Current status of the GENEVA event generator and recent improvements

Riccardo Nagar

University of Milan Bicocca & INFN Milan Bicocca

Loopfest XXI, SLAC, 26 June 2023

on behalf of the GENEVA collaboration

Overview of GENEVA

 $\label{eq:GENEVA} \mbox{ General consistently combines three theoretical ingredients of QCD calculations}$

- 1. fully differential fixed-order calculation
 - up to NNLO through N-jettiness (\mathcal{T}_N) subtraction
- 2. higher-order resummation
 - up to NNLL' in \mathcal{T}_0 using SCET
 - ▶ not limited to SCET nor to \mathcal{T}_N (we have p_T at N³LL via RadISH)
- 3. parton shower, hadronization and MPI
 - provided by a shower MC (currently PYTHIA8 or SHERPA)

\Rightarrow produce a NNLO+NNLL'+PS event generator

Advantages of higher-order resummation

- link between NNLO and PS
- consistently improve perturbative accuracy over full spectrum
- provide event-by-event systematic estimate of theory uncertainties

Overview of GENEVA

- slice the phase space into jet bins using a resolution parameter (like T₀ or p_T)
- compute FO + resummed matched cross section up to NNLO+NNLL'
- fill in additional radiation by matching to a parton shower, in a way that avoids spoiling the resummed accuracy
- 4. include hadronization and MPI

figure by F. Tackmann

N-jettiness as resolution parameter

Separate phase space Φ into jet bins Φ_N , then let $\mathcal{T}_N^{\mathrm{cut}} o 0$

Advantages of T_N

Most GENEVA applications use $N\text{-jettiness}\;\mathcal{T}_N\;_{\text{[Stewart, Tackmann, Waalewijn '09, '10]}}$ as resolution parameter

- \blacktriangleright classify jet observables in an IR-safe way, can take $\mathcal{T}_N
 ightarrow 0$
- resummation of large T_N logarithms known up to at least NNLL' in SCET for color-singlet final state

other possible res. variable p_T [Alioli, Bauer, Broggio, Gavardi, Kallweit, Lim, RN, Napoletano, Rottoli 2102.08390] but also p_T^{iet} , k_T -ness, ...

Matching fixed-order and resummed calculations

At NNLO needed:

- 0/1-jet res. parameter
- 1/2-jet res. parameter

Jet-bin cross sections (simplified)

- 1. splitting functions \mathcal{P} make resummed piece differential in Φ_N \hookrightarrow new treatment of functions \mathcal{P}
- 2. usually also resum 1/2-jet res. variable with \mathcal{T}_1 NLL Sudakov

\mathcal{T}_0 resummation in SCET

For color singlet final state, the \mathcal{T}_0 spectrum is factorized in SCET

[Stewart, Tackmann, Waalewijn '09]

$$rac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_0} = \sum_{ij} H_{ij}(\mu) \int \mathrm{d}t_a \mathrm{d}t_b \, B_i(t_a,\mu) \, B_j(t_b,\mu) \, S_{ij}\left(\mathcal{T}_0 - rac{t_a+t_b}{Q},\mu
ight)$$

- hard function H_{ij} is process dependent, at NNLO contains the 2-loop virtual corrections
- **beam functions** B_i known up to N³LO
- soft function S_{ij} is process dependent, only perturbative part included

Resummation

- \blacktriangleright compute each at its typical scale $\mu_H \sim Q$, $\mu_B \sim \sqrt{Q \mathcal{T}_0}$ and $\mu_S \sim \mathcal{T}_0$
- ▶ resum by **RGE evolution** $\mu_i \rightarrow \mu$
- New: we take the resummed results from scetlib [Ebert, Michel, Tackmann, et al.]
- \triangleright similar factorization formulae for resummation in other variables (like p_T)

\mathcal{T}_0 spectrum and profile scales

- peak region: nonsingulars are power-suppressed; pert. accuracy determined by resummation
- transition region: smooth connection; scale choice generates ambiguity
- tail region: power expansion breaks down, must turn off resummation; pert. accuracy determined by fixed order

Profile scales

This is achieved by appropriate choice of \mathcal{T}_N -dependent profile scales $\mu_i(\mathcal{T}_N)$ so that while approaching the FO region, all scales $\mu_i \to \mu_{FO}$

- profile scale variations isolate different sources of pert. uncertainties
- total theoretical uncertainty combining FO and resummation scale variations
- cross section evaluated at all sets of scales, so that pert. uncertainty are provided event-by-event

List of available NNLO processes in GENEVA

- **b** Drell-Yan (\mathcal{T}_0) [Alioli, Bauer, Berggren, Tackmann, Walsch 1508.01475]
- Higgsstrahlung [Alioli, Broggio, Kallweit, Lim, Rottoli 1909.02026]
- \blacktriangleright Higgs decays $(gg, bar{b})$ [Alioli, Broggio, Gavardi, Kallweit, Lim, RN, Napoletano, Rottoli 2009.13533]
- ho $\gamma\gamma$ [Alioli, Broggio, Gavardi, Kallweit, Lim, RN, Napoletano, Rottoli 2010.10498]
- Drell-Yan (p_T) [Alioli, Bauer, Broggio, Gavardi, Kallweit, Lim, RN, Napoletano, Rottoli 2102.08390]
- ZZ [Alioli, Broggio, Gavardi, Kallweit, Lim, RN, Napoletano, Rottoli 2103.01214]
- $\blacktriangleright W^{\pm}\gamma$ [Cridge, Lim, RN 2105.13214]
- \blacktriangleright New: gg
 ightarrow HH [Alioli, Billis, Broggio, Gavardi, Kallweit, Lim, Marinelli, RN, Napoletano 2212.10489]

 \blacktriangleright New: gg
ightarrow H [Alioli, Billis, Broggio, Gavardi, Kallweit, Lim, Marinelli, RN, Napoletano 2301.11875]

Parton shower interface

Two challenges

- avoid impacting pert. accuracy of *T*₀ spectrum
- avoid double counting between resummation in T₀ and PS (usually not T-ordered)

Matching to a parton shower in GENEVA

- ▶ impose veto discarding showered events with $\mathcal{T}_N > \mathcal{T}_N^{\mathrm{cut}}$
- ▶ all Φ_0 events are showered with the only requirement $\mathcal{T}_0 < \mathcal{T}_0^{\mathrm{cut}}$
- \blacktriangleright first shower emission $\Phi_1 \to \Phi_2$ performed by hand in GENEVA using $\mathcal{T}_0\text{-}preserving mapping}$
- **>** starting from Φ_2 events, PS affects \mathcal{T}_0 spectrum only beyond NNLL'

Parton shower interface

Two challenges

- avoid impacting pert. accuracy of *T*₀ spectrum
- avoid double counting between resummation in T₀ and PS (usually not T-ordered)

New: interface with different parton shower MCs

- estimate shower matching uncertainty
- currently possible to interface
 - Рутніа8
 - New: DIRE (in PYTHIA8)
 - New: SHERPA
- \blacktriangleright applied to gg
 ightarrow HH process

Improved treatment of splitting functions ${\cal P}$

Reproduce higher-multiplicity phase space

$$\frac{\mathrm{d}\sigma_1}{\mathrm{d}\Phi_1}(\mathcal{T}_0 > \mathcal{T}_0^{\mathrm{cut}}) = \left[\frac{\mathrm{d}\sigma^{\mathrm{NNLL'}}}{\mathrm{d}\Phi_0\mathrm{d}\mathcal{T}_0} - \frac{\mathrm{d}\sigma^{\mathrm{NNLL'}}}{\mathrm{d}\Phi_0\mathrm{d}\mathcal{T}_0}\Big|_{\alpha_s^2}\right]\mathcal{P}(\Phi_1) + \frac{\mathrm{d}\sigma_1^{\mathrm{FO}}}{\mathrm{d}\Phi_1}$$

- ▶ soft and collinear limit in $\mathcal{P}_{0\rightarrow 1}$ ⇒ now correctly reproduced
- ▶ soft and collinear limit in $\mathcal{P}_{1\rightarrow 2}$ ⇒ improved, now only miss single log
- ▶ New: tested on $gg \rightarrow H$ and Drell-Yan

Improved treatment of splitting functions $\boldsymbol{\mathcal{P}}$

Reproduce higher-multiplicity phase space

$$\frac{\mathrm{d}\sigma_1}{\mathrm{d}\Phi_1}(\mathcal{T}_0 > \mathcal{T}_0^{\mathrm{cut}}) = \left[\frac{\mathrm{d}\sigma^{\mathrm{NNLL'}}}{\mathrm{d}\Phi_0\mathrm{d}\mathcal{T}_0} - \frac{\mathrm{d}\sigma^{\mathrm{NNLL'}}}{\mathrm{d}\Phi_0\mathrm{d}\mathcal{T}_0}\Big|_{\alpha_s^2}\right]\mathcal{P}(\Phi_1) + \frac{\mathrm{d}\sigma_1^{\mathrm{FO}}}{\mathrm{d}\Phi_1}$$

- ▶ soft and collinear limit in $\mathcal{P}_{0\rightarrow 1}$ ⇒ now correctly reproduced
- ▶ soft and collinear limit in $\mathcal{P}_{1\rightarrow 2} \Rightarrow$ improved, now only miss single log
- ▶ New: tested on $gg \rightarrow H$ and Drell-Yan

Complex scale prescription

> allow choice of complex hard scale μ_H in resummed cross section

$$\mu_H = Q \quad o \quad \mu_H = -i\,Q$$

 \blacktriangleright include additional source of theory uncertainty ϕ

$$\mu_H = Q \, e^{i\phi}, \qquad \phi \in [\pi/4, 3\pi/4]$$

• "resumming" large π^2 terms arising from $\log^k(-q^2/\mu^2)$, effectively reducing overall theory uncertainty

▶ New: implemented for $gg \rightarrow H$ production

Comparison to ATLAS and CMS Higgs data

Comparing to latest ATLAS [CERN-EP-2021-227] and CMS [CERN-EP-2022-142] data sets for Higgs differential cross sections in the **diphoton decay channel**

▶ $gg \rightarrow H$ computed at NNLO+NNLL₀+NLL₁+PS in GENEVA, in the rescaled EFT scheme

 $\hookrightarrow m_t o \infty$, rescaled by exact overall LO m_t dependence

- $\blacktriangleright~H
 ightarrow\gamma\gamma$ inserted by <code>Pythia8</code> at LO in <code>QCD</code>
- include VBF, VH, ttH, etc. taken from experimental simulations
- New: include 7 point scale variations, nondiagonal in {µ_R, µ_F}

Comparison to ATLAS and CMS Higgs data

Comparing to latest ATLAS [CERN-EP-2021-227] and CMS [CERN-EP-2022-142] data sets for Higgs differential cross sections in the **diphoton decay channel**

▶ $gg \rightarrow H$ computed at NNLO+NNLL₀+NLL₁+PS in GENEVA, in the rescaled EFT scheme

 $\hookrightarrow m_t o \infty$, rescaled by exact overall LO m_t dependence

- $\blacktriangleright~H
 ightarrow\gamma\gamma$ inserted by <code>Pythia8</code> at LO in <code>QCD</code>
- include VBF, VH, ttH, etc. taken from experimental simulations

New: include 7 point scale variations, nondiagonal in $\{\mu_R, \mu_F\}$

WIP: pp ightarrow Z + j at NNLO in GENEVA

1-jet final state

- \blacktriangleright Z + j needs process-defining cuts (e.g. \mathcal{T}_0 or p_T cut)
- \blacktriangleright relevant Φ_1/Φ_2 resolution variable is \mathcal{T}_1
- ▶ at NNLO need a T_1 -preserving phase-space mapping \Rightarrow still WIP!

Z+j in Geneva

- **•** only \mathcal{T}_1 spectra computed, with resummation up to N³LL
- *T*₁ definition introduces frame dependence
 - underlying Born frame (UB)
 - colour singlet frame (CS)
 - laboratory frame (LAB)
- factorization formula in SCET (showing explicit frame dependence)

$$egin{array}{ll} rac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_1} = \sum_\kappa H_\kappa \int\!\mathrm{d}t_a \mathrm{d}t_b \mathrm{d}s_J \, B_{\kappa_a}(t_a) \, B_{\kappa_b}(t_b) \, J_{\kappa_J}(s_J) \ imes S_\kappa igg(n_{a,b}\!\cdot\!n_J, \mathcal{T}_1\!-\!rac{t_a}{Q_a}\!-\!rac{t_b}{Q_b}\!-\!rac{s_J}{Q_J} igg) \end{array}$$

WIP: Resummed and matched \mathcal{T}_1 spectrum

Resummed spectra:

Matched results:

Outlook

More processes

- $\blacktriangleright \ Z+j \ (\mathcal{T}_1\text{-}\mathsf{preserving} \ 1 \to 2 \ \mathsf{mapping} \ \mathsf{is} \ \mathsf{WIP})$
- \blacktriangleright $tar{t}$, $tar{t}V$ (\mathcal{T}_0 resummation for $tar{t}$ already done [Alioli, Broggio, Lim 2111.03632])
- $\blacktriangleright Z\gamma \ (\dots W\gamma \ {
 m already there})$
- $\blacktriangleright gg
 ightarrow (H)H$ with exact m_t dependence

More features

- implement different 0-jet resolution variable, e.g. p_T, for more processes
- include EW corrections to Drell-Yan
- \blacktriangleright revamp $e^+e^-
 ightarrow X$ generator

Conclusions

- GENEVA performs matching of NNLO calculations with higher-order resummation and parton shower MCs
- versatile framework:
 - freedom to choose jet-resolution variables (\mathcal{T}_0 , p_T mappings tested)
 - freedom to choose resummation formalism (SCET, RadISH implemented)
 - ▶ interface to different parton showers (PYTHIA8, DIRE, SHERPA already in)
- ▶ implemented for several processes, latest: $gg \rightarrow H$, HH
- covered a few technical improvements:
 - ▶ better accuracy of differential distributions in the soft & collinear limits
 - consolidated theory uncertainty by allowing 7-point scale variations
 - ▶ included π^2 resummation through new scetlib interface
- first steps towards NNLO+NNLL'+PS for coloured final states: stay tuned!

Conclusions

- GENEVA performs matching of NNLO calculations with higher-order resummation and parton shower MCs
- versatile framework:
 - freedom to choose jet-resolution variables (\mathcal{T}_0 , p_T mappings tested)
 - freedom to choose resummation formalism (SCET, RadISH implemented)
 - ▶ interface to different parton showers (PYTHIA8, DIRE, SHERPA already in)
- ▶ implemented for several processes, latest: $gg \rightarrow H$, HH
- covered a few technical improvements:
 - better accuracy of differential distributions in the soft & collinear limits
 - consolidated theory uncertainty by allowing 7-point scale variations
 - ▶ included π^2 resummation through new scetlib interface
- first steps towards NNLO+NNLL'+PS for coloured final states: stay tuned!

Thank you!

Backup: N-jettiness

General definition

For a phase space point with M final state particles $\left(M>N
ight)$

$$\mathcal{T}_N(\Phi_M) = \sum_k \min\{\hat{q}_a \cdot p_k, \hat{q}_b \cdot p_k, \hat{q}_1 \cdot p_k, \dots, \hat{q}_N \cdot p_k\}$$

where $\hat{q}_{a,b}$ are beam directions and \hat{q}_i are jet direction 4-vectors

[Stewart, Tackmann, Waalewijn '09, '10]

- ▶ physical meaning: as $T_N \rightarrow 0$ the final state looks more like a *N*-jet final state, i.e. **unresolved emissions** are **either soft or collinear** to one of the beam or jet directions
- \succ \mathcal{T}_0 definition corresponds to beam thrust, happens to be boost invariant

$$\mathcal{T}_0 = \sum_k |p_k^\perp| e^{-|\eta_k-Y|}$$

 $\blacktriangleright \mathcal{T}_1$ is not boost invariant, frame dependence through Q_a , Q_b , Q_J

$$\mathcal{T}_1 = \sum_k \min\left\{rac{2q_a \cdot p_k}{Q_a}, rac{2q_b \cdot p_k}{Q_b}, rac{2q_J \cdot p_k}{Q_J}
ight\}$$

Backup: Profile scales

- \mathcal{T}_0 resummation is performed by RGE-evolving each piece H, B_i , Sfrom their typical scales μ_H , μ_B , μ_S to the common μ
- ▶ when $\sigma^{nons} \sim \sigma^{sing}$, resummation must be switched off

 \blacktriangleright achieve this via smooth \mathcal{T}_0 -dependent profile scales

$$egin{aligned} & \mu_H(\mathcal{T}_0) = \mu_{ ext{FO}} \ & \mu_B(\mathcal{T}_0) = \mu_{ ext{FO}} \sqrt{f(\mathcal{T}_0/Q)} \ & \mu_S(\mathcal{T}_0) = \mu_{ ext{FO}} \, f(\mathcal{T}_0/Q) \end{aligned}$$

- \blacktriangleright for \mathcal{T}_0 in the resummation region $f(\mathcal{T}_0/Q) = \mathcal{T}_0/Q$
- \blacktriangleright for \mathcal{T}_0 in the fixed-order region $f(\mathcal{T}_0/Q)=1$

 $\Rightarrow \mu_H = \mu_B = \mu_S = \mu_{\rm FO}$

- \blacktriangleright in nonperturbative region $f(\mathcal{T}_0/Q)$ freezes all scales to a minimum value
- scale uncertainty estimated by independently varying $\mu_F O$, μ_S , μ_B , and varying the functions $f(\mathcal{T}_0/Q)$ themselves

Backup: Ingredients of N³LL \mathcal{T}_1 resummation

Hard, beam, jet, and soft functions

hard function known analytically up to two loops [Gehrmann, Tancredi, et al. '11, '22]

 \blacktriangleright at NNLL' include one-loop squared gg
ightarrow Zg

► beam and jet functions known at N³LO [Ebert, Mistlberger, Vita '20]

only NNLO beam [Gaunt, Stahlhofen, Tackmann '14] and jet [Becher, Neubert '06; Becher, Bell '11] are needed for our purpose

soft function at NLO implemented as on-the-fly integrals using [Jouttenus, Stewart, Tackmann, Waalewijn '13]

NNLO boundary terms provided by interpolation over SoftSERVE grids

```
[Bell, Rahn, Talbert '18, '20]
```

[Bruser, Liu, Stahlhofen '18]

- NLO results validated in all frames
- NNLO results validated in underlying Born frame against MCFM [Campbell, Ellis, Mondini, Williams '17]; for other frames ours are first results