , a4 = dlog (z n :EZZQ;)



EXAMPLE 1: powvLocarmumic case
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Clean up remaining non-factorised dependence with a rotation T = |0 1 0 0 €0
02220 1) \0 0«

dJ = e GM‘J with J=(Ji,Js,J3) =TI,

—20&1 0 0
GM* = 0 2041 — X2 — 3043 g
2001 — 2009 —06ay —3aq + o

o 2
0 = dlog(m2) , ag =dlog(s), ag=dlog (3 — 4m2) , a4 = dlog (z n :Ei::%)

NB: by analysing leading singularities with DLogBasis find the same basis up to constant rotation!
[P. Wasser ’19,’20]
Ji=My, Jo=DMy, J3=—-M+3Ms;



NON TRIVIAL EXAMPLES: eLuierics anp sevonn

Strategy is general and does not have to do with details of the geometry*

k1
Applied it successfully to elliptic sunrise (equal or different masses)  — @

ki+ka—p



NON TRIVIAL EXAMPLES: eLuierics anp sevonn
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W
1 3 pP3




NON TRIVIAL EXAMPLES: eLuierics anp sevonn

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

k1
m v
W
2 2
bk 3 P
|
l
5 6 7
|
l
P 2 1 Pi
k1

ki1 4+ ko +ks—p

s = (p1 + p2)?



CONCLUSIONS

Feynman integrals are difficult to compute, but they hide structures and simplicity

Epsilon-factorised bases are an important tool to make some of their structure manifest

Beyond polylogarithms, searching for integrals with simple poles (and unit leading singularities) in
the traditional sense is not enough

Instead, the property of unipotence can be used to build differential equations in epsilon-
factorised form almost algorithmically

In the polylogarithmic case, this construction reproduces results obtained from analysis of
leading singularities

Beyond polylog case, we have showed that it is enough to obtain epsilon-factorised equations in
multi-scale elliptic cases and beyond!

OUTLOOK: more complicated geometries (CYs, higher genus), application to physics problems...
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FORCING AN EPS-FACTORIZED BASIS: e sunris sraps

y

. : : . o Wy Wy :
Homogeneous solutions given by periods and their derivatives W = ( " ;72) with 7, x dw;

Diff equations for two sunrise MIs are coupled in d=2n

k1

p m . 0 (32| 0 3
> > > om2 5 — s—3m? _ 82-20m2s+27m*
byt ks — p 3 m2(s—m?)(s—9m?2)  m2(s—m?)(s—9m?2)

QXX

—»  provided by independent set of maximal cuts

[Primo, Tancredi ’16, ‘17; Frellesvig, Papadopoulos ’17; Bosma, Sogaard, Zhang ’17]
[Frellesvig *21]



FORCING AN EPS-FACTORIZED BASIS: e sunris sraps

y

. : : . o Wy Wy :
Homogeneous solutions given by periods and their derivatives W = ( " ”2> with 7, x dw;

QXX

p m . 0 (32| 0 3
> > > om2 5 — s—3m? _ 82-20m2s+27m*
byt ks — p 3 m2(s—m?)(s—9m?2)  m2(s—m?)(s—9m?2)

—»  provided by independent set of maximal cuts

[Primo, Tancredi ’16, ‘17; Frellesvig, Papadopoulos ’17; Bosma, Sogaard, Zhang ’17]
[Frellesvig *21]

One could attempt to rotate away the homogeneous solution and get something in eps-factorized form

dl= A +eB@|I — I=W-J dJ=¢|[W ' Bl -W|J

Basis J does not have right properties even in MPL case! [Frellesvig, Weinzierl "22]
- [Gorges, Nega, LT, Wagner ’23]



