Current status of the GENEVA event generator and recent improvements

Riccardo Nagar

University of Milan Bicocca & INFN Milan Bicocca

Loopfest XXI, SLAC, 26 June 2023

on behalf of the GENEVA collaboration

Overview of GENEVA

GENEVA consistently combines three theoretical ingredients of QCD calculations

- 1. fully differential fixed-order calculation
	- \triangleright up to NNLO through N-jettiness (\mathcal{T}_N) subtraction
- 2. higher-order resummation
	- ▶ up to NNLL' in \mathcal{T}_0 using SCET
	- ightharpoontal imited to SCET nor to \mathcal{T}_N (we have p_T at N³LL via RadISH)
- 3. parton shower, hadronization and MPI
	- ▶ provided by a shower MC (currently PYTHIA8 or SHERPA)

\Rightarrow produce a NNLO+NNLL'+PS event generator

Advantages of higher-order resummation

- ▶ link between NNLO and PS
- ▶ consistently improve perturbative accuracy over full spectrum
- provide event-by-event systematic estimate of theory uncertainties

Overview of GENEVA

- 1. slice the phase space into jet bins using a resolution parameter (like \mathcal{T}_0 or p_T)
- 2. compute $FO +$ resummed matched cross section up to NNLO+NNLL′
- 3. fill in additional radiation by matching to a parton shower, in a way that avoids spoiling the resummed accuracy
- 4. include hadronization and MPI

figure by F. Tackmann

N-jettiness as resolution parameter

Separate phase space Φ into jet bins Φ_N , then let $\mathcal{T}_N^{\rm cut}\to 0$

Advantages of \mathcal{T}_{N}

Most GENEVA applications use N-jettiness \mathcal{T}_{N} [Stewart, Tackmann, Waalewijn '09, '10] as resolution parameter

- ▶ classify jet observables in an IR-safe way, can take $\mathcal{T}_N \to 0$
- **Example 1** resummation of large T_N logarithms known up to at least NNLL' in SCET for color-singlet final state

other possible res. variable p_T [Alioli, Bauer, Broggio, Gavardi, Kallweit, Lim, RN, Napoletano, Rottoli 2102.08390] but also $p_T^{\rm jet},\,k_T$ -ness, \dots

Matching fixed-order and resummed calculations

At NNLO needed:

- \triangleright 0/1-jet res. parameter
- \blacktriangleright 1/2-jet res. parameter

Jet-bin cross sections (simplified)

- 1. splitting functions $\mathcal P$ make resummed piece differential in Φ_N \hookrightarrow new treatment of functions $\mathcal P$
- 2. usually also resum $1/2$ -jet res. variable with \mathcal{T}_1 NLL Sudakov

\mathcal{T}_0 resummation in SCET

For color singlet final state, the T_0 spectrum is factorized in SCET

[Stewart, Tackmann, Waalewijn '09]

$$
\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_0} = \sum_{ij} H_{ij}(\mu) \int \!\mathrm{d} t_a \mathrm{d} t_b \, B_i(t_a,\mu) \, B_j(t_b,\mu) \, S_{ij} \left(\mathcal{T}_0 - \frac{t_a + t_b}{Q}, \mu \right)
$$

- ▶ hard function H_{ij} is process dependent, at NNLO contains the 2-loop virtual corrections
- \blacktriangleright beam functions B_i known up to $\mathsf{N}^3\mathsf{LO}$
- \triangleright soft function S_{ij} is process dependent, only perturbative part included

Resummation

- ▶ compute each at its typical scale $\mu_H\sim Q$, $\mu_B\sim \sqrt{Q\mathcal{T}_0}$ and $\mu_S\sim \mathcal{T}_0$
- ▶ resum by RGE evolution $\mu_i \to \mu$
- ▶ New: we take the resummed results from scetlib [Ebert, Michel, Tackmann, et al.]
- **E** similar factorization formulae for resummation in other variables (like p_T)

\mathcal{T}_0 spectrum and profile scales

- ▶ peak region: nonsingulars are power-suppressed; pert. accuracy determined by resummation
- ▶ transition region: smooth connection; scale choice generates ambiguity
- \triangleright tail region: power expansion breaks down, must turn off resummation; pert. accuracy determined by fixed order

Profile scales

This is achieved by appropriate choice of \mathcal{T}_N -dependent profile scales $\mu_i(\mathcal{T}_N)$ so that while approaching the FO region, all scales $\mu_i \rightarrow \mu_{\rm FO}$

- profile scale variations isolate different sources of pert. uncertainties
- ▶ total theoretical uncertainty combining FO and resummation scale variations
- ▶ cross section evaluated at all sets of scales, so that pert. uncertainty are provided event-by-event

List of available NNLO processes in GENEVA

- Drell-Yan (\mathcal{T}_0) [Alioli, Bauer, Berggren, Tackmann, Walsch 1508.01475]
- Higgsstrahlung [Alioli, Broggio, Kallweit, Lim, Rottoli 1909.02026]
- Higgs decays $(gg, b\bar{b})$ [Alioli, Broggio, Gavardi, Kallweit, Lim, RN, Napoletano, Rottoli 2009.13533]
- $\gamma\gamma$ [Alioli, Broggio, Gavardi, Kallweit, Lim, RN, Napoletano, Rottoli 2010.10498]
- $\textsf{Drell-Yan}\ (\boldsymbol{p_T})$ [Alioli, Bauer, Broggio, Gavardi, Kallweit, Lim, RN, Napoletano, Rottoli 2102.08390]
- \boldsymbol{ZZ} [Alioli, Broggio, Gavardi, Kallweit, Lim, RN, Napoletano, Rottoli 2103.01214]
- $W^{\pm} \gamma$ [Cridge, Lim, RN 2105.13214]
- **New:** $gg \rightarrow HH$ [Alioli, Billis, Broggio, Gavardi, Kallweit, Lim, Marinelli, RN, Napoletano 2212.10489]

New: $gg \rightarrow H$ [Alioli, Billis, Broggio, Gavardi, Kallweit, Lim, Marinelli, RN, Napoletano 2301.11875]

Parton shower interface

Two challenges

- ▶ avoid impacting pert. accuracy of \mathcal{T}_0 spectrum
- \blacktriangleright avoid double counting between resummation in \mathcal{T}_0 and PS (usually not $\mathcal T$ -ordered)

Matching to a parton shower in GENEVA

- impose veto discarding showered events with $\mathcal{T}_N > \mathcal{T}_N^{\text{cut}}$
- \blacktriangleright all Φ_0 events are showered with the only requirement $\mathcal{T}_0 < \mathcal{T}_0^{\text{cut}}$
- **▶ first shower emission** $\Phi_1 \rightarrow \Phi_2$ **performed by hand in GENEVA using** \mathcal{T}_0 -preserving mapping
- ▶ starting from Φ_2 events, PS affects \mathcal{T}_0 spectrum only beyond NNLL'

Parton shower interface

Two challenges

- ▶ avoid impacting pert. accuracy of \mathcal{T}_0 spectrum
- \blacktriangleright avoid double counting between resummation in \mathcal{T}_0 and PS (usually not $\mathcal T$ -ordered)

New: interface with different parton shower MCs

 \triangleright estimate shower matching uncertainty

- \blacktriangleright currently possible to interface
	- ▶ PYTHIA8
	- **New: DIRE (in PYTHIA8)**
	- **New: SHERPA**

▶ applied to $gg \to HH$ process

Improved treatment of splitting functions $\mathcal P$

Reproduce higher-multiplicity phase space

$$
\frac{\mathrm{d}\sigma_1}{\mathrm{d}\Phi_1}(\mathcal{T}_0 > \mathcal{T}_0^{\rm cut}) = \left[\frac{\mathrm{d}\sigma^{\rm NNLL'}}{\mathrm{d}\Phi_0\mathrm{d}\mathcal{T}_0} - \frac{\mathrm{d}\sigma^{\rm NNLL'}}{\mathrm{d}\Phi_0\mathrm{d}\mathcal{T}_0}\bigg|_{\alpha_s^2}\right]\mathcal{P}(\Phi_1) + \frac{\mathrm{d}\sigma_1^{\rm FO}}{\mathrm{d}\Phi_1}
$$

▶ soft and collinear limit in $\mathcal{P}_{0\to 1}$ \Rightarrow now correctly reproduced

- ▶ soft and collinear limit in $\mathcal{P}_{1\rightarrow 2}$ \Rightarrow improved, now only miss single log
- ▶ New: tested on $gg \to H$ and Drell-Yan

Improved treatment of splitting functions $\mathcal P$

Reproduce higher-multiplicity phase space

$$
\frac{\text{d}\sigma_1}{\text{d}\Phi_1}(\mathcal{T}_0>\mathcal{T}^{\text{cut}}_0)=\left[\frac{\text{d}\sigma^{\text{NNLL}^{\prime}}}{\text{d}\Phi_0\text{d}\mathcal{T}_0}-\frac{\text{d}\sigma^{\text{NNLL}^{\prime}}}{\text{d}\Phi_0\text{d}\mathcal{T}_0}\bigg|_{\alpha^2_s}\right]\mathcal{P}(\Phi_1)+\frac{\text{d}\sigma_1^{\text{FO}}}{\text{d}\Phi_1}
$$

 \triangleright soft and collinear limit in $\mathcal{P}_{0\rightarrow 1}$ ⇒ now correctly reproduced

- ▶ soft and collinear limit in $\mathcal{P}_{1\rightarrow 2}$ \Rightarrow improved, now only miss single log
- ▶ New: tested on $gg \to H$ and Drell-Yan

Complex scale prescription

 \triangleright allow choice of complex hard scale μ_H in resummed cross section

$$
\mu_H = Q \quad \rightarrow \quad \mu_H = -i\,Q
$$

 $▶$ include additional source of theory uncertainty ϕ

$$
\mu_H = Q e^{i\phi}, \qquad \phi \in [\pi/4, 3\pi/4]
$$

▶ "resumming" large π^2 terms arising from $\log^k(-q^2/\mu^2)$, effectively reducing overall theory uncertainty

▶ New: implemented for $qa \rightarrow H$ production

Comparison to ATLAS and CMS Higgs data

Comparing to latest ATLAS [CERN-EP-2021-227] and CMS [CERN-EP-2022-142] data sets for Higgs differential cross sections in the diphoton decay channel

▶ $gg \rightarrow H$ computed at NNLO+NNLL'₀+NLL₁+PS in GENEVA, in the rescaled EFT scheme

 $\hookrightarrow m_t \to \infty$, rescaled by exact overall LO m_t dependence

- \blacktriangleright $H \rightarrow \gamma \gamma$ inserted by PYTHIA8 at LO in QCD
- include VBF, VH , ttH , etc. taken from experimental simulations
- \triangleright New: include 7 point scale variations, nondiagonal in $\{\mu_R, \mu_F\}$

Comparison to ATLAS and CMS Higgs data

Comparing to latest ATLAS [CERN-EP-2021-227] and CMS [CERN-EP-2022-142] data sets for Higgs differential cross sections in the diphoton decay channel

▶ $gg \rightarrow H$ computed at NNLO+NNLL'₀+NLL₁+PS in GENEVA, in the rescaled EFT scheme

 $\hookrightarrow m_t \to \infty$, rescaled by exact overall LO m_t dependence

- \blacktriangleright $H \rightarrow \gamma \gamma$ inserted by PYTHIA8 at LO in QCD
- include VBF, VH , ttH , etc. taken from experimental simulations
- \triangleright New: include 7 point scale variations, nondiagonal in $\{\mu_R, \mu_F\}$

WIP: $pp \rightarrow Z + j$ at NNLO in GENEVA

1-jet final state

- \triangleright $Z + j$ needs process-defining cuts (e.g. \mathcal{T}_0 or p_T cut)
- **▶** relevant Φ_1/Φ_2 resolution variable is \mathcal{T}_1
- $▶$ at NNLO need a \mathcal{T}_1 -preserving phase-space mapping \Rightarrow still WIP!

$Z + j$ in GENEVA

- \triangleright only \mathcal{T}_1 spectra computed, with resummation up to N³LL
- \triangleright τ_1 definition introduces frame dependence
	- ▶ underlying Born frame (UB)
	- ▶ colour singlet frame (CS)
	- ▶ laboratory frame (LAB)

▶ factorization formula in SCET (showing explicit frame dependence)

$$
\frac{d\sigma}{d\mathcal{T}_1} = \sum_{\kappa} H_{\kappa} \int dt_a dt_b ds_J B_{\kappa_a}(t_a) B_{\kappa_b}(t_b) J_{\kappa_J}(s_J)
$$

$$
\times S_{\kappa} \left(n_{a,b} \cdot n_J, \mathcal{T}_1 - \frac{t_a}{Q_a} - \frac{t_b}{Q_b} - \frac{s_J}{Q_J} \right)
$$

WIP: Resummed and matched \mathcal{T}_1 spectrum

Resummed spectra:

Matched results:

Outlook

More processes

- ▶ $Z + j$ (\mathcal{T}_1 -preserving $1 \rightarrow 2$ mapping is WIP)
- ▶ $t\bar{t}$, $t\bar{t}V$ (\mathcal{T}_0 resummation for $t\bar{t}$ already done [Alioli, Broggio, Lim 2111.03632])
- ▶ $Z\gamma$ (... $W\gamma$ already there)
- ▶ $gg \rightarrow (H)H$ with exact m_t dependence

More features

- implement different 0-jet resolution variable, e.g. p_T , for more processes
- ▶ include EW corrections to Drell-Yan
- ▶ revamp $e^+e^-\rightarrow X$ generator

Conclusions

- ▶ GENEVA performs matching of NNLO calculations with higher-order resummation and parton shower MCs
- ▶ versatile framework:
	- ▶ freedom to choose jet-resolution variables $(\mathcal{T}_0, p_T$ mappings tested)
	- ▶ freedom to choose resummation formalism (SCET, RadISH implemented)
	- ▶ interface to different parton showers (PYTHIA8, DIRE, SHERPA already in)
- ▶ implemented for several processes, latest: $gg \rightarrow H$, HH
- ▶ covered a few technical improvements:
	- \triangleright better accuracy of differential distributions in the soft $\&$ collinear limits
	- \triangleright consolidated theory uncertainty by allowing $\overline{7}$ -point scale variations
	- included π^2 resummation through new scetlib interface
- \triangleright first steps towards NNLO+NNLL'+PS for coloured final states: stay tuned!

Conclusions

- ▶ GENEVA performs matching of NNLO calculations with higher-order resummation and parton shower MCs
- ▶ versatile framework:
	- ▶ freedom to choose jet-resolution variables $(\mathcal{T}_0, p_T$ mappings tested)
	- ▶ freedom to choose resummation formalism (SCET, RadISH implemented)
	- ▶ interface to different parton showers (PYTHIA8, DIRE, SHERPA already in)
- ▶ implemented for several processes, latest: $gg \rightarrow H$, HH
- ▶ covered a few technical improvements:
	- \triangleright better accuracy of differential distributions in the soft $\&$ collinear limits
	- \triangleright consolidated theory uncertainty by allowing $\overline{7}$ -point scale variations
	- included π^2 resummation through new scetlib interface
- \triangleright first steps towards NNLO+NNLL'+PS for coloured final states: stay tuned!

Thank you!

Backup: N-jettiness

General definition

For a phase space point with M final state particles $(M > N)$

$$
\mathcal{T}_N(\Phi_M) = \sum_k \min \{\hat{q}_a \cdot p_k, \hat{q}_b \cdot p_k, \hat{q}_1 \cdot p_k, \ldots, \hat{q}_N \cdot p_k\}
$$

where $\hat{q}_{a,b}$ are beam directions and \hat{q}_i are jet direction 4-vectors

[Stewart, Tackmann, Waalewijn '09, '10]

- ▶ physical meaning: as $T_N \rightarrow 0$ the final state looks more like a N-jet final state, i.e. unresolved emissions are either soft or collinear to one of the beam or jet directions
- \triangleright τ_0 definition corresponds to beam thrust, happens to be boost invariant

$$
\mathcal{T}_0 = \sum_k |p_k^{\perp}| e^{-|\eta_k - Y|}
$$

 \triangleright \mathcal{T}_1 is not boost invariant, frame dependence through Q_a , Q_b , Q_J

$$
\mathcal{T}_1 = \sum_k \min\left\{\frac{2q_a \cdot p_k}{Q_a}, \frac{2q_b \cdot p_k}{Q_b}, \frac{2q_J \cdot p_k}{Q_J}\right\}
$$

Backup: Profile scales

- \triangleright τ_0 resummation is performed by RGE-evolving each piece H, B_i, S from their typical scales μ_H , μ_B , μ_S to the common μ
- ▶ when $\sigma^{\rm nons} \sim \sigma^{\rm sing}$, resummation must be switched off

ightharpoonup achieve this via smooth \mathcal{T}_0 -dependent profile scales

 $\mu_H(\mathcal{T}_0) = \mu_{\rm FO}$ $\mu_B(\mathcal{T}_0) = \mu_\mathrm{FO}\sqrt{f(\mathcal{T}_0/Q)}$ $\mu_S(\mathcal{T}_0) = \mu_{\rm FO} f(\mathcal{T}_0/Q)$

- \blacktriangleright for \mathcal{T}_0 in the resummation region $f(\mathcal{T}_0/Q)=\mathcal{T}_0/Q$
- for \mathcal{T}_0 in the fixed-order region $f(\mathcal{T}_0/Q)=1$

 $\Rightarrow \mu_H = \mu_B = \mu_S = \mu_{FO}$

- in nonperturbative region $f(\mathcal{T}_0/Q)$ freezes all scales to a minimum value
- \triangleright scale uncertainty estimated by independently varying $\mu_F O$, μ_S , μ_B , and varying the functions $f(\mathcal{T}_0/Q)$ themselves

Backup: Ingredients of N^3LL \mathcal{T}_1 resummation

Hard, beam, jet, and soft functions

- \blacktriangleright hard function known analytically up to two loops G _{Gehrmann}, Tancredi, et al. '11, '22]
- ▶ at NNLL' include one-loop squared $gg \to Zg$
- \triangleright beam and jet functions known at N^3LO [Ebert, Mistlberger, Vita '20]
- ▶ only NNLO beam [Gaunt, Stahlhofen, Tackmann '14] and jet [Becher, Neubert '06; Becher, Bell '11] are needed for our purpose
- \triangleright soft function at NLO implemented as on-the-fly integrals using $[J_{\text{outtenus}}]$ Stewart, Tackmann, Waalewijn '13]
- ▶ NNLO boundary terms provided by interpolation over SoftSERVE grids

```
[Bell, Rahn, Talbert '18, '20]
```
[Bruser, Liu, Stahlhofen '18]

- ▶ NLO results validated in all frames
- \triangleright NNLO results validated in underlying Born frame against MCFM $_{[Campbell, Ellis]}$ Mondini, Williams '17]; for other frames ours are first results