3 Loop Anomalous Dimension & The E F T For QED Corrections To Beta Decay

TO APPEAR THIS SUMMER

- Who cares about beta decays?
- Why this is an interesting theory problem.
- Requirements and challenges for theory.

- Hierarchy of scales + heavy particle EFT.
- Gauge invariant subclasses & bkg field model.

- All orders/exact resummation of leading $Zα$ series.
- Control over " π^2 -enhanced" contributions to amplitude. π^2
- New master integrals & computation of anomalous dim.

Beta Decays & Particle Physics

\bullet Most precise extraction of V_{ud} comes from super allowed beta decays.

 $\delta V_{\rm ud} \sim 10^{-4}$

๏ Unresolved problem/anomaly with first row CKM unitarity.

o Important input to SMEFT fits.

C K M Unitarity $|V_{ud}|^2 + |V_{uc}|^2 + |V_{ub}|^2$ FIRST ROW UNITARITY $1 - \lambda_{ud}^2 + \lambda_{uc}^2 + O(\lambda^6)$ $) = 1$ IN WOLFENSTEIN NOTATION

๏ Percent-level accuracy in Kaon decay demands 100 ppm accuracy in $0^+ \rightarrow 0^+$ beta decays

 $|V_{ud}|$ 2 |*Vuc* | 2

 $=$ 1

C K M Unitarity $|V_{ud}|^2 + |V_{uc}|^2 + |V_{ub}|^2$ FIRST ROW UNITARITY $1 - \lambda_{ud}^2 + \lambda_{uc}^2 + O(\lambda^6)$ $) = 1$ IN WOLFENSTEIN NOTATION \bullet C.-Y. Seng, M. Gordnein, H. H. Patel,
Ramsey-Musolf (2018) 100 ppm accuracy in 0 beta decays ⁺ → 0+ **2-3***σ* **Tension**

- ๏ C.-Y. Seng, M. Gorchtein, H. H. Patel, and M. J. Ramsey-Musolf (2018)
- ๏ A. Czarnecki, W. J. Marciano, and A. Sirlin (2019)

W-mass

Lepton Energy

Nuclear Radius

A Multiscale Problem

QCD-scale

- ๏ Loops run over
- ๏ Naturally suited to EFT methods.

Fermi-motion 200 MeV

 $\begin{bmatrix} dL \end{bmatrix}$ + \int_{long} [d*L*]

[∫]short

Effective Field Theory ๏ Separate scales in loops.

 \circ EFTs \leftrightarrow Regions.

W-mass

Lepton Energy

50 MeV 1 GeV $80 GeV \left\{\right. q, \bar{q}, g \right\}$ } 5 MeV \int 14O *N*

Nuclear Radius

QCD-scale

Fermi-motion

Factorization Of Amplitude

- \bullet 0⁺ \rightarrow 0⁺ decays fixed by symmetry and \bullet 80 GeV \rightarrow 9, \bar{q} , 8 with isospin $+$ CVC (up to QED corr.)
- ๏ Short-distances calculable with pQCD and nucleon-level EFT.

 $M = C(\mu)M(\mu, p_F, R_A, p, \lambda)$ LONG DISTANCE MATRIX ELEMENT SHORT DISTANCE WILSON COEFF.

\bullet *O*(α) structure dependent $\mu \sim p_F$ ๏ *O*(*Zα*) structure dependent *μ* ∼ 1/*RA* ๏ *O*(*Zα*) universal/Coulomb *μ* ∼ *p* ๏ *O*(*Zα*) IR/atomic effects *μ* ∼ *λ*

 $C(\mu_1) \mathcal{M}_1(\mu_1, \mu_2 p_F) \mathcal{M}_2(\mu_2, \mu_3, R_A) \mathcal{M}_3(\mu_3, \mu_4, p) \mathcal{M}_4(\mu_4, \lambda)$

[CRIGLIAGNO ET. AL.](https://arxiv.org/abs/2306.03138)

[SENG ET. AL.](https://arxiv.org/abs/1812.03352) [TRIUMF GROUP \(AB INITIO\)](https://www.int.washington.edu/sites/default/files/schedule_session_files/Gennari_M2.pdf) DEPENDENCE

๏ Improved theory input is active!

STRUCTURE

- ๏ At long wavelengths the nucleus can couple *coherently* to photons.
- ๏ Radiative corrections are enhanced by the the **charge of the nucleus.**
- ๏ These corrections arise from *long distance* regions (low energy EFT).

$\alpha \rightarrow Z\alpha$ for $L \ll 1/R$

Coherent Enhancements

π **Enhancements** ²

๏ In non-relativistic theory Coulomb effects can be captured using Schrodinger wavefunction.

$F_{NR}(Z, E) = |\psi(0)|$ 2 $= 1 + \pi$

- Violates naive counting in α/π by systematic factors of π^2 . Comes from IR logs & reduced dimensionality.
- How do we systematically account for large π^2 terms?

 α/π by systematic factors of π^2

 π^2

Working To High Order *Z* ∼ 10 $log(2p/m_e)$ ∼ $log(2pR)$ ∼ 5

$$
Z\sim L\sim 1/\sqrt{\alpha}
$$

 \bullet Let us aim for $O(\alpha^{3/2})$ precision

 \bullet Conservative: ignores $(1/\pi)^n$. *n*

๏ 5-loops (*Zα*) $5 \mid 2$ ๏ 6-loops (*Zα*) $6 \mid 3$

๏ 2-loops *α*2 , (*Zα*)*α* ๏ 3-loops $\alpha^3 L^3$, $(Z\alpha)$ 2 *α* , (*Zα*)*α*² ² , (*Zα*)

๏ 4-loops (*Zα*) $^3\alpha$ L², (Z α) 4

Working To High Order *Z* ∼ 10 log(2*p*/*me*) ∼ log(2*pR*) ∼ 5

$$
Z\sim L\sim 1/\sqrt{\alpha}
$$

OED WITH QCD LIKE | PERIURBAIION IHEORY
|*n* PERTURBATION THEORYDEMANDS OF

๏ 5-loops (*Zα*) $5 \mid 2$ ๏ 6-loops (*Zα*) $6 \mid 3$

๏ 2-loops *α*2 , (*Zα*)*α* ๏ 3-loops $\alpha^3 L^3$, $(Z\alpha)$ 2 *α* , (*Zα*)*α*² ² , (*Zα*)

๏ 4-loops (*Zα*) $^3\alpha$ L², (Z α) 4

THEORETICAL CHALLENGES

SEPARATE POWER COUNTING IN *α* vs *Zα*

ALL-ORDERS STRUCTURE OF AMPLITUDE FACTORIZATION

"LARGE" LOGS & RG

SUB-LEADING POWER

INTERFACING WITH NUCLEAR THEORY

3-D COULOMB MODES

 π^2 ENHANCED

MIXED DIM'S

ALL ORDERS IN *Zα*

Effective Theory For Outer Corrections

Definition Of The Effective Theory $\mathscr{L} = h_A^{\dagger}(\mathrm{i}\nu \cdot \partial - Z_A \nu \cdot A)h_A + h_B^{\dagger}(\mathrm{i}\nu \cdot \partial - Z_B \nu \cdot A)h_B$ HQET FEYNMAN RULES

 $\boldsymbol{\bar{\mu}}$ $e^{(i\gamma_\mu D^\mu + m_e)\psi_e}$ STANDARD QED

๏ Largest QED corrections arise from the long-distance dynamics

evμγμψ^e WEAK CHARGED CURRENT

Wilson Coefficient Number 1986 Soft function

 $\mathscr{M} = C(\mu) \mathscr{M}_{\text{EFT}}(p,\mu) S(\mu,\lambda)$

Single scale matrix element

Re-sum logs with RG

 $γ$ Anomalous dimension

Gauge Invariant Subclasses

Mapping To Background Field

๏ Can use **new eikonal identities** to identify gauge invariant

 $\cdot d - ev \cdot A)h_B + \overline{e}\gamma_0 \mathscr{A}(x)e$

 \bullet Class-I reproduces $\mathscr{L}_{\textrm{bkg}}$ order-by-order (\therefore gauge inv.)

sub-classes of diagrams. Class-I & Class-II

$$
\mathcal{L}_{bkg} \subset h_A^{\dagger} i\nu \cdot \partial h_A + h_B^{\dagger} (i\nu
$$

๏ Class-II vanishes diagram-by-diagram in Coulomb gauge. (∴ vanishes in all gauges)

Resummation Of Leading-Z

Fermi Function ATTRACTED TO NUCLEUS

๏ Largest effects are a series in *Zα* ๏ Historically done with finite-distance regulator

⟨*e*−|*ψ* ¯(**x**)|0⟩ [∼] (1 |**x**|)

ν

$\nu = \sqrt{1 - Z^2 \alpha^2 - 1}$

Fermi Function

ATTRACTED TO NUCLEUS **Pros**

⟨*e*−|*ψ* ¯(**x**)|0⟩ [∼] (1 |**x**|)

๏ Largest effects are a series in *Zα* ๏ Manifests universal point-charge limit. ๏ Resums series in *Zα*.

 \bullet Historically done with finite-distance regulator \bullet

ν

 $\nu = \sqrt{1 - Z^2 \alpha^2 - 1}$

Fermi Function

ATTRACTED TO NUCLEUS **Cons**

⟨*e*−|*ψ* ¯(**x**)|0⟩ [∼] (1 |**x**|)

ν

$\nu = \sqrt{1 - Z^2 \alpha^2}$

● La² ● No clear way to interface with UV except compute full \bullet Historical distance regulatorically convenient to answer and then divide. Convention dependent etc.

๏ Regulator dependent. Is this even physical?

Direct Computation At 2 -Loops

$$
\mathcal{M}_H(\mu_S, \mu_H) = 1 + \frac{Z\alpha}{\beta} \left[i \left(\log \frac{2p}{\mu_S} - \frac{i\pi}{2} \right) + \frac{i}{2} \left(\frac{m}{E} \gamma^0 - 1 \right) \right] + \left(\frac{Z\alpha}{\beta} \right)^2 \left\{ \frac{-\pi^2}{12} - \frac{1}{2} \left(\log \frac{2p}{\mu_S} - \frac{i\pi}{2} \right) - \frac{1}{2} \left(\log \frac{2p}{\mu_S} - \frac{i\pi}{2} \right) \left(\frac{m}{E} \gamma^0 - 1 \right) + \left[\frac{5}{4} - \frac{1}{2} \left(\log \frac{2p}{\mu_H} - \frac{i\pi}{2} \right) \right] \beta^2 \right\} + \mathcal{O}(\alpha^3),
$$

-
- ๏ No obvious pattern. Resummation unlikely by brute force.

๏ Complicated interplay of IR & UV logs, non-trivial Dirac structure etc.

Wavefunctions And Feynman Diagrams

๏ Wavefunctions admit a loop-expansion (Lippmann-Schwinger Eq).

$$
\text{Loop With A Phase Factor!}
$$
\n
$$
\langle x | \psi_p^{(\pm)} \rangle = e^{ip \cdot x} \left(1 + \int \frac{d^3 Q}{(2\pi)^3} \frac{1}{2P \cdot Q + Q^2 \pm i\varepsilon} \frac{Z\alpha}{Q^2} e^{iQ \cdot x} + \dots \right)
$$

Loop With A Phase Factor!
+
$$
\int \frac{d^3Q}{(2\pi)^3} \frac{1}{2P \cdot Q + Q^2 \pm i\epsilon} \frac{Z\alpha}{Q^2} e^{iQ \cdot x} + \dots
$$

$$
|\psi_p^{(\pm)}\rangle = |\phi_p\rangle + \frac{1}{H - E_p \pm i\varepsilon} V |\phi_p\rangle + \frac{1}{H - E_p \pm i\varepsilon} V \frac{1}{H - E_p \pm i\varepsilon} V |\phi_p\rangle + \dots
$$

 $\mathcal{M} = \mathcal{M}_{S}(\mu_{S})\mathcal{M}_{H}(\mu_{S},\mu_{H})\mathcal{M}_{UV}(\mu_{H},\Lambda)$ $\Psi(\mathbf{x}) = M_S(\mu_S)M_H(\mu_S, \mu_H)M$ $\widetilde{\ell}$ **^x**(*μH*, **x**) SAME

๏ Wavefunctions satisifies same factorization theorem as amplitude

Short Distance Matrix Element

ℳ $\widetilde{\ell}$ **^x**(*μH*, **x**)

๏ Finite distance acts as regulator.

๏ Compute at threshold (**p** = 0)

๏ Iteratively one-loop at all orders in PT. Re-sum!

ℳ $\widetilde{\ell}$

 $\mathcal{I}_1^{(n)} = \left| \prod_{j=1}^{n-1} C(\nu_j) \right| \times \frac{\Gamma(d - \nu_n - 1)}{(4\pi)^d \Gamma(\nu_n)}$ ${\cal I}_2^{(n)}= \Bigg[\prod_{j=1}^n C(\nu_j)\Bigg] \Bigg[\frac{2\Gamma(\frac{d}{2}-\nu_{n+1}+2)}{(4\pi)^{d/2}\Gamma(\nu_{n+1})}$ $\lfloor j=1 \rfloor$

KCLOSED FORM INTEGRALS AT ARBITRARILY HIGH ORDER

$$
\frac{1}{\gamma}B(\frac{d}{2}-1,1+\frac{d}{2}-\nu_n)\left(\frac{\mathbf{x}^2}{4}\right)^{\nu_n+1-d},
$$

+1)
$$
\frac{1}{\gamma+1}\left[\left[\frac{\mathbf{x}^2}{4}\right]^{\nu_{n+1}-(d+1)/2}\times\frac{i\gamma_0\boldsymbol{\gamma}\cdot\mathbf{x}}{2|\mathbf{x}|}.
$$

ℳ $\widetilde{\ell}$

 $F_1^{\rm bare} = 2^{\frac{1}{4\epsilon}-\frac{1}{2}} \left(\frac{\sqrt{\tilde{g}}}{\epsilon} \right)^{1-\frac{1}{2\epsilon}} \Gamma\left(\frac{1}{2\epsilon}\right) J_{\frac{1}{2\epsilon}-1} \left(\frac{\sqrt{8} \sqrt{\tilde{g}}}{\epsilon} \right) \ ,$

 $(Z \tilde{\alpha})^{-1} F_2^{\rm bare} = 2^{\frac{1}{4\epsilon}} \left(\frac{\sqrt{\tilde{g}}}{\epsilon} \right)^{-\frac{1}{2\epsilon}} \Gamma\left(1+\frac{1}{2\epsilon}\right) J_{\frac{1}{2\epsilon}} \left(\frac{\sqrt{8} \sqrt{\tilde{g}}}{\epsilon} \right) \; .$

$\mathbf{x}(\mu_H, \mathbf{x})$ BARE AMPLITUDE MAY BE SUMMED TO ALL ORDERS SUMMED TO ALL ORDERS

ℳ $\widetilde{\ell}$

 $F_1^{\rm bare} = 2^{\frac{1}{4\epsilon}-\frac{1}{2}} \left(\frac{\sqrt{\tilde{g}}}{\epsilon} \right)^{1-\frac{1}{2\epsilon}} \Gamma\left(\frac{1}{2\epsilon}\right) J_{\frac{1}{2\epsilon}-1} \left(\frac{\sqrt{8} \sqrt{\tilde{g}}}{\epsilon} \right) \ ,$

 $(Z \tilde{\alpha})^{-1} F_2^{\rm bare} = 2^{\frac{1}{4\epsilon}} \left(\frac{\sqrt{\tilde{g}}}{\epsilon} \right)^{-\frac{1}{2\epsilon}} \Gamma\left(1+\frac{1}{2\epsilon}\right) J_{\frac{1}{2\epsilon}} \left(\frac{\sqrt{8} \sqrt{\tilde{g}}}{\epsilon} \right) \; .$

$\mathbf{x}(\mu_H, \mathbf{x})$ BARE AMPLITUDE MAY BE SUMMED TO ALL ORDERS SUMMED TO ALL ORDERS

ℳ $\widetilde{\ell}$

RESULT CAN BE RENORMALIZED AT ALL-ORDERS IN *Zα*

 $\mathcal{M}_{\mathrm{UV}}^R(\mu) = (\mu r \mathrm{e}^{\gamma_{\mathrm{E}}})^{\eta-1} \frac{1+\eta}{2\sqrt{\eta}} \bigg[1 + \frac{Z\alpha}{1+\eta} \frac{i\gamma_0\bm{\gamma}\cdot\mathbf{x}}{|\mathbf{x}|}\bigg] \;,$ $\eta = \sqrt{1 - (Z\alpha)^2}$

Extraction Of Hard Matrix Element

$\Psi(\mathbf{x}) = M_S(\mu_S)M_H(\mu_S, \mu_H)M$

OWN TO ALL ORDERS

 $\widetilde{\ell}$ **^x**(*μH*, **x**)

All-Orders Hard Matrix Element

 $\mathcal{M}_H(\mu_S, \mu_H) = e^{\frac{\pi \xi}{2} + i \xi \left(\log \frac{2}{\mu} \right)}$

 $\sum_{i=1}^N\sqrt{\frac{\eta-i\xi}{1-i\xi\frac{m}{E}}}\sqrt{\frac{E+\eta m}{E+m}}\sqrt{\frac{2\eta}{1+\eta}}\left(\frac{2p\mathrm{e}^{-\gamma}}{\mu_H}\right)$

 σ $\eta = \sqrt{1 - Z^2 \alpha^2}$ $\sigma \xi = Z \alpha / \beta$ $\sigma M = (E + m)(1 + i \xi m / E) / (E + \eta m)$ Z_{α} ² • ξ = Z α / β • M = $(E + m)(1 + i\xi m/E)/(E + \eta m)$

$$
\frac{\frac{2p}{\mu_S} - \gamma_{\rm E} \Big) - i (\eta - 1) \frac{\pi}{2} \frac{2 \Gamma \big(\eta - i \xi \big)}{\Gamma (2 \eta + 1)} \Big| - \frac{\Gamma \big(2 \eta + 1 \big)}{\Gamma \big(2 \eta + 1 \big)} \Big|
$$

$$
\circ \eta = \sqrt{1 - Z^2 \alpha^2} \quad \circ \quad \xi = Z\alpha/\beta \quad \circ
$$

 $M = (E + m)(1 + i\zeta m/E)/(E + \eta m)$

NEW RESULT IN EFT ALL ORDERS IN *Zα*

$$
\mathcal{M}_H(\mu_S,\mu_H) \!= e^{\frac{\pi\xi}{2}+i\xi\left(\log \frac{2p}{\mu_S}-\gamma_{\rm E}\right)-i(\eta-1)\frac{\pi}{2}}\frac{2\Gamma(\eta-i\xi)}{\Gamma(2\eta+1)}\sqrt{\frac{\eta-i\xi}{1-i\xi\frac{m}{E}}}\sqrt{\frac{E+\eta m}{E+m}}\sqrt{\frac{2\eta}{1+\eta}}\left(\frac{2p{\rm e}^{-\gamma_{\rm E}}}{\mu_H}\right)^{\eta-1}\times\left[\frac{1+M^*}{2}+\frac{1-M^*}{2}\right]}\sqrt{\frac{\eta-1}{1-\eta}}\sqrt{\frac{2\eta}{1+\eta}}\sqrt{\frac{2\eta}{1+\eta}}\sqrt{\frac{2\eta}{1+\eta}}\sqrt{\frac{2\eta}{1+\eta}}\sqrt{\frac{2\eta-1}{1+\eta}}\sqrt{\frac{2\eta-
$$

ATTRACTED TO NUCLEUS **Coulomb Enhancement**

Large π^2 Factors & IR Logs

Origin Of π^2 Factors

$\int d^4$ *q*] (2*π*i)*δ*(*q*0)

COULOMB "PINCH"

$iZ\alpha$ log($-2p/\mu$) = $iZ\alpha$ log($2p/\mu$) + $Z\alpha\pi$

Origin Of π^2 Factors

๏ UV logs of soft function match IR logs of EFT matrix element.

๏ Soft function exponentiates. Known to all orders!

$S(-\mu, \lambda) = e^{\pi Z \alpha/\beta} e^{i\phi_C}$

 $\mathcal{M}_{\text{EFT}}(p,\mu)$ $S(\mu,\lambda) \rightarrow \mathcal{M}_{\text{EFT}}(p,-\mu)$ $S(-\mu,\lambda)$

 $2 = 4p_e^2$ **e**

Re $M^{(1)} = 27.8$ Re $M^{(1)} = -0.15$ $\mu^2 = -4p_e^2$

- ๏ Relate amplitudes with charged particles in initial/final state.
- ๏ Example at one loop.
-

Anomalous Dimension

) ⁺ …

SOLVE DIRAC EQ'N

$(Z, Z − Q, Q)$ \longleftrightarrow $(Z + Q, Z, −Q)$ SYMMETRY IN MASSLESS LIMIT

Z=0 REDUCES TO HEAVY-LIGHT CURRENT IN HQET

)

TAKE FROM HQET LIT. SOLVE DIRAC EQ'N SYMMETRY

New Master Integrals $I^{(n)}_{\overrightarrow{l}}$ $\frac{d^{(n)}}{\nu} = \int [d^4q][d^3L_1][d^3L_2]$ *ωn* $\sqrt{2}$ 1 $\overline{D_1}$ *ν*1 $\sqrt{2}$ 1 $\overline{D_2}$ *ν*2 $\sqrt{2}$ 1 $\overline{D_3}$ *ν*3 $\sqrt{2}$ 1 $\overline{D_4}$) *ν*4 $\sqrt{2}$ 1 $\overline{D_5}$ *ν*5 \sqrt 1 $\overline{D_6}$) *ν*6 $\sqrt{2}$ 1 $\overline{D_7}$ *ν*7 $\sqrt{2}$ 1 $\overline{D_8}$)

 $^{2} + \lambda^{2}$

 $D_1 = L_1^2$ $D_2 = L_2^2$ $D_3 = \omega^2 + (\mathbf{L}_1 + \mathbf{Q})^2$ $D_4 = \omega^2 + (\mathbf{L}_2 + \mathbf{Q})^2$ $D_5 = \omega^2 + Q^2$ $D_6 = (L_1 - L_2)$ $D_7 = L_1^2 + \lambda^2$ $D_8 = \omega^2 + Q^2 + \lambda^2$

Mixed dimensionality (3-d Coulomb photons) (4-d dynamical photons)

- Reference vector breaks Lorentz invariance.
- **IBP relations, convolution** theorem, & brute force.

Summary / Status Report

Status Of Ingredients For Amplitude $\mathscr{M}_{\text{EFT}}(p,\mu)$ $S(\mu,\lambda)$ All orders in PT $\mu \sim 2p \rightarrow$ minimize logs 1. 1-loop / 2. 2-loops/ 3. 3-loop (*Zα*) 4. 4-loop (*Zα*) 3 4 ONGOING WITH P. VANDER GRIEND

Working To High Order *Z* ∼ 10 $log(2p/m_e)$ ∼ $log(2pR)$ ∼ 5

DEFINE POWER COUNTING

$$
Z\sim L\sim 1/\sqrt{\alpha}
$$

\bullet Let us aim for $O(\alpha^{3/2})$ precision

 o Conservative: ignores $(1/\pi)^n$. *n*

*π*² − enhancements under control

-
-
-
-