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INTRODUCTION: AMPLITUDES AND FEYNMAN INTEGRALS

Feynman integrals are everywhere

X

p p

Feynman Integrals are difficult, but also beautiful objects, their calculation manifests 
regularities and structures in physical observables



ANALYTIC STRUCTURES: SPECIAL FUNCTIONS IN PARTICLE PHYSICS

The “most famous calculation” in pQFT: the g-2 of the electron
QED Mass-independent term: 2-loop contribution
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= −0.328 478 965 579 . . .

obtained independently by Petermann and Sommerfield in 1957.

(The two-loop coefficient was also computed analytically by Karplus and Kroll in 1950, but

unfortunately their result was wrong)
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QED Mass-independent term: 1-loop contribution
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QED Mass-independent term: 3-loop contribution
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• The final analytical expression was obtained by S.L. and Ettore Remiddi in 1996.

• Ettore Remiddi begun the analytical calculation of C3 in 1969. I joined him and his group in

Bologna in 1989 as a graduate student.

• In 1989 there were 21 diagrams (3groups) still not known analytically. It took us 7 years to complete

the analytical calculations.
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QED Mass-independent term: 1-loop contribution
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QED Mass-independent term: 4-loop contribution
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• This extremely high precision of the result was needed to fit analytically a (very complex) analytical ansatz to

the numerical values by using the PSLQ algorithm.
• The successful fit is a strong reliability test of the result.
• 1100 digits is the final total precision; some intermediate fits needed up to 9600 digits of precision

Stefano Laporta, Climbing the mountain: the electron g-2, Inspired by precision, Bologna, 10 Dec 2021 Page 22

QED Mass-independent term: 5-loop contribution
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C5 = 6.737(159) (Kinoshita et al. 2019)

• Obtained by MonteCarlo numerical integration.

• There is a independent value for the contribution from the subset of all the diagrams without

electron loops (Volkov 2019) which disagrees with the corresponding partial result from

Kinoshita’s group.

• An independent calculation is therefore very desiderable. But it would need an huge

computing power.
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= +0.50000000...

= −0.328478965...

= +1.181241456...

= −1.912245764...

= +6.737(159)

The “most famous calculation” in pQFT: the g-2 of the electron

} [impressive numeric 5 loop by Kinoshita et al]
lots of Feynman diagrams

ANALYTIC STRUCTURES: SPECIAL FUNCTIONS IN PARTICLE PHYSICS

[impressive analytic 4loop by S. Laporta] 
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QED Mass-independent term: 1-loop contribution
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QED Mass-independent term: 3-loop contribution
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from analytic results order by order in , iterated patterns emerges: 


multiple polylogarithms evaluated at special (rational) points

ϵ
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[Laporta, Remiddi ’97]

[Petermann, Sommerfield ’57]

[Schwinger ’48]

The “most famous calculation” in pQFT: the g-2 of the electron

ANALYTIC STRUCTURES: SPECIAL FUNCTIONS IN PARTICLE PHYSICS



DIFFERENTIAL EQUATION METHOD
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Iterated integral structure in  made manifest by differentiation — powerful technique:ϵ

We compute Feynman integrals as series in ϵ = (4 − d)/2

(Scalar) Feynman Integrals



DIFFERENTIAL EQUATION METHOD

(Scalar) Feynman Integrals

ℐ = ∫
L

∏
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dDkl

(2π)D
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Integration by Parts etc
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Basis of Master Integrals (MIs)

Iterated integral structure in  made manifest by differentiation — powerful technique:ϵ

We compute Feynman integrals as series in ϵ = (4 − d)/2
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By differentiating MIs and re-expressing derivatives through MIs, we get system of diff. equations

dI = GM(z, ϵ) IGauss-Manin connection 


Matrix of differential forms, all 
rational functions (from IBPs)

Basis of master integrals

[Kotikov ’93; Remiddi ’97; Gehrmann Remiddi ’99, … ]

Iterated integral structure in  made manifest by differentiation — powerful technique:ϵ

We compute Feynman integrals as series in ϵ = (4 − d)/2

(Scalar) Feynman Integrals Basis of Master Integrals (MIs)



EPSILON-FACTORISED BASES

In this form, iterated structure hidden in arbitrary dependence on ϵdI = GM(z, ϵ) I



dI = GM(z, ϵ) I

2 Description of the procedure

We consider dimensionally regularised Feynman integral families of the form

I⌫1,...,⌫n+m(z; d) =

Z 0

@
lY

j=1

ddkj
i⇡d/2

1

A
Qm

j=1N
�⌫n+j

jQn
j=1D

⌫j
j

, (2.1)

where ⌫j  0 for all j > n. The set of propagators in the denominator {D1, D2, . . . , Dn} is
specified by the topology of the Feynman graph under consideration. The {N1, N2, . . . , Nm}

are a minimal set of irreducible scalar products in the problem, i.e. scalar products involving
loop momenta that cannot be written as a linear combination of the propagators. We set
d0 = 2n for different n 2 N, depending on the family under consideration.

As outlined in the introduction, Feynman integrals that belong to a given family, exhibit
the structure of a finite-dimensional vector space, whose basis we refer to as master integrals.
We indicate them in vector form as I. Moreover, any choice of basis of master integrals I

satisfies a system of linear first-order differential equations with respect to the kinematic
variables and the masses the problem depends on. We indicate the set of all variables with
z. The system of differential equations is also often referred to as Gauss-Manin (GM)
differential system and it takes the general form

dI = GM(z, ✏)I . (2.2)

Our goal is to describe a procedure to find a transformation matrix R(z, ✏) constructed as
a series of subsequent rotations, i.e.

J = R(z, ✏)I with R(z, ✏) = Rr(z, ✏) · · ·R2(z, ✏)R1(z, ✏) , (2.3)

that cast the system of differential equations into ✏-form, namely

dJ = ✏GM✏(z)J , where ✏GM✏(z) = [R(z, ✏)GM(z, ✏) + dR(z, ✏)]R(z, ✏)�1 . (2.4)

The crucial property of eq. (2.4) is that the new matrix GM✏(z) does not depend on ✏. If
the Gauss-Manin system is in this particular form we call it to be ✏-factorised. In addition,
in the polylogarithmic case one can (conjecturally) always bring the Gauss-Manin matrix
GM✏(z) in an even more specific form, where all its entries [GM✏(z)]ij are given in terms
of d log-forms. If this is the case, we say that the system is in canonical form.

An ✏-factorised form implies that the iterative structure of the solution is manifest in
the differential forms appearing in GM✏(z) and, if one understands all non-trivial relations
among these forms, one can claim to fully control the functional relations among the iterated
integrals that stem from them. This statement can be made more precise as follows: If we
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Since GM(z) does not depend on , the iterated structure in  becomes manifestϵ ϵ

We refer to such a basis as in epsilon-factorised form

Imagine to be able to perform a series of rotations  on the original basisRi

[Kotikov ’10; J. Henn ’13; Lee ’13, … ]

In this form, iterated structure hidden in arbitrary dependence on ϵ

EPSILON-FACTORISED BASES



dJ = ϵ GM(z) J

What can we say about GM(z) ?

- Is GM(z) unique ?


- Are there -factorized bases that are better than others?ϵ

EPSILON-FACTORISED OR CANONICAL?



dJ = ϵ GM(z) J

What can we say about GM(z) ?

- Is GM(z) unique ?


- Are there -factorized bases that are better than others?ϵ

Notice:         dI = [A0(z) + ϵ B(z)] I → I = W ⋅ J → dJ = ϵ [W−1 ⋅ B(z) ⋅ W] J

EPSILON-FACTORISED OR CANONICAL?

The basis  often won’t have unique properties, depends on  …J I



dJ = ϵ GM(z) J

What can we say about GM(z) ?

- Is GM(z) unique ?


- Are there -factorized bases that are better than others?ϵ

Can we define an optimal basis of master integrals for a given problem?

EPSILON-FACTORISED OR CANONICAL?



dJ = ϵ GM(z) J

We understand a lot if solutions can be expressed in terms of Multiple Polylogarithms (MPLs)

MPLs span the space of iterated integrals of rational functions on complex plane ℂ

Simplest example:

What can we say about GM(z) ?

∫
x dt

t − c
∝ log(x − c)∫

x dt
(t − c)n

∝
1

n − 1
1

(x − c)n−1
;

[ Every simple pole  non trivial residue 
 “new” multivalued function ]

→
→

- Is GM(z) unique ?


- Are there -factorized bases that are better than others?ϵ

EPSILON-FACTORISED OR CANONICAL?

Can we define an optimal basis of master integrals for a given problem?



MULTIPLE POLYLOGARITHMS

G(c1, c2, ..., cn, x) =

Z x

0

dt1
t1 � c1

G(c2, ..., cn, t1)

=

Z x

0

dt1
t1 � c1

Z t1

0

dt2
t2 � c2

...

Z tn�1

0

dtn
tn � cn
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MPLs can be defined as iterated integrals of rational functions 
with single poles on Riemann Sphere 


 They have at most logarithmic singularities

ℂℙ1 ∼ ℂ ∪ {∞}

→

[…,Remiddi, Vermaseren ’99, Goncharov ’00,…]n = length or transcendental weight 
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They fulfil extremely simple (inhomogeneous!) differential equations: unipotent

n = length or transcendental weight 

by diff. we lower the weight & length

[…,Remiddi, Vermaseren ’99, Goncharov ’00,…]

d
dx

G(c1, . . . , cn; x) =
1

x − c1
G(c2, . . . , cn; x)

MPLs can be defined as iterated integrals of rational functions 
with single poles on Riemann Sphere 


 They have at most logarithmic singularities

ℂℙ1 ∼ ℂ ∪ {∞}

→



dJ = ϵ GM(z) J

If master integrals  can be expressed through MPLs, it makes sense to ask for moreJ

Look for basis that gives only pure MPLs of uniform weight


Require that  is in d-log form (only simple poles)GM(z)

[Arkani Hamed et al ’10; Kotikov ‘10; J. Henn ’13]

CANONICAL BASES: THE POLYLOGARITHMIC CASE

If this is the case, we say GM(z) is in Canonical Form
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CANONICAL BASES: THE POLYLOGARITHMIC CASE

Look for basis that gives only pure MPLs of uniform weight


Require that  is in d-log form (only simple poles)GM(z)

How do we get a canonical form instead of any -factorized form?


Riemann sphere: conjecturally we can find it by analysing leading singularities in 

ϵ

d = 2n, n ∈ ℕ



dJ = ϵ GM(z) J

If master integrals  can be expressed through MPLs, it makes sense to ask for moreJ

[Arkani Hamed et al ’10; Kotikov ‘10; J. Henn ’13]

at any of the subsequent steps. The question becomes therefore, what are general criteria
that allow us to say that the basis we are starting from is not too far from a good basis.

To this aim, it is useful to start from the much better understood polylogarithmic case.
For a rather large class of problems that can be solved in terms of algebraic functions and
Chen iterated integrals over d log-forms, a study of the integrand can provide important
information.5 In fact, as elucidated in [7, 8, 26], candidates for canonical integrals which
fulfil ✏-factorised differential equations, can be identified by selecting integrands which can
be expressed as iterated d log-forms with coefficients equal to numbers. The integrand in
this case is said to be in d log-form and to have unit leading singularities. This can be
achieved in practice by an analysis of the iterated residues of the corresponding integrands,
in any suitable representation (Feynman-Schwinger parameters, Baikov representation, etc).
The analysis is usually performed in d = d0�2✏ dimensions, with typically d0 = 2, 4, 6. As a
matter of fact, studying the integrand exactly in d = d0 provides often enough information
to determine a suitable basis for general values of ✏.6 Intuitively, this can be understood
realising that for d = d0 � 2✏ the integrand can be schematically parameterised as

I ⇠

Z nY

i=1

dxiF(xi, z) (G(xi, z))
✏ (2.6)

with F(xi, z) and G(xi, z) algebraic functions, xi are the integration variables and z the set
of kinematical invariants and masses that the integral depends on. For example, in Baikov
representation xi are the Baikov variables and G(xi, z) is a Gram determinant. Therefore,
if the integrand is in d log-form for ✏ = 0, higher order corrections in ✏ will not invalidate
this form, as they will naturally add only powers of logarithms.

This analysis is extremely powerful and one might wonder how it could be generalised
beyond d log-forms. In the following sections, we will provide an example of how this could
be achieved in the genus one case, building upon the construction of pure elliptic multi-
ple polylogarithms provided in [58]. Nevertheless, despite being informative, the study of
leading singularities has at least two drawbacks. First of all, in a general multi-parameter
case and for increasing numbers of loops, it becomes computationally extremely difficult to
analyse all iterated residues. In these cases, a simpler analysis restricted to some specific
subsets of generalised cuts can provide partial but useful information to define good can-
didates for a canonical integral. More importantly, depending on the parametrization that
one chooses, analysing the residues of the integrand often imposes too restrictive conditions,
such that not enough canonical candidates can be identified unless the family of integrals is
enlarged. In complicated multi-loop and multi-parameter cases, this is often not practical.

A classical example is provided by integrals with squared propagators. Such integrals
are often excluded a priori in the residue analysis since squared propagators typically show
up as double poles in the integrand. When dealing with massless Feynman integrals, in-
sisting on the absence of double propagators is often well justified, since the latter typically

5Note that this goes beyond the realm of multiple polylogarithms, see for example [21].
6One should take extra care if a purely d0-dimensional parametrization of the loop momenta is used, since

numerators proportional to Gram determinants would all be identically zero and one would lose possible
candidates for canonical integrals. This is avoided using Feynman or Baikov parametrization.
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ci ∫ d log f1
i ∫ d log f2

i . . . ∫ d log fn
i ; ci ∈ ℚ

Leading Singularities ~ iterative residues 
of the integrand in all integration variables

Focusing on parametrization in d = 2n , n ∈ ℕ
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Conjecturally, these integrals fulfil canonical differential equations

Leading Singularities ~ iterative residues 
of the integrand in all integration variables

Recipe (in a nutshell): 


1. choose integrals whose integrands have only simple poles and are in d-log form


2. choose integrals whose iterated residues at all simple poles can be normalized to numbers

[Arkani-Hamed et al’10; Henn, Mistlberger, Smirnov, Wasser ’20]

Focusing on parametrization in d = 2n , n ∈ ℕ



BEYOND POLYLOGARITHMS: CONCEPTUAL DIFFERENCES

Even with MPLs, insisting on simple poles in the integrand (neglecting integration contour) is too strong 
of a requirement, as it forces us to exclude any squared propagator!



BEYOND POLYLOGARITHMS: CONCEPTUAL DIFFERENCES

Double poles often imply power-like singularities in the IR which should be excluded in gauge theories

Physics:

Typically true when dealing with massless propagators


Massive propagators can be squared at will, without changing IR behaviour and (actually) 
improving UV behaviour

Even with MPLs, insisting on simple poles in the integrand (neglecting integration contour) is too strong 
of a requirement, as it forces us to exclude any squared propagator!



BEYOND POLYLOGARITHMS: CONCEPTUAL DIFFERENCES

Double poles often imply power-like singularities in the IR which should be excluded in gauge theories

Physics:

Mathematics:

Differential forms with simple poles are intrinsically not enough to span full space for more general 
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Think about independent integrands in the elliptic case:
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dt
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Typically true when dealing with massless propagators


Massive propagators can be squared at will, without changing IR behaviour and (actually) 
improving UV behaviour

Even with MPLs, insisting on simple poles in the integrand (neglecting integration contour) is too strong 
of a requirement, as it forces us to exclude any squared propagator!
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Step 5: Clean up of the inhomogeneous differential equations

After having completed the ✏-factorisation of all homogeneous blocks, the factorisation of the
whole system can be achieved by performing suitable shifts in the definitions of the master
integrals of a given sector, by integrals in lower sectors. This is in principle a straightforward
procedure. In practice, however, it can become tricky as also the functional dependence
on ✏ of the coefficient functions in these shifts might be complicated. Moreover, if a given
subsector exhibits singularities which were not present in the homogeneous equations for the
sector considered, the introduction of new functions might be required. These are likewise
(iterated) integrals of functions already present in the differential equations.

3 Application to the two-loop sunrise family
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Figure 1. The two-loop sunrise graph.

Let us see explicitly how our procedure works in the case of the two-loop sunrise graph [28–
31, 72–79] shown in figure 1. We work as it is customary in d = 2�2✏ space-time dimensions
and, as it is well known, the result in d = 4� 2✏ can be obtained by dimensional shift [80].
We take the associated integral family in the general case of different masses to be defined
by the following three propagators and two irreducible numerators:

D1 = k21 �m2
1 , D2 = k22 �m2

2 , D3 = (k1 + k2 � p)2 �m2
3 ,

N1 = (k1 � p)2 , N2 = (k2 � p)2 .
(3.1)

We assume m1,m2,m3 > 0 and, in the remainder of this section, we set p2 = s.
As the first step, we analyse the integrand of the so-called corner integral I1,1,1,0,0 to

determine the complexity of the problem. We use a loop-by-loop Baikov representation [12–
15] in two space-time dimensions. Working out the change of variables we find

I1,1,1,0,0 ⇠

Z
dz1 dz2 dz3 dz4

[B(z1, z2, z3, z4)]�1/2

z1z2z3
(3.2)

with

B(z1, z2, z3, z4) =
⇣�

�s+m2
1 + z1

�2
� 2

�
s+m2

1 + z1
�
z4 + z24

⌘

⇥

⇣�
m2

2 �m2
3 + z2 � z3

�2
� 2

�
m2

2 +m2
3 + z2 + z3

�
z4 + z24

⌘
.

(3.3)

From this representation, it is easy to see that the maximal cut is proportional to a one-fold
integral over the reciprocal of the square-root of a quartic polynomial in the integration
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In1,n2,n3,−n4,−n5
= In1,n2,n3,−n4,−n5

(s, m2; ϵ) = ∫
dDk1

(2π)D

dDk2

(2π)D

(k1 − p)2n4(k2 − p)2n5

(k2
1 − m2)n1(k2

2 − m2)n2((k1 + k2 − p)2 − m2)n3

variable z4

MaxCut(I1,1,1,0,0) ⇠
Z

dz4p
P4(z4)

with (3.4)

P4(z4) = (z4 � a1)(z4 � a2)(z4 � a3)(z4 � a4) , (3.5)

a1 = (m2 �m3)
2 , a2 = (m2 +m3)

2 , a3 =
⇣
m1 �

p
p2
⌘2

, a4 =
⇣
m1 +

p
p2
⌘2

. (3.6)

As long as none of the internal masses vanishes, all four roots are distinct and the geometry
is that of an elliptic curve. If at least one of the internal masses is zero, two of the roots
degenerate and the elliptic curve reduces to a genus zero surface. In the following, we
consider three cases explicitly:

1. Two equal non-vanishing masses 0 6= m2
2 = m2

3 =: m
2 and one vanishing mass m2

1 = 0.
This case is polylogarithmic and we can see how our approach works in the case of
genus zero geometries.

2. Three equal non-vanishing masses 0 6= m2
1 = m2

2 = m2
3 =: m2. This is the simplest

genuine elliptic case.

3. Three non-vanishing masses of which two are equal, 0 6= m2
1 6= m2

2 = m2
3 6= 0. This

case is multivariate and of similar complexity as the generic case of three different
internal masses but with considerably more compact mathematical expressions.

3.1 The sunrise with two equal non-vanishing masses and a vanishing mass

For m2
2 = m2

3 =: m
2 and m2

1 = 0, the sunrise integral family admits three master integrals,
a tadpole and two in the top sector. In this case, the underlying geometry is a Riemann
sphere, so if we were to follow our recipe above, we should attempt to identify integrals of
unit leading singularity in d = 2 space-time dimensions. It is immediate to do this analysis
directly or using for example DlogBasis [26]. Three candidates are quickly found to be

M1 = ✏2 I1,1,0,0,0 , M2 = ✏2 r(s,m2) I1,1,1,0,0 , M3 = ✏2 (I1,1,1,�1,0 � s I1,1,1,0,0) , (3.7)

involving the square-root
r(s,m2) =

p
s(s� 4m2) . (3.8)

associated to the threshold for the production of two massive and one massless particle.
We chose it such that it is manifestly real above the threshold s � 4m2. The factor ✏2 is
purely conventional such that the expansions of all integrals start at order ✏0. It is easily
checked that these master integrals satisfy indeed differential equations in canonical form.

Instead of following this standard approach, let us pretend that we were unable to
identify all these candidates and their normalisation factors in the above analysis and
use this example to illustrate the steps involved in our procedure. As we will see, they
yield essentially the same canonical basis. We start from the basis of master integrals
I = {I1, I2, I3} given by

I1 = I0,1,1,0,0 , I2 = I1,1,1,0,0 and I3 = I1,1,2,0,0 . (3.9)

They were chosen based only on the following knowledge of their properties:
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Tadpole + 2 Master Integrals

In fact, trying to apply MPL recipe to Elliptic Feynman Integrals (or beyond) fails…
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which allows us to define a basis that satisfies canonical differential equations

dJ = ✏ GM✏J with J = (J1, J2, J3)
T = T I 0 ,

GM✏ =

0
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As advertised, the relation to the canonical master integrals found by DlogBasis is a
simple constant rotation that is given by

J1 = M1 , J2 = M2 , J3 = �M1 + 3M3 . (3.20)

We would like to stress the following points concerning the application of our procedure in
the polylogarithmic case:

• The critical step was the splitting of the Wronskian in the semi-simple and unipotent
part. Discarding the latter, allowed us to remove the logarithm appearing in the
Wronksian matrix, which is the function that would have ruined the transcendental
weight properties and the iterative structure of the differential equations.

• In general, we do not expect our procedure to outperform other approaches to find
canonical bases in the polylogarithmic case. In particular, for an increase in the
number of master integrals, the steps involved also increase in complexity. However,
if analysing the leading singularities does not provide enough candidates, our method
could be used complementary.

3.2 The sunrise with three equal non-vanishing masses

We now take one step up in complexity to the simplest elliptic scenario and set all three
internal masses of the sunrise to the same value, i.e. m2

1 = m2
2 = m2

3 =: m2. The number
and sector distribution of master integrals do not change compared to the previous case.

First, we need to choose a basis of integrals to start from. Taking the limit for equal
masses in eq. (3.3), it is easy to study all iterated residues of the integrand corresponding
to I1,1,1,0,0. The complexity of this analysis depends in general on the order in which the
various residues are taken. For this particular problem, it is convenient to take residues in
the natural order z1 to z4. For the first three integration variables, one easily sees that the
integrand has only simple poles in the corresponding variable, such that as expected the
result can be written schematically as follows:

I1,1,1,0,0 ⇠

Z
dz4p
P4(z4)

^ d log f3(z3, z4)^ d log f2(z2, z3, z4)^ d log f1(z1, z2, z3, z4) , (3.21)

where the fi are algebraic functions, at most quadratic in the integration variables z1, z2
and z3. If the last integration in z4 were missing, this integral would be a series of iterated
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on ✏ of the coefficient functions in these shifts might be complicated. Moreover, if a given
subsector exhibits singularities which were not present in the homogeneous equations for the
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Let us see explicitly how our procedure works in the case of the two-loop sunrise graph [28–
31, 72–79] shown in figure 1. We work as it is customary in d = 2�2✏ space-time dimensions
and, as it is well known, the result in d = 4� 2✏ can be obtained by dimensional shift [80].
We take the associated integral family in the general case of different masses to be defined
by the following three propagators and two irreducible numerators:

D1 = k21 �m2
1 , D2 = k22 �m2

2 , D3 = (k1 + k2 � p)2 �m2
3 ,

N1 = (k1 � p)2 , N2 = (k2 � p)2 .
(3.1)

We assume m1,m2,m3 > 0 and, in the remainder of this section, we set p2 = s.
As the first step, we analyse the integrand of the so-called corner integral I1,1,1,0,0 to

determine the complexity of the problem. We use a loop-by-loop Baikov representation [12–
15] in two space-time dimensions. Working out the change of variables we find

I1,1,1,0,0 ⇠

Z
dz1 dz2 dz3 dz4

[B(z1, z2, z3, z4)]�1/2
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(3.2)

with
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From this representation, it is easy to see that the maximal cut is proportional to a one-fold
integral over the reciprocal of the square-root of a quartic polynomial in the integration
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As long as none of the internal masses vanishes, all four roots are distinct and the geometry
is that of an elliptic curve. If at least one of the internal masses is zero, two of the roots
degenerate and the elliptic curve reduces to a genus zero surface. In the following, we
consider three cases explicitly:

1. Two equal non-vanishing masses 0 6= m2
2 = m2

3 =: m
2 and one vanishing mass m2

1 = 0.
This case is polylogarithmic and we can see how our approach works in the case of
genus zero geometries.

2. Three equal non-vanishing masses 0 6= m2
1 = m2

2 = m2
3 =: m2. This is the simplest

genuine elliptic case.

3. Three non-vanishing masses of which two are equal, 0 6= m2
1 6= m2
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3 6= 0. This

case is multivariate and of similar complexity as the generic case of three different
internal masses but with considerably more compact mathematical expressions.

3.1 The sunrise with two equal non-vanishing masses and a vanishing mass

For m2
2 = m2

3 =: m
2 and m2

1 = 0, the sunrise integral family admits three master integrals,
a tadpole and two in the top sector. In this case, the underlying geometry is a Riemann
sphere, so if we were to follow our recipe above, we should attempt to identify integrals of
unit leading singularity in d = 2 space-time dimensions. It is immediate to do this analysis
directly or using for example DlogBasis [26]. Three candidates are quickly found to be

M1 = ✏2 I1,1,0,0,0 , M2 = ✏2 r(s,m2) I1,1,1,0,0 , M3 = ✏2 (I1,1,1,�1,0 � s I1,1,1,0,0) , (3.7)

involving the square-root
r(s,m2) =

p
s(s� 4m2) . (3.8)

associated to the threshold for the production of two massive and one massless particle.
We chose it such that it is manifestly real above the threshold s � 4m2. The factor ✏2 is
purely conventional such that the expansions of all integrals start at order ✏0. It is easily
checked that these master integrals satisfy indeed differential equations in canonical form.

Instead of following this standard approach, let us pretend that we were unable to
identify all these candidates and their normalisation factors in the above analysis and
use this example to illustrate the steps involved in our procedure. As we will see, they
yield essentially the same canonical basis. We start from the basis of master integrals
I = {I1, I2, I3} given by

I1 = I0,1,1,0,0 , I2 = I1,1,1,0,0 and I3 = I1,1,2,0,0 . (3.9)

They were chosen based only on the following knowledge of their properties:
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If we try to analyse iterated residues we get to  (define   )P4(x) = (x − a1)(x − a2)(x − a3)(x − a4)

differential of 1st kind —> 
 It has no poles at all!K(x)

In fact, trying to apply MPL recipe to Elliptic Feynman Integrals (or beyond) fails…
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As advertised, the relation to the canonical master integrals found by DlogBasis is a
simple constant rotation that is given by

J1 = M1 , J2 = M2 , J3 = �M1 + 3M3 . (3.20)
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the polylogarithmic case:

• The critical step was the splitting of the Wronskian in the semi-simple and unipotent
part. Discarding the latter, allowed us to remove the logarithm appearing in the
Wronksian matrix, which is the function that would have ruined the transcendental
weight properties and the iterative structure of the differential equations.

• In general, we do not expect our procedure to outperform other approaches to find
canonical bases in the polylogarithmic case. In particular, for an increase in the
number of master integrals, the steps involved also increase in complexity. However,
if analysing the leading singularities does not provide enough candidates, our method
could be used complementary.

3.2 The sunrise with three equal non-vanishing masses

We now take one step up in complexity to the simplest elliptic scenario and set all three
internal masses of the sunrise to the same value, i.e. m2

1 = m2
2 = m2

3 =: m2. The number
and sector distribution of master integrals do not change compared to the previous case.

First, we need to choose a basis of integrals to start from. Taking the limit for equal
masses in eq. (3.3), it is easy to study all iterated residues of the integrand corresponding
to I1,1,1,0,0. The complexity of this analysis depends in general on the order in which the
various residues are taken. For this particular problem, it is convenient to take residues in
the natural order z1 to z4. For the first three integration variables, one easily sees that the
integrand has only simple poles in the corresponding variable, such that as expected the
result can be written schematically as follows:

I1,1,1,0,0 ⇠

Z
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P4(z4)

^ d log f3(z3, z4)^ d log f2(z2, z3, z4)^ d log f1(z1, z2, z3, z4) , (3.21)

where the fi are algebraic functions, at most quadratic in the integration variables z1, z2
and z3. If the last integration in z4 were missing, this integral would be a series of iterated
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Let us see explicitly how our procedure works in the case of the two-loop sunrise graph [28–
31, 72–79] shown in figure 1. We work as it is customary in d = 2�2✏ space-time dimensions
and, as it is well known, the result in d = 4� 2✏ can be obtained by dimensional shift [80].
We take the associated integral family in the general case of different masses to be defined
by the following three propagators and two irreducible numerators:

D1 = k21 �m2
1 , D2 = k22 �m2

2 , D3 = (k1 + k2 � p)2 �m2
3 ,

N1 = (k1 � p)2 , N2 = (k2 � p)2 .
(3.1)

We assume m1,m2,m3 > 0 and, in the remainder of this section, we set p2 = s.
As the first step, we analyse the integrand of the so-called corner integral I1,1,1,0,0 to

determine the complexity of the problem. We use a loop-by-loop Baikov representation [12–
15] in two space-time dimensions. Working out the change of variables we find

I1,1,1,0,0 ⇠

Z
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From this representation, it is easy to see that the maximal cut is proportional to a one-fold
integral over the reciprocal of the square-root of a quartic polynomial in the integration
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degenerate and the elliptic curve reduces to a genus zero surface. In the following, we
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associated to the threshold for the production of two massive and one massless particle.
We chose it such that it is manifestly real above the threshold s � 4m2. The factor ✏2 is
purely conventional such that the expansions of all integrals start at order ✏0. It is easily
checked that these master integrals satisfy indeed differential equations in canonical form.

Instead of following this standard approach, let us pretend that we were unable to
identify all these candidates and their normalisation factors in the above analysis and
use this example to illustrate the steps involved in our procedure. As we will see, they
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If we try to analyse iterated residues we get to  (define   )P4(x) = (x − a1)(x − a2)(x − a3)(x − a4)

differential of 1st kind —> 
 It has no poles at all!K(x)

Looking for a second candidate in this way we 
will always need candidates with double poles!

(this is a theorem!)

In fact, trying to apply MPL recipe to Elliptic Feynman Integrals (or beyond) fails…
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As advertised, the relation to the canonical master integrals found by DlogBasis is a
simple constant rotation that is given by

J1 = M1 , J2 = M2 , J3 = �M1 + 3M3 . (3.20)

We would like to stress the following points concerning the application of our procedure in
the polylogarithmic case:

• The critical step was the splitting of the Wronskian in the semi-simple and unipotent
part. Discarding the latter, allowed us to remove the logarithm appearing in the
Wronksian matrix, which is the function that would have ruined the transcendental
weight properties and the iterative structure of the differential equations.

• In general, we do not expect our procedure to outperform other approaches to find
canonical bases in the polylogarithmic case. In particular, for an increase in the
number of master integrals, the steps involved also increase in complexity. However,
if analysing the leading singularities does not provide enough candidates, our method
could be used complementary.

3.2 The sunrise with three equal non-vanishing masses

We now take one step up in complexity to the simplest elliptic scenario and set all three
internal masses of the sunrise to the same value, i.e. m2

1 = m2
2 = m2

3 =: m2. The number
and sector distribution of master integrals do not change compared to the previous case.

First, we need to choose a basis of integrals to start from. Taking the limit for equal
masses in eq. (3.3), it is easy to study all iterated residues of the integrand corresponding
to I1,1,1,0,0. The complexity of this analysis depends in general on the order in which the
various residues are taken. For this particular problem, it is convenient to take residues in
the natural order z1 to z4. For the first three integration variables, one easily sees that the
integrand has only simple poles in the corresponding variable, such that as expected the
result can be written schematically as follows:

I1,1,1,0,0 ⇠

Z
dz4p
P4(z4)

^ d log f3(z3, z4)^ d log f2(z2, z3, z4)^ d log f1(z1, z2, z3, z4) , (3.21)

where the fi are algebraic functions, at most quadratic in the integration variables z1, z2
and z3. If the last integration in z4 were missing, this integral would be a series of iterated
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Step 5: Clean up of the inhomogeneous differential equations

After having completed the ✏-factorisation of all homogeneous blocks, the factorisation of the
whole system can be achieved by performing suitable shifts in the definitions of the master
integrals of a given sector, by integrals in lower sectors. This is in principle a straightforward
procedure. In practice, however, it can become tricky as also the functional dependence
on ✏ of the coefficient functions in these shifts might be complicated. Moreover, if a given
subsector exhibits singularities which were not present in the homogeneous equations for the
sector considered, the introduction of new functions might be required. These are likewise
(iterated) integrals of functions already present in the differential equations.

3 Application to the two-loop sunrise family

k1

k2

k1 + k2 � p

p p

Figure 1. The two-loop sunrise graph.

Let us see explicitly how our procedure works in the case of the two-loop sunrise graph [28–
31, 72–79] shown in figure 1. We work as it is customary in d = 2�2✏ space-time dimensions
and, as it is well known, the result in d = 4� 2✏ can be obtained by dimensional shift [80].
We take the associated integral family in the general case of different masses to be defined
by the following three propagators and two irreducible numerators:

D1 = k21 �m2
1 , D2 = k22 �m2

2 , D3 = (k1 + k2 � p)2 �m2
3 ,

N1 = (k1 � p)2 , N2 = (k2 � p)2 .
(3.1)

We assume m1,m2,m3 > 0 and, in the remainder of this section, we set p2 = s.
As the first step, we analyse the integrand of the so-called corner integral I1,1,1,0,0 to

determine the complexity of the problem. We use a loop-by-loop Baikov representation [12–
15] in two space-time dimensions. Working out the change of variables we find

I1,1,1,0,0 ⇠

Z
dz1 dz2 dz3 dz4

[B(z1, z2, z3, z4)]�1/2

z1z2z3
(3.2)

with

B(z1, z2, z3, z4) =
⇣�

�s+m2
1 + z1

�2
� 2

�
s+m2

1 + z1
�
z4 + z24

⌘

⇥

⇣�
m2

2 �m2
3 + z2 � z3

�2
� 2

�
m2

2 +m2
3 + z2 + z3

�
z4 + z24

⌘
.

(3.3)

From this representation, it is easy to see that the maximal cut is proportional to a one-fold
integral over the reciprocal of the square-root of a quartic polynomial in the integration
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In1,n2,n3,−n4,−n5
= In1,n2,n3,−n4,−n5

(s, m2; ϵ) = ∫
dDk1

(2π)D

dDk2

(2π)D

(k1 − p)2n4(k2 − p)2n5

(k2
1 − m2)n1(k2

2 − m2)n2((k1 + k2 − p)2 − m2)n3

variable z4

MaxCut(I1,1,1,0,0) ⇠
Z

dz4p
P4(z4)

with (3.4)

P4(z4) = (z4 � a1)(z4 � a2)(z4 � a3)(z4 � a4) , (3.5)

a1 = (m2 �m3)
2 , a2 = (m2 +m3)

2 , a3 =
⇣
m1 �

p
p2
⌘2

, a4 =
⇣
m1 +

p
p2
⌘2

. (3.6)

As long as none of the internal masses vanishes, all four roots are distinct and the geometry
is that of an elliptic curve. If at least one of the internal masses is zero, two of the roots
degenerate and the elliptic curve reduces to a genus zero surface. In the following, we
consider three cases explicitly:

1. Two equal non-vanishing masses 0 6= m2
2 = m2

3 =: m
2 and one vanishing mass m2

1 = 0.
This case is polylogarithmic and we can see how our approach works in the case of
genus zero geometries.

2. Three equal non-vanishing masses 0 6= m2
1 = m2

2 = m2
3 =: m2. This is the simplest

genuine elliptic case.

3. Three non-vanishing masses of which two are equal, 0 6= m2
1 6= m2

2 = m2
3 6= 0. This

case is multivariate and of similar complexity as the generic case of three different
internal masses but with considerably more compact mathematical expressions.

3.1 The sunrise with two equal non-vanishing masses and a vanishing mass

For m2
2 = m2

3 =: m
2 and m2

1 = 0, the sunrise integral family admits three master integrals,
a tadpole and two in the top sector. In this case, the underlying geometry is a Riemann
sphere, so if we were to follow our recipe above, we should attempt to identify integrals of
unit leading singularity in d = 2 space-time dimensions. It is immediate to do this analysis
directly or using for example DlogBasis [26]. Three candidates are quickly found to be

M1 = ✏2 I1,1,0,0,0 , M2 = ✏2 r(s,m2) I1,1,1,0,0 , M3 = ✏2 (I1,1,1,�1,0 � s I1,1,1,0,0) , (3.7)

involving the square-root
r(s,m2) =

p
s(s� 4m2) . (3.8)

associated to the threshold for the production of two massive and one massless particle.
We chose it such that it is manifestly real above the threshold s � 4m2. The factor ✏2 is
purely conventional such that the expansions of all integrals start at order ✏0. It is easily
checked that these master integrals satisfy indeed differential equations in canonical form.

Instead of following this standard approach, let us pretend that we were unable to
identify all these candidates and their normalisation factors in the above analysis and
use this example to illustrate the steps involved in our procedure. As we will see, they
yield essentially the same canonical basis. We start from the basis of master integrals
I = {I1, I2, I3} given by

I1 = I0,1,1,0,0 , I2 = I1,1,1,0,0 and I3 = I1,1,2,0,0 . (3.9)

They were chosen based only on the following knowledge of their properties:
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Tadpole + 2 Master Integrals

In fact, trying to apply MPL recipe to Elliptic Feynman Integrals (or beyond) fails…


Notice that in this and other (single-scale) cases, eps-factorised basis found by an Ansatz 
[Weinzierl, Adams ’16]
[Pögel, Wang, Weinzierl ’22, ’23]

[Frellesvig, Weinzierl ’23]

[Jian, Wang, Yang, Zhao ’23]

If we try to analyse iterated residues we get to  (define   )P4(x) = (x − a1)(x − a2)(x − a3)(x − a4)



BEYOND POLYLOGARITHMS: CONCEPTUAL DIFFERENCES

[Brown Levin ’11; Brödel, Mafra, Matthes, Schlotterer ’14]
[Brödel, Dulat, Duhr, Penante, Tancredi ’17, ’18]

Get inspiration from construction of Elliptic polylogarithms (eMPLs)

di↵erential equation which is identical to the definition of the elliptic curve in eq. (2.6),

namely

(c4
0(z))2 = P4((z)) , (2.20)

and thus one may identify (x, y) $ ((z), c40(z)). The inverse of the -function is known

as Abel’s map, which takes a point (x, y) on the elliptic curve to a point zx on the complex

torus,

zx =
c4

!1

Z
x

a1

dx
0

y
=

p
a13a24

4K(�)

Z
x

a1

dx
0

y
. (2.21)

Since elliptic curves are isomorphic to complex tori, eMPLs can be described as iterated

integrals over functions related to the torus, and were originally defined as such in refs. [25,

68, 69]. In this context, eMPLs are defined as iterated integrals given by

e�( n1 ... nk
z1 ... zk ; z, ⌧) =

Z
z

0
dz

0
g
(n1)(z0 � z1, ⌧) e�

�
n2 ... nk
z2 ... zk ; z

0
, ⌧
�
, (2.22)

where the integration kernels are the coe�cients in the expansion of theKronecker-Eisenstein

series F (z,↵, ⌧),

F (z,↵, ⌧) =
1

↵

X

n�0

g
(n)(z, ⌧)↵n =

✓
0
1(0, ⌧) ✓1(z + ↵, ⌧)

✓1(z, ⌧) ✓1(↵, ⌧)
, (2.23)

and ✓1(z, ⌧) is the odd Jabobi theta function with ✓
0
1(z, ⌧) denoting a derivative with respect

to its first argument.

The eMPLs (2.22) behave similarly to ordinary MPLs in that they also form a shu✏e

algebra and are unipotent. Moreover, they are pure according to the definition of ref. [52],

namely: A function is called pure if it is unipotent and its total di↵erential involves only

pure functions and one-forms with at most logarithmic singularities.

In the calculation of Feynman integrals that evaluate to functions of the elliptic kind,

the representation of elliptic polylogarithms in terms of a polynomial equation y
2 = P (x)

appears more naturally than the torus picture. Therefore in this paper we use the definition

of pure eMPLs on the elliptic curve recently put forward in ref. [52]. They are defined as

iterated integrals of kernels that are rational functions on the elliptic curve with at most

logarithmic singularities in all variables,

E4( n1 ... nk
c1 ... ck ;x,~a) =

Z
x

0
dt n1(c1, t,~a) E4(

n2 ... nk
c2 ... ck ; t,~a) . (2.24)

In contrast with MPLs, for the elliptic case the requirement that all integrations over

rational functions on the elliptic curve close on the same space of functions put together

with the requirement that all integrals must have at most logarithmic singularities leads

to an infinite tower of independent kernels  n for n 2 Z. This fact can also be seen from

the torus description, where an infinite number of kernels are generated by eq. (2.23).

In particular, the kernels in eq. (2.24) depend on a certain kind of functions which are

themselves transcendental, namely

Z4(x,~a) ⌘
Z

x

a1

dx
0�4(x

0
,~a) , with �4(x,~a) ⌘ e�4(x,~a) + 4c4

⌘1

!1

1

y
, (2.25)
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We can insist on single poles  logarithmic singularities (Gauge Theory)↔
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di↵erential equation which is identical to the definition of the elliptic curve in eq. (2.6),

namely

(c4
0(z))2 = P4((z)) , (2.20)

and thus one may identify (x, y) $ ((z), c40(z)). The inverse of the -function is known

as Abel’s map, which takes a point (x, y) on the elliptic curve to a point zx on the complex

torus,

zx =
c4

!1

Z
x

a1

dx
0

y
=

p
a13a24
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x
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dx
0

y
. (2.21)

Since elliptic curves are isomorphic to complex tori, eMPLs can be described as iterated

integrals over functions related to the torus, and were originally defined as such in refs. [25,

68, 69]. In this context, eMPLs are defined as iterated integrals given by

e�( n1 ... nk
z1 ... zk ; z, ⌧) =
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z
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dz

0
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(n1)(z0 � z1, ⌧) e�

�
n2 ... nk
z2 ... zk ; z

0
, ⌧
�
, (2.22)

where the integration kernels are the coe�cients in the expansion of theKronecker-Eisenstein

series F (z,↵, ⌧),

F (z,↵, ⌧) =
1

↵
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(n)(z, ⌧)↵n =

✓
0
1(0, ⌧) ✓1(z + ↵, ⌧)
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, (2.23)

and ✓1(z, ⌧) is the odd Jabobi theta function with ✓
0
1(z, ⌧) denoting a derivative with respect

to its first argument.

The eMPLs (2.22) behave similarly to ordinary MPLs in that they also form a shu✏e

algebra and are unipotent. Moreover, they are pure according to the definition of ref. [52],

namely: A function is called pure if it is unipotent and its total di↵erential involves only

pure functions and one-forms with at most logarithmic singularities.

In the calculation of Feynman integrals that evaluate to functions of the elliptic kind,

the representation of elliptic polylogarithms in terms of a polynomial equation y
2 = P (x)

appears more naturally than the torus picture. Therefore in this paper we use the definition

of pure eMPLs on the elliptic curve recently put forward in ref. [52]. They are defined as

iterated integrals of kernels that are rational functions on the elliptic curve with at most

logarithmic singularities in all variables,

E4( n1 ... nk
c1 ... ck ;x,~a) =

Z
x

0
dt n1(c1, t,~a) E4(

n2 ... nk
c2 ... ck ; t,~a) . (2.24)

In contrast with MPLs, for the elliptic case the requirement that all integrations over

rational functions on the elliptic curve close on the same space of functions put together

with the requirement that all integrals must have at most logarithmic singularities leads

to an infinite tower of independent kernels  n for n 2 Z. This fact can also be seen from

the torus description, where an infinite number of kernels are generated by eq. (2.23).

In particular, the kernels in eq. (2.24) depend on a certain kind of functions which are

themselves transcendental, namely

Z4(x,~a) ⌘
Z

x

a1

dx
0�4(x

0
,~a) , with �4(x,~a) ⌘ e�4(x,~a) + 4c4

⌘1

!1

1

y
, (2.25)
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We can insist on single poles  logarithmic singularities (Gauge Theory)↔

Price to pay: infinite tower of transcendental kernels [can’t be obtained from “residue of integrand”]
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Important property of eMPLs is that they still satisfy generalized unipotent differential equations

Get inspiration from construction of Elliptic polylogarithms (eMPLs)
[Brown Levin ’11; Brödel, Mafra, Matthes, Schlotterer ’14]
[Brödel, Dulat, Duhr, Penante, Tancredi ’17, ’18]

the basis elements. If that is not the case, and we still have freedom in choosing our
basis, we do that by trial and error avoiding such poles as they increase the complexity
of the next steps drastically.

In conclusion, the points above provide us with a guide to constructing a starting basis
of master integrals which does not have undesirable properties, among which the most
important ones are power-like divergences and non-minimal couplings in the homogeneous
blocks of the individual sectors, in the limit d = d0. We do not claim that all these points
are new elements introduced in this paper but are instead the result of the experience
collected by many research groups working on this topic.

Step 2: Rotation by the inverse of the semi-simple part of the period matrix

The second step is the crucial one in our procedure. For a choice of basis with no finite
poles in ✏ in the Gauss-Manin connection matrices, we start by computing the fundamental
matrix of solutions W at ✏ = 0 for every coupled block in the sector under consideration,
discarding any contributions from integrals whose own differential equations do not couple
to the block. In the following, we refer to this system also as the maximal cut system, as
the maximal cuts of the integrals provide a solution to it [9–11, 14, 15], and to W also
as the Wronskian matrix or period matrix. Beyond the polylogarithmic case, W contains
new classes of transcendental functions for which we can always derive a representation in
terms of locally convergent power series, containing also logarithmic contributions in the
parameters. Furthermore, we note that in the construction of W, it is convenient to order
the solutions such that the powers of logarithms appearing in their power series expansions
increase from left to right in the first row. This is usually referred to as a Frobenius basis.

To proceed, we take inspiration from the patterns observed in [58, 59], where pure and
uniform transcendental weight elliptic Feynman integrals could be selected by a rotation
of the basis of integrals by the so-called semi-simple part of the period matrix. In those
references, the observation was based on explicit results obtained by direct integration
and therefore was limited to at most two orders in ✏. Our goal here is to generalise this
procedure to all orders in ✏, working at the level of the differential equations. We split W

into a semi-simple part W
ss and unipotent part W

u, i.e.

W = W
ss
· W

u . (2.8)

In general, this splitting is not unique. The only requirements are that the unipotent part
W

u has to satisfy a unipotent differential equation [67], i.e. of the type

dWu =

 
X

i

Ui(z) dzi

!
W

u, (2.9)

where the matrices Ui(z) are nilpotent matrices, while the semi-simple matrix should only
be invertible. For the purpose of our procedure, we perform the splitting in such a way
that the semi-simple part W

ss has lower triangular form, while the unipotent piece W
u

has upper triangular form, with its diagonal containing only constant entries, normalised to
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Where  are Nilpotent matrices: Ui(z) Ui ⋅ Ui ⋅ ⋯ ⋅ Ui

n

= 0

di↵erential equation which is identical to the definition of the elliptic curve in eq. (2.6),

namely

(c4
0(z))2 = P4((z)) , (2.20)

and thus one may identify (x, y) $ ((z), c40(z)). The inverse of the -function is known

as Abel’s map, which takes a point (x, y) on the elliptic curve to a point zx on the complex

torus,

zx =
c4

!1

Z
x

a1

dx
0

y
=

p
a13a24

4K(�)

Z
x

a1

dx
0

y
. (2.21)

Since elliptic curves are isomorphic to complex tori, eMPLs can be described as iterated

integrals over functions related to the torus, and were originally defined as such in refs. [25,

68, 69]. In this context, eMPLs are defined as iterated integrals given by

e�( n1 ... nk
z1 ... zk ; z, ⌧) =

Z
z

0
dz

0
g
(n1)(z0 � z1, ⌧) e�

�
n2 ... nk
z2 ... zk ; z

0
, ⌧
�
, (2.22)

where the integration kernels are the coe�cients in the expansion of theKronecker-Eisenstein

series F (z,↵, ⌧),

F (z,↵, ⌧) =
1

↵

X

n�0

g
(n)(z, ⌧)↵n =

✓
0
1(0, ⌧) ✓1(z + ↵, ⌧)

✓1(z, ⌧) ✓1(↵, ⌧)
, (2.23)

and ✓1(z, ⌧) is the odd Jabobi theta function with ✓
0
1(z, ⌧) denoting a derivative with respect

to its first argument.

The eMPLs (2.22) behave similarly to ordinary MPLs in that they also form a shu✏e

algebra and are unipotent. Moreover, they are pure according to the definition of ref. [52],

namely: A function is called pure if it is unipotent and its total di↵erential involves only

pure functions and one-forms with at most logarithmic singularities.

In the calculation of Feynman integrals that evaluate to functions of the elliptic kind,

the representation of elliptic polylogarithms in terms of a polynomial equation y
2 = P (x)

appears more naturally than the torus picture. Therefore in this paper we use the definition

of pure eMPLs on the elliptic curve recently put forward in ref. [52]. They are defined as

iterated integrals of kernels that are rational functions on the elliptic curve with at most

logarithmic singularities in all variables,

E4( n1 ... nk
c1 ... ck ;x,~a) =

Z
x

0
dt n1(c1, t,~a) E4(

n2 ... nk
c2 ... ck ; t,~a) . (2.24)

In contrast with MPLs, for the elliptic case the requirement that all integrations over

rational functions on the elliptic curve close on the same space of functions put together

with the requirement that all integrals must have at most logarithmic singularities leads

to an infinite tower of independent kernels  n for n 2 Z. This fact can also be seen from

the torus description, where an infinite number of kernels are generated by eq. (2.23).

In particular, the kernels in eq. (2.24) depend on a certain kind of functions which are

themselves transcendental, namely

Z4(x,~a) ⌘
Z

x

a1

dx
0�4(x

0
,~a) , with �4(x,~a) ⌘ e�4(x,~a) + 4c4

⌘1

!1

1

y
, (2.25)
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We can insist on single poles  logarithmic singularities (Gauge Theory)↔

Price to pay: infinite tower of transcendental kernels [can’t be obtained from “residue of integrand”]



Step 5: Clean up of the inhomogeneous differential equations

After having completed the ✏-factorisation of all homogeneous blocks, the factorisation of the
whole system can be achieved by performing suitable shifts in the definitions of the master
integrals of a given sector, by integrals in lower sectors. This is in principle a straightforward
procedure. In practice, however, it can become tricky as also the functional dependence
on ✏ of the coefficient functions in these shifts might be complicated. Moreover, if a given
subsector exhibits singularities which were not present in the homogeneous equations for the
sector considered, the introduction of new functions might be required. These are likewise
(iterated) integrals of functions already present in the differential equations.

3 Application to the two-loop sunrise family

k1

k2

k1 + k2 � p

p p

Figure 1. The two-loop sunrise graph.

Let us see explicitly how our procedure works in the case of the two-loop sunrise graph [28–
31, 72–79] shown in figure 1. We work as it is customary in d = 2�2✏ space-time dimensions
and, as it is well known, the result in d = 4� 2✏ can be obtained by dimensional shift [80].
We take the associated integral family in the general case of different masses to be defined
by the following three propagators and two irreducible numerators:

D1 = k21 �m2
1 , D2 = k22 �m2

2 , D3 = (k1 + k2 � p)2 �m2
3 ,

N1 = (k1 � p)2 , N2 = (k2 � p)2 .
(3.1)

We assume m1,m2,m3 > 0 and, in the remainder of this section, we set p2 = s.
As the first step, we analyse the integrand of the so-called corner integral I1,1,1,0,0 to

determine the complexity of the problem. We use a loop-by-loop Baikov representation [12–
15] in two space-time dimensions. Working out the change of variables we find

I1,1,1,0,0 ⇠

Z
dz1 dz2 dz3 dz4

[B(z1, z2, z3, z4)]�1/2

z1z2z3
(3.2)

with

B(z1, z2, z3, z4) =
⇣�

�s+m2
1 + z1

�2
� 2

�
s+m2

1 + z1
�
z4 + z24

⌘

⇥

⇣�
m2

2 �m2
3 + z2 � z3

�2
� 2

�
m2

2 +m2
3 + z2 + z3

�
z4 + z24

⌘
.

(3.3)

From this representation, it is easy to see that the maximal cut is proportional to a one-fold
integral over the reciprocal of the square-root of a quartic polynomial in the integration
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Let’s go back to sunrise case: diff equations for standard basis are coupled in d = 2n

integrations over d log forms and would therefore have the right characteristics to be a
candidate canonical integral in the language introduced in [7].

Interestingly, as already hinted at in the previous section, eq. (3.21) shows that the
last integration involves only the holomorphic differential form of the first kind on the
elliptic curve, which corresponds exactly to one of the integration kernels that define elliptic
multiple polylogarithms, as it is manifest in the form originally proposed in [58]. Elliptic
multiple polylogarithms can in fact be defined as iterated integrations of rational functions
on an elliptic curve as follows:

E4(
n1 ... nk
c1 ... ck ;x,~a) =

Z x

0
du n1(c1, u,~a) E4(

n2 ... nk
c2 ... ck ;u,~a) (3.22)

with ni 2 Z, ci 2 bC and ~a = {a1, ..., a4} is the vector of roots defined in eq. (3.6). The first
integration kernel for n = 0 reads explicitly

 0(0, x,~a) =
c4

$0 y
=

c4
$0

1p
P4(z4)

, (3.23)

where y =
p
P4(z4) defines the elliptic curve, $0 is the holomorphic period on the curve

and c4 is an algebraic function which is added for convenience. With these definitions, and
assuming for the sake of the argument that the branching points of the elliptic curve ~a are
constant, we can schematically write

I1,1,1,0,0 ⇠ $0

Z
dE4( 00 ; z4,~a) ^ d log f3(z3, z4) ^ d log f2(z2, z3, z4) ^ d log f1(z1, z2, z3, z4) .

(3.24)
By generalising the original definition of local integrals provided in [7], we can conjecture
that an integral in this form is a good candidate for a “canonical” integral defined on an
elliptic curve.

We take, therefore, as starting basis I = {I1, I2, I3} defined as

I1 = I0,1,1,0,0 , I2 = I1,1,1,0,0 and I3 = I1,1,2,0,0 , (3.25)

where again I3 has been chosen to be proportional to the derivative with respect to the
internal mass m2 of I2. This basis satisfies the system of differential equations

dI =
�
GMm2 dm2 +GMs ds

�
I , (3.26)

GMm2 =

0

B@
�

2✏
m2 0 0

0 0 3
2✏2s

m4(s�m2)(s�9m2)

(1+2✏)(1+3✏)(s�3m2)
m2(s�m2)(s�9m2) �

s2�20m2s+27m4+✏(s2�30m2s+45m4)
m2(s�m2)(s�9m2)

1

CA ,

where, as before, the Gauss-Manin connection matrix with respect to s follows from a scaling
relation. The tadpole integral I1 is the same as before and remains a suitable candidate
for a canonical basis, so we focus our efforts on the top sector. Its homogeneous system of
differential equations at ✏ = 0 reads

@

@m2

 
I2
I3

!
=

 
0 3

s�3m2

m2(s�m2)(s�9m2) �
s2�20m2s+27m4

m2(s�m2)(s�9m2)

! 
I2
I3

!
. (3.27)
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Matrix of homog. sol. is not unipotent W = (ω1 ω2

η1 η2)

GENERAL STRATEGY: THE IMPORTANCE OF BEING UNIPOTENT

[Solving by variation of constants 
will not produce unipotent results]



Step 5: Clean up of the inhomogeneous differential equations

After having completed the ✏-factorisation of all homogeneous blocks, the factorisation of the
whole system can be achieved by performing suitable shifts in the definitions of the master
integrals of a given sector, by integrals in lower sectors. This is in principle a straightforward
procedure. In practice, however, it can become tricky as also the functional dependence
on ✏ of the coefficient functions in these shifts might be complicated. Moreover, if a given
subsector exhibits singularities which were not present in the homogeneous equations for the
sector considered, the introduction of new functions might be required. These are likewise
(iterated) integrals of functions already present in the differential equations.

3 Application to the two-loop sunrise family

k1

k2

k1 + k2 � p

p p

Figure 1. The two-loop sunrise graph.

Let us see explicitly how our procedure works in the case of the two-loop sunrise graph [28–
31, 72–79] shown in figure 1. We work as it is customary in d = 2�2✏ space-time dimensions
and, as it is well known, the result in d = 4� 2✏ can be obtained by dimensional shift [80].
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D1 = k21 �m2
1 , D2 = k22 �m2

2 , D3 = (k1 + k2 � p)2 �m2
3 ,

N1 = (k1 � p)2 , N2 = (k2 � p)2 .
(3.1)

We assume m1,m2,m3 > 0 and, in the remainder of this section, we set p2 = s.
As the first step, we analyse the integrand of the so-called corner integral I1,1,1,0,0 to

determine the complexity of the problem. We use a loop-by-loop Baikov representation [12–
15] in two space-time dimensions. Working out the change of variables we find

I1,1,1,0,0 ⇠

Z
dz1 dz2 dz3 dz4

[B(z1, z2, z3, z4)]�1/2

z1z2z3
(3.2)

with

B(z1, z2, z3, z4) =
⇣�

�s+m2
1 + z1

�2
� 2

�
s+m2

1 + z1
�
z4 + z24

⌘

⇥

⇣�
m2

2 �m2
3 + z2 � z3

�2
� 2

�
m2

2 +m2
3 + z2 + z3

�
z4 + z24

⌘
.

(3.3)

From this representation, it is easy to see that the maximal cut is proportional to a one-fold
integral over the reciprocal of the square-root of a quartic polynomial in the integration
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Let’s go back to sunrise case: diff equations for standard basis are coupled in d = 2n

integrations over d log forms and would therefore have the right characteristics to be a
candidate canonical integral in the language introduced in [7].

Interestingly, as already hinted at in the previous section, eq. (3.21) shows that the
last integration involves only the holomorphic differential form of the first kind on the
elliptic curve, which corresponds exactly to one of the integration kernels that define elliptic
multiple polylogarithms, as it is manifest in the form originally proposed in [58]. Elliptic
multiple polylogarithms can in fact be defined as iterated integrations of rational functions
on an elliptic curve as follows:

E4(
n1 ... nk
c1 ... ck ;x,~a) =

Z x

0
du n1(c1, u,~a) E4(

n2 ... nk
c2 ... ck ;u,~a) (3.22)

with ni 2 Z, ci 2 bC and ~a = {a1, ..., a4} is the vector of roots defined in eq. (3.6). The first
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 0(0, x,~a) =
c4

$0 y
=

c4
$0

1p
P4(z4)

, (3.23)

where y =
p
P4(z4) defines the elliptic curve, $0 is the holomorphic period on the curve

and c4 is an algebraic function which is added for convenience. With these definitions, and
assuming for the sake of the argument that the branching points of the elliptic curve ~a are
constant, we can schematically write

I1,1,1,0,0 ⇠ $0

Z
dE4( 00 ; z4,~a) ^ d log f3(z3, z4) ^ d log f2(z2, z3, z4) ^ d log f1(z1, z2, z3, z4) .

(3.24)
By generalising the original definition of local integrals provided in [7], we can conjecture
that an integral in this form is a good candidate for a “canonical” integral defined on an
elliptic curve.

We take, therefore, as starting basis I = {I1, I2, I3} defined as

I1 = I0,1,1,0,0 , I2 = I1,1,1,0,0 and I3 = I1,1,2,0,0 , (3.25)

where again I3 has been chosen to be proportional to the derivative with respect to the
internal mass m2 of I2. This basis satisfies the system of differential equations

dI =
�
GMm2 dm2 +GMs ds

�
I , (3.26)

GMm2 =
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�

2✏
m2 0 0
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2✏2s

m4(s�m2)(s�9m2)

(1+2✏)(1+3✏)(s�3m2)
m2(s�m2)(s�9m2) �

s2�20m2s+27m4+✏(s2�30m2s+45m4)
m2(s�m2)(s�9m2)
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CA ,

where, as before, the Gauss-Manin connection matrix with respect to s follows from a scaling
relation. The tadpole integral I1 is the same as before and remains a suitable candidate
for a canonical basis, so we focus our efforts on the top sector. Its homogeneous system of
differential equations at ✏ = 0 reads

@

@m2

 
I2
I3

!
=

 
0 3

s�3m2

m2(s�m2)(s�9m2) �
s2�20m2s+27m4

m2(s�m2)(s�9m2)

! 
I2
I3

!
. (3.27)
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A non-unipotent matrix can be split (in a non-unique way) into Unipotent and Semi-Simple part

S = (
ω1 0

η1 − iπ
ω1

) and U = (1 ω2

ω1

0 1 )W = S ⋅ U (Using Legendre Relation)

Define a new basis rotating only by semi-simple part I = S ⋅ J

What remains is unipotent — indeed rotated  can be expressed in terms of pure eMPLs!J

GENERAL STRATEGY: THE IMPORTANCE OF BEING UNIPOTENT

[Solving by variation of constants 
will not produce unipotent results]

[Brödel, Duhr, Dulat, Penante, LT ’18]

Matrix of homog. sol. is not unipotent W = (ω1 ω2
η1 η2)



GENERAL STRATEGY: THE IMPORTANCE OF BEING UNIPOTENT

Can we generalize it to all orders at the diff eq level?

Same finding confirmed by evaluating various two- and three-point functions by direct integration 
to first few 𝒪(ϵ) [Brödel, Duhr, Dulat, Penante, LT ’18]



GENERAL STRATEGY: THE IMPORTANCE OF BEING UNIPOTENT

STRATEGY: 


1. Start with a basis of MIs which has no double poles in UV and IR


2. For every non-polylogarithmic sector, choose a minimally coupled basis [achieved by analysing 
residues and choosing as many master integrals as possible to decouples minimally coupled block]


3. For coupled sectors, choose first integral whose residues involve differential of first kind


4. Perform a rotation of this minimally coupled basis to remove semi-simple part


5. Conjecture 1: after this rotation, matrix can be put in -factorized form by integrating out 
remaining terms that are not in the right form 


6. Conjecture 2: The form so achieved will be a generalization of a canonical form beyond MPLs

ϵ

[Görges, Nega, LT, Wagner ’23]

Can we generalize it to all orders at the diff eq level?

Same finding confirmed by evaluating various two- and three-point functions by direct integration 
to first few 𝒪(ϵ) [Brödel, Duhr, Dulat, Penante, LT ’18]



EXAMPLE 1: POLYLOGARITHMIC CASE

It works in the (simple) polylogarithmic case: Sunrise with 2 massive and 1 massless propagator

variable z4

MaxCut(I1,1,1,0,0) ⇠
Z

dz4p
P4(z4)

with (3.4)

P4(z4) = (z4 � a1)(z4 � a2)(z4 � a3)(z4 � a4) , (3.5)

a1 = (m2 �m3)
2 , a2 = (m2 +m3)

2 , a3 =
⇣
m1 �

p
p2
⌘2

, a4 =
⇣
m1 +

p
p2
⌘2

. (3.6)

As long as none of the internal masses vanishes, all four roots are distinct and the geometry
is that of an elliptic curve. If at least one of the internal masses is zero, two of the roots
degenerate and the elliptic curve reduces to a genus zero surface. In the following, we
consider three cases explicitly:

1. Two equal non-vanishing masses 0 6= m2
2 = m2

3 =: m
2 and one vanishing mass m2

1 = 0.
This case is polylogarithmic and we can see how our approach works in the case of
genus zero geometries.

2. Three equal non-vanishing masses 0 6= m2
1 = m2

2 = m2
3 =: m2. This is the simplest

genuine elliptic case.

3. Three non-vanishing masses of which two are equal, 0 6= m2
1 6= m2

2 = m2
3 6= 0. This

case is multivariate and of similar complexity as the generic case of three different
internal masses but with considerably more compact mathematical expressions.

3.1 The sunrise with two equal non-vanishing masses and a vanishing mass

For m2
2 = m2

3 =: m
2 and m2

1 = 0, the sunrise integral family admits three master integrals,
a tadpole and two in the top sector. In this case, the underlying geometry is a Riemann
sphere, so if we were to follow our recipe above, we should attempt to identify integrals of
unit leading singularity in d = 2 space-time dimensions. It is immediate to do this analysis
directly or using for example DlogBasis [26]. Three candidates are quickly found to be

M1 = ✏2 I1,1,0,0,0 , M2 = ✏2 r(s,m2) I1,1,1,0,0 , M3 = ✏2 (I1,1,1,�1,0 � s I1,1,1,0,0) , (3.7)

involving the square-root
r(s,m2) =

p
s(s� 4m2) . (3.8)

associated to the threshold for the production of two massive and one massless particle.
We chose it such that it is manifestly real above the threshold s � 4m2. The factor ✏2 is
purely conventional such that the expansions of all integrals start at order ✏0. It is easily
checked that these master integrals satisfy indeed differential equations in canonical form.

Instead of following this standard approach, let us pretend that we were unable to
identify all these candidates and their normalisation factors in the above analysis and
use this example to illustrate the steps involved in our procedure. As we will see, they
yield essentially the same canonical basis. We start from the basis of master integrals
I = {I1, I2, I3} given by

I1 = I0,1,1,0,0 , I2 = I1,1,1,0,0 and I3 = I1,1,2,0,0 . (3.9)

They were chosen based only on the following knowledge of their properties:
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Differential equations read:

1. The tadpole integral I1 is trivial and known to evaluate to a pure function of uniform
transcendental weight in d = d� 2✏.

2. The first integral in the coupled sector, I2, has a representation in terms of iterated
d log forms in d = 2 space-time dimensions.

3. The second master, I3, is proportional to the derivative of the first one with respect
to the internal mass squared. In practice, this means that we put a dot on one of its
two massive propagators. This guarantees that no spurious power-like IR divergences
are introduced.

The system of non-✏-factorised differential equations for our starting basis I reads

dI =
�
GMm2 dm2 +GMs ds

�
I ,

GMm2 =

0

B@
�

2✏
m2 0 0

0 0 2
✏2

m4(s�4m2)
(1+2✏)(1+3✏)
m2(s�4m2) �

s�10m2+✏(s�16m2)
m2(s�4m2)

1

CA .
(3.10)

For simplicity, we work with the Gauss-Manin connection matrix with respect to m2. The
one with respect to s follows at each step from a scaling relation implied by dimensional
analysis and Euler’s theorem on homogeneous functions9. Concretely, we have in (3.10)

m2GMm2 + sGMs =

0

B@
�2✏ 0 0

0 �1� 2✏ 0

0 0 �2� 2✏

1

CA . (3.11)

The next step in our procedure is to analyse the maximal cut system, which corresponds
to the following set of differential equations

@

@m2

 
I2
I3

!
=

 
0 2
1

m2(s�4m2)
�s+10m2

m2(s�4m2)

! 
I2
I3

!
. (3.12)

Its fundamental matrix of solutions W can be chosen to take the following form10

W =

 
1 0

0 1
2

! 
$0 $1

@m2$0 @m2$1

!
with

$0(s,m
2) =

1

r(s,m2)
=

1

s

"
1 + 2

m2

s
+ 6

✓
m2

s

◆2

+ 20

✓
m2

s

◆3

+O

 ✓
m2

s

◆4
!#

,

$1(s,m
2) =

1

r(s,m2)
log

✓
s� r(s,m2)

s+ r(s,m2)

◆
= $0(s,m

2) log

✓
m2

s

◆
(3.13)

+
1

s

"
2
m2

s
+ 7

✓
m2

s

◆2

+
74

3

✓
m2

s

◆3

+O

 ✓
m2

s

◆4
!#

,

9Alternatively, one might also reduce this to a one-variable problem by working with the ratio of the
two scales, s/m2.

10If we had started with a better choice of initial master integrals I, i.e. I1,1,1,�1,0 instead of I1,1,2,0,0,
the Wronskian matrix (3.13) would have been simpler. Here, we choose a non-optimal basis intentionally
to illustrate more features of the procedure.
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dI = [A0 + ϵA1 + 𝒪(ϵ2)] I

Homogeneous equation in d=2

Matrix of homogeneous solutions contains algebraic functions and logs




EXAMPLE 1: POLYLOGARITHMIC CASE

It works in the (simple) polylogarithmic case: Sunrise with 2 massive and 1 massless propagator

variable z4

MaxCut(I1,1,1,0,0) ⇠
Z

dz4p
P4(z4)

with (3.4)

P4(z4) = (z4 � a1)(z4 � a2)(z4 � a3)(z4 � a4) , (3.5)

a1 = (m2 �m3)
2 , a2 = (m2 +m3)

2 , a3 =
⇣
m1 �

p
p2
⌘2

, a4 =
⇣
m1 +

p
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⌘2

. (3.6)

As long as none of the internal masses vanishes, all four roots are distinct and the geometry
is that of an elliptic curve. If at least one of the internal masses is zero, two of the roots
degenerate and the elliptic curve reduces to a genus zero surface. In the following, we
consider three cases explicitly:

1. Two equal non-vanishing masses 0 6= m2
2 = m2

3 =: m
2 and one vanishing mass m2

1 = 0.
This case is polylogarithmic and we can see how our approach works in the case of
genus zero geometries.

2. Three equal non-vanishing masses 0 6= m2
1 = m2

2 = m2
3 =: m2. This is the simplest

genuine elliptic case.

3. Three non-vanishing masses of which two are equal, 0 6= m2
1 6= m2

2 = m2
3 6= 0. This

case is multivariate and of similar complexity as the generic case of three different
internal masses but with considerably more compact mathematical expressions.

3.1 The sunrise with two equal non-vanishing masses and a vanishing mass

For m2
2 = m2

3 =: m
2 and m2

1 = 0, the sunrise integral family admits three master integrals,
a tadpole and two in the top sector. In this case, the underlying geometry is a Riemann
sphere, so if we were to follow our recipe above, we should attempt to identify integrals of
unit leading singularity in d = 2 space-time dimensions. It is immediate to do this analysis
directly or using for example DlogBasis [26]. Three candidates are quickly found to be

M1 = ✏2 I1,1,0,0,0 , M2 = ✏2 r(s,m2) I1,1,1,0,0 , M3 = ✏2 (I1,1,1,�1,0 � s I1,1,1,0,0) , (3.7)

involving the square-root
r(s,m2) =

p
s(s� 4m2) . (3.8)

associated to the threshold for the production of two massive and one massless particle.
We chose it such that it is manifestly real above the threshold s � 4m2. The factor ✏2 is
purely conventional such that the expansions of all integrals start at order ✏0. It is easily
checked that these master integrals satisfy indeed differential equations in canonical form.

Instead of following this standard approach, let us pretend that we were unable to
identify all these candidates and their normalisation factors in the above analysis and
use this example to illustrate the steps involved in our procedure. As we will see, they
yield essentially the same canonical basis. We start from the basis of master integrals
I = {I1, I2, I3} given by

I1 = I0,1,1,0,0 , I2 = I1,1,1,0,0 and I3 = I1,1,2,0,0 . (3.9)

They were chosen based only on the following knowledge of their properties:
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where r(s,m2) was defined in eq. (3.8). In principle, it is possible to rotate the basis of the
top sector with the inverse of W to solve the system from eq. (3.12) at ✏ = 0. However, this
step does not lead to a canonical basis, not even to a factorisation of ✏. Moreover, the coeffi-
cient functions in the differential equations will be of mixed transcendental weight. Instead,
we follow Step 2 of our procedure and perform the splitting of W into a lower-triangular
semi-simple part W

ss and an upper-triangular unipotent part W
u. This works because our

choice for the first integral in the top sector I2 already has uniform transcendental weight
as we anticipated from the properties of its integrand. Explicitly, we find

W
ss =

 
1

r(s,m2) 0
s

r(s,m2)3
1

2m2(s�4m2)

!
and W

u =

 
1 log

⇣
s�r(s,m2)
s+r(s,m2)

⌘

0 1

!
(3.14)

such that W
u satisfies the unipotent differential equation

dWu =

 
0 d log

⇣
s�r(s,m2)
s+r(s,m2)

⌘

0 0

!
W

u . (3.15)

By splitting the Wronskian matrix W in this way, the logarithm appears exclusively in
the unipotent part, while the semi-simple part has uniform transcendental weight zero.
Rotating now the basis in the topsector only with the inverse of W

ss, we arrive at a new
basis

I 0 =

0

B@
1 0 0

0

0
(Wss)�1

1

CA I , (3.16)

which satisfies the differential equation

@

@m2
I 0 =

0

BB@

�
2✏
m2 0 0

0 0 r(s,m2)
m2(s�4m2)

2✏2

m2
8✏(s�m2)

(s�4m2) r(s,m2) +
12✏2

r(s,m2)
✏(16m2�s)
m2(s�4m2)

1

CCA I 0. (3.17)

The remaining steps to factor out ✏ in this problem are now straightforward. First,
we rescale the last integral in the basis by a factor 1/✏ with respect to the other two. An
additional factor ✏2 is added to all integrals for the same conventional reasons as for the
basis in eq. (3.7). This leaves us with just a single term that is not yet proportional to ✏.
It is, however, a total derivative of an algebraic function already appearing in the problem
and it is therefore easily integrated out. These manipulations can be summarised in the
rotations

T =

0

B@
1 0 0

0 1 0

0 �
2(s+2m2)
r(s,m2) 1

1

CA

0

B@
✏2 0 0

0 ✏2 0

0 0 ✏

1

CA , (3.18)
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Differential equations read:

1. The tadpole integral I1 is trivial and known to evaluate to a pure function of uniform
transcendental weight in d = d� 2✏.

2. The first integral in the coupled sector, I2, has a representation in terms of iterated
d log forms in d = 2 space-time dimensions.

3. The second master, I3, is proportional to the derivative of the first one with respect
to the internal mass squared. In practice, this means that we put a dot on one of its
two massive propagators. This guarantees that no spurious power-like IR divergences
are introduced.

The system of non-✏-factorised differential equations for our starting basis I reads

dI =
�
GMm2 dm2 +GMs ds

�
I ,

GMm2 =

0

B@
�

2✏
m2 0 0

0 0 2
✏2

m4(s�4m2)
(1+2✏)(1+3✏)
m2(s�4m2) �

s�10m2+✏(s�16m2)
m2(s�4m2)

1

CA .
(3.10)

For simplicity, we work with the Gauss-Manin connection matrix with respect to m2. The
one with respect to s follows at each step from a scaling relation implied by dimensional
analysis and Euler’s theorem on homogeneous functions9. Concretely, we have in (3.10)

m2GMm2 + sGMs =

0

B@
�2✏ 0 0

0 �1� 2✏ 0

0 0 �2� 2✏

1

CA . (3.11)

The next step in our procedure is to analyse the maximal cut system, which corresponds
to the following set of differential equations
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!
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Its fundamental matrix of solutions W can be chosen to take the following form10

W =

 
1 0

0 1
2

! 
$0 $1

@m2$0 @m2$1

!
with

$0(s,m
2) =

1

r(s,m2)
=

1

s

"
1 + 2

m2

s
+ 6

✓
m2

s

◆2

+ 20

✓
m2

s

◆3

+O
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m2

s
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!#

,

$1(s,m
2) =

1

r(s,m2)
log

✓
s� r(s,m2)

s+ r(s,m2)

◆
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✓
m2

s

◆
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+
1

s

"
2
m2

s
+ 7

✓
m2

s

◆2

+
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3

✓
m2

s

◆3
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m2

s

◆4
!#

,

9Alternatively, one might also reduce this to a one-variable problem by working with the ratio of the
two scales, s/m2.

10If we had started with a better choice of initial master integrals I, i.e. I1,1,1,�1,0 instead of I1,1,2,0,0,
the Wronskian matrix (3.13) would have been simpler. Here, we choose a non-optimal basis intentionally
to illustrate more features of the procedure.
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dI = [A0 + ϵA1 + 𝒪(ϵ2)] I

Homogeneous equation in d=2

Matrix of homogeneous solutions contains algebraic functions and logs


Split it in semi-simple and unipotent W = Wss ⋅ Wu

variable z4

MaxCut(I1,1,1,0,0) ⇠
Z

dz4p
P4(z4)

with (3.4)

P4(z4) = (z4 � a1)(z4 � a2)(z4 � a3)(z4 � a4) , (3.5)

a1 = (m2 �m3)
2 , a2 = (m2 +m3)

2 , a3 =
⇣
m1 �

p
p2
⌘2

, a4 =
⇣
m1 +

p
p2
⌘2

. (3.6)

As long as none of the internal masses vanishes, all four roots are distinct and the geometry
is that of an elliptic curve. If at least one of the internal masses is zero, two of the roots
degenerate and the elliptic curve reduces to a genus zero surface. In the following, we
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p
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They were chosen based only on the following knowledge of their properties:
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where r(s,m2) was defined in eq. (3.8). In principle, it is possible to rotate the basis of the
top sector with the inverse of W to solve the system from eq. (3.12) at ✏ = 0. However, this
step does not lead to a canonical basis, not even to a factorisation of ✏. Moreover, the coeffi-
cient functions in the differential equations will be of mixed transcendental weight. Instead,
we follow Step 2 of our procedure and perform the splitting of W into a lower-triangular
semi-simple part W

ss and an upper-triangular unipotent part W
u. This works because our

choice for the first integral in the top sector I2 already has uniform transcendental weight
as we anticipated from the properties of its integrand. Explicitly, we find

W
ss =

 
1

r(s,m2) 0
s

r(s,m2)3
1

2m2(s�4m2)

!
and W

u =

 
1 log

⇣
s�r(s,m2)
s+r(s,m2)

⌘

0 1

!
(3.14)

such that W
u satisfies the unipotent differential equation

dWu =

 
0 d log

⇣
s�r(s,m2)
s+r(s,m2)

⌘

0 0

!
W

u . (3.15)

By splitting the Wronskian matrix W in this way, the logarithm appears exclusively in
the unipotent part, while the semi-simple part has uniform transcendental weight zero.
Rotating now the basis in the topsector only with the inverse of W

ss, we arrive at a new
basis

I 0 =

0

B@
1 0 0

0

0
(Wss)�1

1

CA I , (3.16)

which satisfies the differential equation
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0 0 r(s,m2)
m2(s�4m2)

2✏2

m2
8✏(s�m2)

(s�4m2) r(s,m2) +
12✏2

r(s,m2)
✏(16m2�s)
m2(s�4m2)

1

CCA I 0. (3.17)

The remaining steps to factor out ✏ in this problem are now straightforward. First,
we rescale the last integral in the basis by a factor 1/✏ with respect to the other two. An
additional factor ✏2 is added to all integrals for the same conventional reasons as for the
basis in eq. (3.7). This leaves us with just a single term that is not yet proportional to ✏.
It is, however, a total derivative of an algebraic function already appearing in the problem
and it is therefore easily integrated out. These manipulations can be summarised in the
rotations

T =

0

B@
1 0 0

0 1 0

0 �
2(s+2m2)
r(s,m2) 1

1

CA

0

B@
✏2 0 0

0 ✏2 0

0 0 ✏

1

CA , (3.18)
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Rotate away semi-simple part
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Clean up remaining non-factorised dependence with a rotation

which allows us to define a basis that satisfies canonical differential equations

dJ = ✏ GM✏J with J = (J1, J2, J3)
T = T I 0 ,

GM✏ =

0

B@
�2↵1 0 0

0 2↵1 � ↵2 � 3↵3 ↵4

2↵1 � 2↵2 �6↵4 �3↵1 + ↵2

1

CA , (3.19)

↵1 = d log(m2) , ↵2 = d log(s) , ↵3 = d log
�
s� 4m2

�
, ↵4 = d log

✓
s� r(s,m2)

s+ r(s,m2)

◆
.

As advertised, the relation to the canonical master integrals found by DlogBasis is a
simple constant rotation that is given by

J1 = M1 , J2 = M2 , J3 = �M1 + 3M3 . (3.20)

We would like to stress the following points concerning the application of our procedure in
the polylogarithmic case:

• The critical step was the splitting of the Wronskian in the semi-simple and unipotent
part. Discarding the latter, allowed us to remove the logarithm appearing in the
Wronksian matrix, which is the function that would have ruined the transcendental
weight properties and the iterative structure of the differential equations.

• In general, we do not expect our procedure to outperform other approaches to find
canonical bases in the polylogarithmic case. In particular, for an increase in the
number of master integrals, the steps involved also increase in complexity. However,
if analysing the leading singularities does not provide enough candidates, our method
could be used complementary.

3.2 The sunrise with three equal non-vanishing masses

We now take one step up in complexity to the simplest elliptic scenario and set all three
internal masses of the sunrise to the same value, i.e. m2

1 = m2
2 = m2

3 =: m2. The number
and sector distribution of master integrals do not change compared to the previous case.

First, we need to choose a basis of integrals to start from. Taking the limit for equal
masses in eq. (3.3), it is easy to study all iterated residues of the integrand corresponding
to I1,1,1,0,0. The complexity of this analysis depends in general on the order in which the
various residues are taken. For this particular problem, it is convenient to take residues in
the natural order z1 to z4. For the first three integration variables, one easily sees that the
integrand has only simple poles in the corresponding variable, such that as expected the
result can be written schematically as follows:

I1,1,1,0,0 ⇠

Z
dz4p
P4(z4)

^ d log f3(z3, z4)^ d log f2(z2, z3, z4)^ d log f1(z1, z2, z3, z4) , (3.21)

where the fi are algebraic functions, at most quadratic in the integration variables z1, z2
and z3. If the last integration in z4 were missing, this integral would be a series of iterated
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where r(s,m2) was defined in eq. (3.8). In principle, it is possible to rotate the basis of the
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cient functions in the differential equations will be of mixed transcendental weight. Instead,
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By splitting the Wronskian matrix W in this way, the logarithm appears exclusively in
the unipotent part, while the semi-simple part has uniform transcendental weight zero.
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basis
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1
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The remaining steps to factor out ✏ in this problem are now straightforward. First,
we rescale the last integral in the basis by a factor 1/✏ with respect to the other two. An
additional factor ✏2 is added to all integrals for the same conventional reasons as for the
basis in eq. (3.7). This leaves us with just a single term that is not yet proportional to ✏.
It is, however, a total derivative of an algebraic function already appearing in the problem
and it is therefore easily integrated out. These manipulations can be summarised in the
rotations
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Clean up remaining non-factorised dependence with a rotation

which allows us to define a basis that satisfies canonical differential equations

dJ = ✏ GM✏J with J = (J1, J2, J3)
T = T I 0 ,

GM✏ =

0

B@
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1

CA , (3.19)

↵1 = d log(m2) , ↵2 = d log(s) , ↵3 = d log
�
s� 4m2

�
, ↵4 = d log

✓
s� r(s,m2)

s+ r(s,m2)

◆
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As advertised, the relation to the canonical master integrals found by DlogBasis is a
simple constant rotation that is given by

J1 = M1 , J2 = M2 , J3 = �M1 + 3M3 . (3.20)

We would like to stress the following points concerning the application of our procedure in
the polylogarithmic case:

• The critical step was the splitting of the Wronskian in the semi-simple and unipotent
part. Discarding the latter, allowed us to remove the logarithm appearing in the
Wronksian matrix, which is the function that would have ruined the transcendental
weight properties and the iterative structure of the differential equations.

• In general, we do not expect our procedure to outperform other approaches to find
canonical bases in the polylogarithmic case. In particular, for an increase in the
number of master integrals, the steps involved also increase in complexity. However,
if analysing the leading singularities does not provide enough candidates, our method
could be used complementary.

3.2 The sunrise with three equal non-vanishing masses

We now take one step up in complexity to the simplest elliptic scenario and set all three
internal masses of the sunrise to the same value, i.e. m2

1 = m2
2 = m2

3 =: m2. The number
and sector distribution of master integrals do not change compared to the previous case.

First, we need to choose a basis of integrals to start from. Taking the limit for equal
masses in eq. (3.3), it is easy to study all iterated residues of the integrand corresponding
to I1,1,1,0,0. The complexity of this analysis depends in general on the order in which the
various residues are taken. For this particular problem, it is convenient to take residues in
the natural order z1 to z4. For the first three integration variables, one easily sees that the
integrand has only simple poles in the corresponding variable, such that as expected the
result can be written schematically as follows:

I1,1,1,0,0 ⇠

Z
dz4p
P4(z4)

^ d log f3(z3, z4)^ d log f2(z2, z3, z4)^ d log f1(z1, z2, z3, z4) , (3.21)

where the fi are algebraic functions, at most quadratic in the integration variables z1, z2
and z3. If the last integration in z4 were missing, this integral would be a series of iterated
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the natural order z1 to z4. For the first three integration variables, one easily sees that the
integrand has only simple poles in the corresponding variable, such that as expected the
result can be written schematically as follows:

I1,1,1,0,0 ⇠

Z
dz4p
P4(z4)

^ d log f3(z3, z4)^ d log f2(z2, z3, z4)^ d log f1(z1, z2, z3, z4) , (3.21)

where the fi are algebraic functions, at most quadratic in the integration variables z1, z2
and z3. If the last integration in z4 were missing, this integral would be a series of iterated
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NB: by analysing leading singularities with DLogBasis find the same basis up to constant rotation!

which allows us to define a basis that satisfies canonical differential equations
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✓
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◆
.

As advertised, the relation to the canonical master integrals found by DlogBasis is a
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J1 = M1 , J2 = M2 , J3 = �M1 + 3M3 . (3.20)

We would like to stress the following points concerning the application of our procedure in
the polylogarithmic case:
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part. Discarding the latter, allowed us to remove the logarithm appearing in the
Wronksian matrix, which is the function that would have ruined the transcendental
weight properties and the iterative structure of the differential equations.

• In general, we do not expect our procedure to outperform other approaches to find
canonical bases in the polylogarithmic case. In particular, for an increase in the
number of master integrals, the steps involved also increase in complexity. However,
if analysing the leading singularities does not provide enough candidates, our method
could be used complementary.
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internal masses of the sunrise to the same value, i.e. m2

1 = m2
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3 =: m2. The number
and sector distribution of master integrals do not change compared to the previous case.

First, we need to choose a basis of integrals to start from. Taking the limit for equal
masses in eq. (3.3), it is easy to study all iterated residues of the integrand corresponding
to I1,1,1,0,0. The complexity of this analysis depends in general on the order in which the
various residues are taken. For this particular problem, it is convenient to take residues in
the natural order z1 to z4. For the first three integration variables, one easily sees that the
integrand has only simple poles in the corresponding variable, such that as expected the
result can be written schematically as follows:

I1,1,1,0,0 ⇠

Z
dz4p
P4(z4)

^ d log f3(z3, z4)^ d log f2(z2, z3, z4)^ d log f1(z1, z2, z3, z4) , (3.21)

where the fi are algebraic functions, at most quadratic in the integration variables z1, z2
and z3. If the last integration in z4 were missing, this integral would be a series of iterated
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Strategy is general and does not have to do with details of the geometry*

Applied it successfully to elliptic sunrise (equal or different masses)

Step 5: Clean up of the inhomogeneous differential equations

After having completed the ✏-factorisation of all homogeneous blocks, the factorisation of the
whole system can be achieved by performing suitable shifts in the definitions of the master
integrals of a given sector, by integrals in lower sectors. This is in principle a straightforward
procedure. In practice, however, it can become tricky as also the functional dependence
on ✏ of the coefficient functions in these shifts might be complicated. Moreover, if a given
subsector exhibits singularities which were not present in the homogeneous equations for the
sector considered, the introduction of new functions might be required. These are likewise
(iterated) integrals of functions already present in the differential equations.

3 Application to the two-loop sunrise family

k1

k2

k1 + k2 � p

p p

Figure 1. The two-loop sunrise graph.

Let us see explicitly how our procedure works in the case of the two-loop sunrise graph [28–
31, 72–79] shown in figure 1. We work as it is customary in d = 2�2✏ space-time dimensions
and, as it is well known, the result in d = 4� 2✏ can be obtained by dimensional shift [80].
We take the associated integral family in the general case of different masses to be defined
by the following three propagators and two irreducible numerators:

D1 = k21 �m2
1 , D2 = k22 �m2

2 , D3 = (k1 + k2 � p)2 �m2
3 ,

N1 = (k1 � p)2 , N2 = (k2 � p)2 .
(3.1)

We assume m1,m2,m3 > 0 and, in the remainder of this section, we set p2 = s.
As the first step, we analyse the integrand of the so-called corner integral I1,1,1,0,0 to

determine the complexity of the problem. We use a loop-by-loop Baikov representation [12–
15] in two space-time dimensions. Working out the change of variables we find

I1,1,1,0,0 ⇠

Z
dz1 dz2 dz3 dz4

[B(z1, z2, z3, z4)]�1/2

z1z2z3
(3.2)

with

B(z1, z2, z3, z4) =
⇣�

�s+m2
1 + z1

�2
� 2

�
s+m2

1 + z1
�
z4 + z24

⌘

⇥

⇣�
m2

2 �m2
3 + z2 � z3

�2
� 2

�
m2

2 +m2
3 + z2 + z3

�
z4 + z24

⌘
.

(3.3)

From this representation, it is easy to see that the maximal cut is proportional to a one-fold
integral over the reciprocal of the square-root of a quartic polynomial in the integration
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new functions in the last step to integrate out all undesired terms, and which correspond
to two differentials of the third kind. These can again be represented as integrals over the
corresponding holomorphic period but with additional rational functions in the integrand.
The explicit expressions are provided in an ancillary file to this manuscript.

4 Applications to Feynman integrals with a single elliptic curve

In the previous section, we have worked out explicitly various mass configurations for the
two-loop sunrise graph, showing how our procedure allows us to obtain ✏-factorised systems
of differential equations in almost algorithmic steps. For the multi-scale cases, this came
at the cost of introducing extra objects, defined as integrals over the holomorphic period
of the elliptic curve and rational functions. We have seen that these can be related to
differential forms of the third kind. In this section, we will present several examples of
single- and multivariate Feynman integral families related to a single elliptic curve, where
our approach can be successfully applied. We will see that the patterns we observed can be
extended also to three- and four-point functions.

4.1 A single-scale elliptic three-point function

1

3

2

4

2

5 6s

p21

p22

Figure 2. The graph of non-planar triangle number 1.

As the first example beyond the sunrise topology, we consider the triangle graph shown in
figure 2, for which we use the following integral family [59, 83]11

D1 = (k1 � p1)
2 , D2 = (k2 � p1)

2
�m2 , D3 = (k1 + p2)

2 ,

D4 = (k1 � k2 + p2)
2
�m2 , D5 = (k1 � k2)

2
�m2 , D6 = k22 �m2 ,

N1 = k21 .

(4.1)

We take p21 = p22 = 0 and s = (p1+p2)2 such that the integrals, suitably normalised, depend
on the single variable

z = �
m2

s
. (4.2)

At variance to the sunrise, we consider this two-loop triangle in d = 4� 2✏ dimensions and
we also set m = 1 for simplicity.

11We thank Xing Wang for having shared his results for this integral family with us prior to publica-
tion [84].
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satisfying (4.5). The first matrix gives the basis change to the derivative basis of the first
integral. We can then write the semi-simple part of W as

W
ss =

 
1 0

�
1
4

z
4

! 
$0 0

$0
0

z
(1�16z)$0

!
, (4.8)

and as before we rotate our basis of masters by the inverse of W
ss followed by a suitable

✏-rescaling of the integrals. After that, one immediately sees that the term proportional
to $0

0(z) and the non-✏-factorised term can be removed by shifting the integrals by a total
derivative. The full rotation can then be obtained as

T =

0

B@
9⇥9 0

0
1 0

1�24z
z2 $2

0 1

1

CA

0

B@
9⇥9 0

0
✏4 0

0 ✏3

1

CA

 
9⇥9 0

0 W
ss

!�1 
T

sub 0

0 �
1
z 2⇥2

!
. (4.9)

With this, the ✏-factorised differential equations are given by
d

dz
J = ✏GM

✏ J with J = T I , (4.10)

where the Gauss-Manin connection GM
✏ is given in appendix A eq. (A.1). It can be verified

easily, that the basis for the topsector in J yielded by our approach reproduces the known
basis from the literature [48, 60]. Notice that in this problem, no additional new functions
were needed to achieve the ✏-factorised form. Further, the entries GM

✏ depend only on
the holomorphic period $0, while its derivative $0

0 does not appear. Its absence is an
indication that all differential forms are independent under integration by parts identities.
Nevertheless, we stress that we have not proven this last statement formally and we cannot
exclude that non-trivial relations exist.

4.2 A second single-scale elliptic three-point function

1

3

2

4

2

5 6s

p21

p22

Figure 3. The graph of non-planar triangle number 2.

The next family of Feynman integrals we consider is given by another triangle graph (see
figure 3) but with a different mass configuration of the propagators and numerator

D1 = (k1 � p1)
2 , D2 = (k2 � p1)

2 , D3 = (k1 + p2)
2 ,

D4 = (k1 � k2 + p2)
2 , D5 = (k1 � k2)

2
�m2 , D6 = k22 �m2 ,

N1 = k21 .

(4.11)
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associated with the top sector. Instead, the new function originates from the subtopologies,
which can be understood as follows: First, the additional scale that this problem depends
on does not increase the number of master integrals in the top sector. This can be inter-
preted as the fact that, contrary to the sunrise, there is no extra residue in the integrand
of the maximal cut, which is linearly independent under integration by parts. This implies
that there is no contribution from an elliptic integral of the third kind to the homogeneous
differential equations. Second, there is instead a different singularity structure in the sub-
sectors, namely a new pole compared to the ones found in the homogeneous differential
equations for the top sector. Integrating over this pole gives a contribution formally similar
to an extra residue in the homogeneous equation. The full rotation matrix and the final
form of the GM matrices can be found in an ancillary file.

4.4 Three-parameter double box

1 3

2 4

5 6 7

p21

p22

p23

p24

Figure 4. The double box graph.

As a final example, we consider the double box graph depicted in figure 4. The associated
integral family is defined by the following propagators and irreducible numerators:

D1 = k21 �m2 , D2 = (k1 + p1 + p2)
2
�m2 , D3 = k22 �m2 ,

D4 = (k2 + p1 + p2)
2
�m2 , D5 = (k1 + p1)

2
�m2 , D6 = (k1 � k2)

2 ,

D7 = (k2 � p3)
2
�m2 , N1 = (k2 + p1)

2 , N2 = (k1 � p3)
2 .

(4.26)

The external momenta satisfy p21 = p22 = p23 = 0 and p24 = M2.
With Mandelstam variables defined by s = (p1 + p2)2 and t = (p1 + p3)2, the family

depends on a total of four dimensionful or, by dimensional analysis, three dimensionless
variables. Further, we set d = 4� 2✏ for this example.

This graph contributes to the planar corrections to the production of a Higgs boson
and a jet through a loop of massive quarks and was studied at length in the literature,
see [85, 86], where a complete calculation could only be achieved numerically.14 In the
literature, a total of 73 master integrals had been identified. A new reduction performed
with Kira 2.0 [87] reveals an additional relation, originating from a higher sector, which

14Note that compared to [85], our propagator definitions (4.26) differ by a sign.

– 32 –

Applied it successfully to elliptic sunrise (equal or different masses)

Step 5: Clean up of the inhomogeneous differential equations

After having completed the ✏-factorisation of all homogeneous blocks, the factorisation of the
whole system can be achieved by performing suitable shifts in the definitions of the master
integrals of a given sector, by integrals in lower sectors. This is in principle a straightforward
procedure. In practice, however, it can become tricky as also the functional dependence
on ✏ of the coefficient functions in these shifts might be complicated. Moreover, if a given
subsector exhibits singularities which were not present in the homogeneous equations for the
sector considered, the introduction of new functions might be required. These are likewise
(iterated) integrals of functions already present in the differential equations.

3 Application to the two-loop sunrise family

k1

k2

k1 + k2 � p

p p

Figure 1. The two-loop sunrise graph.

Let us see explicitly how our procedure works in the case of the two-loop sunrise graph [28–
31, 72–79] shown in figure 1. We work as it is customary in d = 2�2✏ space-time dimensions
and, as it is well known, the result in d = 4� 2✏ can be obtained by dimensional shift [80].
We take the associated integral family in the general case of different masses to be defined
by the following three propagators and two irreducible numerators:

D1 = k21 �m2
1 , D2 = k22 �m2

2 , D3 = (k1 + k2 � p)2 �m2
3 ,

N1 = (k1 � p)2 , N2 = (k2 � p)2 .
(3.1)

We assume m1,m2,m3 > 0 and, in the remainder of this section, we set p2 = s.
As the first step, we analyse the integrand of the so-called corner integral I1,1,1,0,0 to

determine the complexity of the problem. We use a loop-by-loop Baikov representation [12–
15] in two space-time dimensions. Working out the change of variables we find

I1,1,1,0,0 ⇠

Z
dz1 dz2 dz3 dz4

[B(z1, z2, z3, z4)]�1/2

z1z2z3
(3.2)

with

B(z1, z2, z3, z4) =
⇣�

�s+m2
1 + z1

�2
� 2

�
s+m2

1 + z1
�
z4 + z24

⌘

⇥

⇣�
m2

2 �m2
3 + z2 � z3

�2
� 2

�
m2

2 +m2
3 + z2 + z3

�
z4 + z24

⌘
.

(3.3)

From this representation, it is easy to see that the maximal cut is proportional to a one-fold
integral over the reciprocal of the square-root of a quartic polynomial in the integration
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Many other multi-scale elliptic problems

Strategy is general and does not have to do with details of the geometry*
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new functions in the last step to integrate out all undesired terms, and which correspond
to two differentials of the third kind. These can again be represented as integrals over the
corresponding holomorphic period but with additional rational functions in the integrand.
The explicit expressions are provided in an ancillary file to this manuscript.

4 Applications to Feynman integrals with a single elliptic curve

In the previous section, we have worked out explicitly various mass configurations for the
two-loop sunrise graph, showing how our procedure allows us to obtain ✏-factorised systems
of differential equations in almost algorithmic steps. For the multi-scale cases, this came
at the cost of introducing extra objects, defined as integrals over the holomorphic period
of the elliptic curve and rational functions. We have seen that these can be related to
differential forms of the third kind. In this section, we will present several examples of
single- and multivariate Feynman integral families related to a single elliptic curve, where
our approach can be successfully applied. We will see that the patterns we observed can be
extended also to three- and four-point functions.

4.1 A single-scale elliptic three-point function

1

3

2

4

2

5 6s

p21

p22

Figure 2. The graph of non-planar triangle number 1.

As the first example beyond the sunrise topology, we consider the triangle graph shown in
figure 2, for which we use the following integral family [59, 83]11

D1 = (k1 � p1)
2 , D2 = (k2 � p1)

2
�m2 , D3 = (k1 + p2)

2 ,

D4 = (k1 � k2 + p2)
2
�m2 , D5 = (k1 � k2)

2
�m2 , D6 = k22 �m2 ,

N1 = k21 .

(4.1)

We take p21 = p22 = 0 and s = (p1+p2)2 such that the integrals, suitably normalised, depend
on the single variable

z = �
m2

s
. (4.2)

At variance to the sunrise, we consider this two-loop triangle in d = 4� 2✏ dimensions and
we also set m = 1 for simplicity.

11We thank Xing Wang for having shared his results for this integral family with us prior to publica-
tion [84].

– 25 –

satisfying (4.5). The first matrix gives the basis change to the derivative basis of the first
integral. We can then write the semi-simple part of W as

W
ss =

 
1 0

�
1
4

z
4

! 
$0 0

$0
0

z
(1�16z)$0

!
, (4.8)

and as before we rotate our basis of masters by the inverse of W
ss followed by a suitable

✏-rescaling of the integrals. After that, one immediately sees that the term proportional
to $0

0(z) and the non-✏-factorised term can be removed by shifting the integrals by a total
derivative. The full rotation can then be obtained as

T =
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1 0
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With this, the ✏-factorised differential equations are given by
d

dz
J = ✏GM

✏ J with J = T I , (4.10)

where the Gauss-Manin connection GM
✏ is given in appendix A eq. (A.1). It can be verified

easily, that the basis for the topsector in J yielded by our approach reproduces the known
basis from the literature [48, 60]. Notice that in this problem, no additional new functions
were needed to achieve the ✏-factorised form. Further, the entries GM

✏ depend only on
the holomorphic period $0, while its derivative $0

0 does not appear. Its absence is an
indication that all differential forms are independent under integration by parts identities.
Nevertheless, we stress that we have not proven this last statement formally and we cannot
exclude that non-trivial relations exist.

4.2 A second single-scale elliptic three-point function
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Figure 3. The graph of non-planar triangle number 2.

The next family of Feynman integrals we consider is given by another triangle graph (see
figure 3) but with a different mass configuration of the propagators and numerator

D1 = (k1 � p1)
2 , D2 = (k2 � p1)

2 , D3 = (k1 + p2)
2 ,

D4 = (k1 � k2 + p2)
2 , D5 = (k1 � k2)

2
�m2 , D6 = k22 �m2 ,

N1 = k21 .

(4.11)
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associated with the top sector. Instead, the new function originates from the subtopologies,
which can be understood as follows: First, the additional scale that this problem depends
on does not increase the number of master integrals in the top sector. This can be inter-
preted as the fact that, contrary to the sunrise, there is no extra residue in the integrand
of the maximal cut, which is linearly independent under integration by parts. This implies
that there is no contribution from an elliptic integral of the third kind to the homogeneous
differential equations. Second, there is instead a different singularity structure in the sub-
sectors, namely a new pole compared to the ones found in the homogeneous differential
equations for the top sector. Integrating over this pole gives a contribution formally similar
to an extra residue in the homogeneous equation. The full rotation matrix and the final
form of the GM matrices can be found in an ancillary file.

4.4 Three-parameter double box

1 3

2 4

5 6 7

p21

p22

p23

p24

Figure 4. The double box graph.

As a final example, we consider the double box graph depicted in figure 4. The associated
integral family is defined by the following propagators and irreducible numerators:

D1 = k21 �m2 , D2 = (k1 + p1 + p2)
2
�m2 , D3 = k22 �m2 ,

D4 = (k2 + p1 + p2)
2
�m2 , D5 = (k1 + p1)

2
�m2 , D6 = (k1 � k2)

2 ,

D7 = (k2 � p3)
2
�m2 , N1 = (k2 + p1)

2 , N2 = (k1 � p3)
2 .

(4.26)

The external momenta satisfy p21 = p22 = p23 = 0 and p24 = M2.
With Mandelstam variables defined by s = (p1 + p2)2 and t = (p1 + p3)2, the family

depends on a total of four dimensionful or, by dimensional analysis, three dimensionless
variables. Further, we set d = 4� 2✏ for this example.

This graph contributes to the planar corrections to the production of a Higgs boson
and a jet through a loop of massive quarks and was studied at length in the literature,
see [85, 86], where a complete calculation could only be achieved numerically.14 In the
literature, a total of 73 master integrals had been identified. A new reduction performed
with Kira 2.0 [87] reveals an additional relation, originating from a higher sector, which

14Note that compared to [85], our propagator definitions (4.26) differ by a sign.
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Applied it successfully to elliptic sunrise (equal or different masses)

Step 5: Clean up of the inhomogeneous differential equations

After having completed the ✏-factorisation of all homogeneous blocks, the factorisation of the
whole system can be achieved by performing suitable shifts in the definitions of the master
integrals of a given sector, by integrals in lower sectors. This is in principle a straightforward
procedure. In practice, however, it can become tricky as also the functional dependence
on ✏ of the coefficient functions in these shifts might be complicated. Moreover, if a given
subsector exhibits singularities which were not present in the homogeneous equations for the
sector considered, the introduction of new functions might be required. These are likewise
(iterated) integrals of functions already present in the differential equations.

3 Application to the two-loop sunrise family
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k1 + k2 � p

p p

Figure 1. The two-loop sunrise graph.

Let us see explicitly how our procedure works in the case of the two-loop sunrise graph [28–
31, 72–79] shown in figure 1. We work as it is customary in d = 2�2✏ space-time dimensions
and, as it is well known, the result in d = 4� 2✏ can be obtained by dimensional shift [80].
We take the associated integral family in the general case of different masses to be defined
by the following three propagators and two irreducible numerators:

D1 = k21 �m2
1 , D2 = k22 �m2

2 , D3 = (k1 + k2 � p)2 �m2
3 ,

N1 = (k1 � p)2 , N2 = (k2 � p)2 .
(3.1)

We assume m1,m2,m3 > 0 and, in the remainder of this section, we set p2 = s.
As the first step, we analyse the integrand of the so-called corner integral I1,1,1,0,0 to

determine the complexity of the problem. We use a loop-by-loop Baikov representation [12–
15] in two space-time dimensions. Working out the change of variables we find

I1,1,1,0,0 ⇠

Z
dz1 dz2 dz3 dz4

[B(z1, z2, z3, z4)]�1/2

z1z2z3
(3.2)

with

B(z1, z2, z3, z4) =
⇣�
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(3.3)

From this representation, it is easy to see that the maximal cut is proportional to a one-fold
integral over the reciprocal of the square-root of a quartic polynomial in the integration
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Many other multi-scale elliptic problems
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Figure 6. The three-loop ice cone graph.

and irreducible scalar products of the ice cone family as

D1 = k21 �m2 , D2 = k22 �m2 , D3 = k23 �m2 ,

D4 = (k1 + k2 + k3 � p1)
2
�m2 , D5 = (k1 + k2 + k3 + p2)

2
�m2 ,

N1 = (k1 + k2 + k3)
2 , N2 = k1 · k3 ,

N3 = k2 · k3 , N4 = k2 · p1 , N5 = k2 · p2 , N6 = k3 · p1 , N7 = k3 · p2 .
(5.1)

Again following [66], we take as the set of starting master integrals15

I1 = I1,1,1,0,0,0,0 , I2 = I1,1,1,1,0,0,0 , I3 = I2,2,0,1,1,0,0 ,

I4 = I1,1,1,1,1,0,0 , I5 = I1,1,1,1,1,�1,0 , I6 = I2,1,1,1,1,0,0 , I7 = I2,1,1,1,1,�1,0 ,

I8 = I1,1,1,1,1,�1,�1 +
1

6
I2 +

1

6
I4 �

1� z + z2

6z
I5 .

(5.2)

To simplify the analysis of the leading singularities and to see the two elliptic curves emerge
in d = 2, we reparametrise the problem through the Landau variable s = �

(1�z)2

z with
s = (p1+p2)2 and we set m = 1 for simplicity. We then perform a rotation on the integrals
I4, I5, I6, I7 to disentangle the two elliptic curves
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such that their maximal cuts satisfy a GM system in block form

GM
E1,E2 =

0
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�
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z2(1�z)(1�9z)
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. (5.4)

15For simplicity we only write down the first seven ⌫i’s. The other numerators are not needed for our
choice of master integrals.
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5.2 The three-loop banana

It is by now well known that the geometry underlying the l-loop banana graph is an (l�1)-
dimensional Calabi-Yau variety [40–47, 88]. It is, therefore, interesting to see if our approach
can also help to find ✏-factorised bases when such more complicated geometries are involved.

k1

k2
k3

k1 + k2 + k3 � p

p p

Figure 7. The three-loop banana graph.

As the simplest case, we consider the equal-mass three-loop banana family (see figure
7) with propagators and numerators:

D1 = k21 �m2 , D2 = k22 �m2 , D3 = k23 �m2 , D4 = (k1 + k2 + k3 � p)2 �m2 ,

N1 = (k1 � p)2 , N2 = (k2 � p)2 , N3 = (k3 � p)2 , N4 = (k1 � k2)
2 , N5 = (k1 � k3)

2 .
(5.9)

A generic integral is then given by eq. (2.1). As customary when dealing with two-point
functions, it is convenient to study the integrals in this family in d = 2�2✏ dimensions and
as functions of the single dimensionless parameter z = m2/p2. For the master integrals, we
take the dotted basis given by

I1 = I1,1,1,0 , I2 = I1,1,1,1 , I3 = I2,1,1,1 and I4 = I3,1,1,1 . (5.10)

Notice that to simplify our notation we drop the indices corresponding to the additional
numerators since we do not need them in the following. Moreover, we set m = 1 to
shorten our formulas later. These master integrals satisfy a non-✏-factorised GM system
d
dz I = GM I , where the explicit form of GM is given in appendix B eq. (B.2).

The maximal cuts of the three-loop banana master integrals satisfy a GM system
which has as solutions the periods of a K3 surface [11, 59]. As it is well known, differential
operators of one-parameter K3 surfaces are symmetric squares of elliptic operators [89, 90].
This was demonstrated explicitly for the differential operator of the three-loop banana
graph in [11, 88, 91]. The homogeneous (3⇥ 3)-system

GM
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0
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Even cases beyond 1 elliptic curve

Strategy is general and does not have to do with details of the geometry*



CONCLUSIONS

Feynman integrals are difficult to compute, but they hide structures and simplicity

Epsilon-factorised bases are an important tool to make some of their structure manifest

Beyond polylogarithms, searching for integrals with simple poles (and unit leading singularities) in 
the traditional sense is not enough

Instead, the property of unipotence can be used to build differential equations in epsilon-
factorised form almost algorithmically

In the polylogarithmic case, this construction reproduces results obtained from analysis of 
leading singularities

Beyond polylog case, we have showed that it is enough to obtain epsilon-factorised equations in 
multi-scale elliptic cases and beyond!

OUTLOOK: more complicated geometries (CYs, higher genus), application to physics problems…
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FORCING AN EPS-FACTORIZED BASIS: THE SUNRISE GRAPH

Step 5: Clean up of the inhomogeneous differential equations

After having completed the ✏-factorisation of all homogeneous blocks, the factorisation of the
whole system can be achieved by performing suitable shifts in the definitions of the master
integrals of a given sector, by integrals in lower sectors. This is in principle a straightforward
procedure. In practice, however, it can become tricky as also the functional dependence
on ✏ of the coefficient functions in these shifts might be complicated. Moreover, if a given
subsector exhibits singularities which were not present in the homogeneous equations for the
sector considered, the introduction of new functions might be required. These are likewise
(iterated) integrals of functions already present in the differential equations.

3 Application to the two-loop sunrise family

k1

k2

k1 + k2 � p

p p

Figure 1. The two-loop sunrise graph.

Let us see explicitly how our procedure works in the case of the two-loop sunrise graph [28–
31, 72–79] shown in figure 1. We work as it is customary in d = 2�2✏ space-time dimensions
and, as it is well known, the result in d = 4� 2✏ can be obtained by dimensional shift [80].
We take the associated integral family in the general case of different masses to be defined
by the following three propagators and two irreducible numerators:

D1 = k21 �m2
1 , D2 = k22 �m2

2 , D3 = (k1 + k2 � p)2 �m2
3 ,

N1 = (k1 � p)2 , N2 = (k2 � p)2 .
(3.1)

We assume m1,m2,m3 > 0 and, in the remainder of this section, we set p2 = s.
As the first step, we analyse the integrand of the so-called corner integral I1,1,1,0,0 to

determine the complexity of the problem. We use a loop-by-loop Baikov representation [12–
15] in two space-time dimensions. Working out the change of variables we find

I1,1,1,0,0 ⇠

Z
dz1 dz2 dz3 dz4

[B(z1, z2, z3, z4)]�1/2

z1z2z3
(3.2)

with

B(z1, z2, z3, z4) =
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� 2
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1 + z1
�
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⌘

⇥

⇣�
m2

2 �m2
3 + z2 � z3

�2
� 2

�
m2

2 +m2
3 + z2 + z3

�
z4 + z24

⌘
.

(3.3)

From this representation, it is easy to see that the maximal cut is proportional to a one-fold
integral over the reciprocal of the square-root of a quartic polynomial in the integration
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Diff equations for two sunrise MIs are coupled in d=2n

integrations over d log forms and would therefore have the right characteristics to be a
candidate canonical integral in the language introduced in [7].

Interestingly, as already hinted at in the previous section, eq. (3.21) shows that the
last integration involves only the holomorphic differential form of the first kind on the
elliptic curve, which corresponds exactly to one of the integration kernels that define elliptic
multiple polylogarithms, as it is manifest in the form originally proposed in [58]. Elliptic
multiple polylogarithms can in fact be defined as iterated integrations of rational functions
on an elliptic curve as follows:

E4(
n1 ... nk
c1 ... ck ;x,~a) =

Z x

0
du n1(c1, u,~a) E4(

n2 ... nk
c2 ... ck ;u,~a) (3.22)

with ni 2 Z, ci 2 bC and ~a = {a1, ..., a4} is the vector of roots defined in eq. (3.6). The first
integration kernel for n = 0 reads explicitly

 0(0, x,~a) =
c4

$0 y
=

c4
$0

1p
P4(z4)

, (3.23)

where y =
p
P4(z4) defines the elliptic curve, $0 is the holomorphic period on the curve

and c4 is an algebraic function which is added for convenience. With these definitions, and
assuming for the sake of the argument that the branching points of the elliptic curve ~a are
constant, we can schematically write

I1,1,1,0,0 ⇠ $0

Z
dE4( 00 ; z4,~a) ^ d log f3(z3, z4) ^ d log f2(z2, z3, z4) ^ d log f1(z1, z2, z3, z4) .

(3.24)
By generalising the original definition of local integrals provided in [7], we can conjecture
that an integral in this form is a good candidate for a “canonical” integral defined on an
elliptic curve.

We take, therefore, as starting basis I = {I1, I2, I3} defined as

I1 = I0,1,1,0,0 , I2 = I1,1,1,0,0 and I3 = I1,1,2,0,0 , (3.25)

where again I3 has been chosen to be proportional to the derivative with respect to the
internal mass m2 of I2. This basis satisfies the system of differential equations

dI =
�
GMm2 dm2 +GMs ds

�
I , (3.26)
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0
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where, as before, the Gauss-Manin connection matrix with respect to s follows from a scaling
relation. The tadpole integral I1 is the same as before and remains a suitable candidate
for a canonical basis, so we focus our efforts on the top sector. Its homogeneous system of
differential equations at ✏ = 0 reads
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– 16 –Homogeneous solutions given by periods and their derivatives W = (ω1 ω2
η1 η2) with ηi ∝ ∂ωi

provided by independent set of maximal cuts
[Primo, Tancredi ’16, ‘17; Frellesvig, Papadopoulos ’17; Bosma, Sogaard, Zhang ’17]
[Frellesvig ’21]
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Let us see explicitly how our procedure works in the case of the two-loop sunrise graph [28–
31, 72–79] shown in figure 1. We work as it is customary in d = 2�2✏ space-time dimensions
and, as it is well known, the result in d = 4� 2✏ can be obtained by dimensional shift [80].
We take the associated integral family in the general case of different masses to be defined
by the following three propagators and two irreducible numerators:
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We assume m1,m2,m3 > 0 and, in the remainder of this section, we set p2 = s.
As the first step, we analyse the integrand of the so-called corner integral I1,1,1,0,0 to

determine the complexity of the problem. We use a loop-by-loop Baikov representation [12–
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integrations over d log forms and would therefore have the right characteristics to be a
candidate canonical integral in the language introduced in [7].

Interestingly, as already hinted at in the previous section, eq. (3.21) shows that the
last integration involves only the holomorphic differential form of the first kind on the
elliptic curve, which corresponds exactly to one of the integration kernels that define elliptic
multiple polylogarithms, as it is manifest in the form originally proposed in [58]. Elliptic
multiple polylogarithms can in fact be defined as iterated integrations of rational functions
on an elliptic curve as follows:

E4(
n1 ... nk
c1 ... ck ;x,~a) =

Z x

0
du n1(c1, u,~a) E4(

n2 ... nk
c2 ... ck ;u,~a) (3.22)

with ni 2 Z, ci 2 bC and ~a = {a1, ..., a4} is the vector of roots defined in eq. (3.6). The first
integration kernel for n = 0 reads explicitly

 0(0, x,~a) =
c4

$0 y
=

c4
$0

1p
P4(z4)

, (3.23)

where y =
p
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assuming for the sake of the argument that the branching points of the elliptic curve ~a are
constant, we can schematically write

I1,1,1,0,0 ⇠ $0

Z
dE4( 00 ; z4,~a) ^ d log f3(z3, z4) ^ d log f2(z2, z3, z4) ^ d log f1(z1, z2, z3, z4) .

(3.24)
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where, as before, the Gauss-Manin connection matrix with respect to s follows from a scaling
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– 16 –Homogeneous solutions given by periods and their derivatives W = (ω1 ω2
η1 η2) with ηi ∝ ∂ωi

One could attempt to rotate away the homogeneous solution and get something in eps-factorized form

provided by independent set of maximal cuts
[Primo, Tancredi ’16, ‘17; Frellesvig, Papadopoulos ’17; Bosma, Sogaard, Zhang ’17]
[Frellesvig ’21]

dI = [A0(z) + ϵ B(z)] I I = W ⋅ J dJ = ϵ [W−1 ⋅ B(z) ⋅ W] J

[Frellesvig, Weinzierl ’22]Basis  does not have right properties even in MPL case!J
[Görges, Nega, LT, Wagner ’23]
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