Towards NNLO QCD corrections for the production of a heavy-quark pair in association with a massive boson

Chiara Savoini

University of Zurich

based on Phys.Rev.Lett. 130 (2023) and Phys.Rev.D 107 (2023) in collaboration with L.Buonocore, S.Catani, S.Devoto, M.Grazzini, S.Kallweit, J.Mazzitelli, L.Rottoli

LoopFest XXI — June 26^{th} - 28^{th} 2023

Contents

Introduction

 \Rightarrow The framework: q_T -subtraction formalism

Bottleneck of two-loop amplitudes:

soft boson approximation

massification

Results

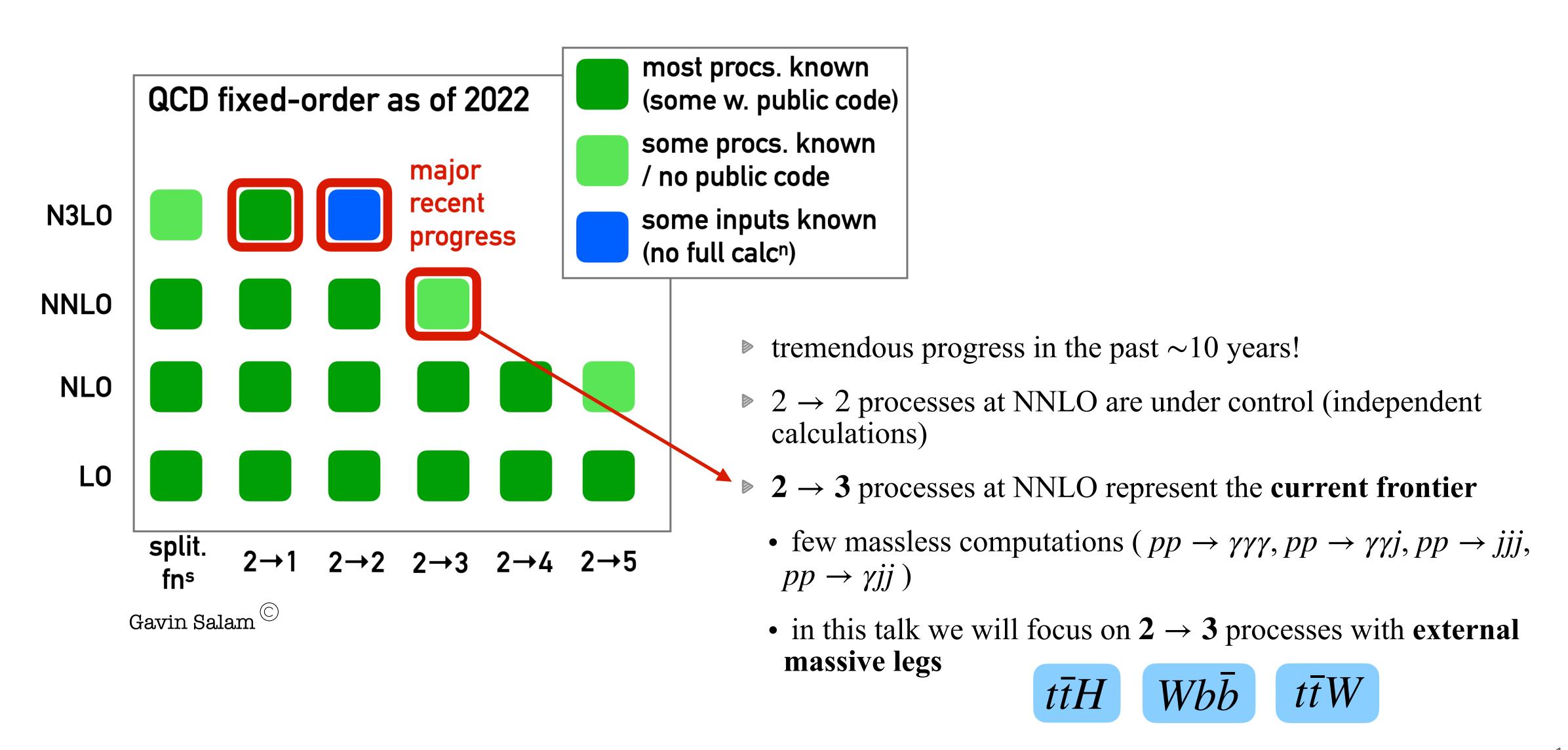
ttH

 $Wbar{b}$

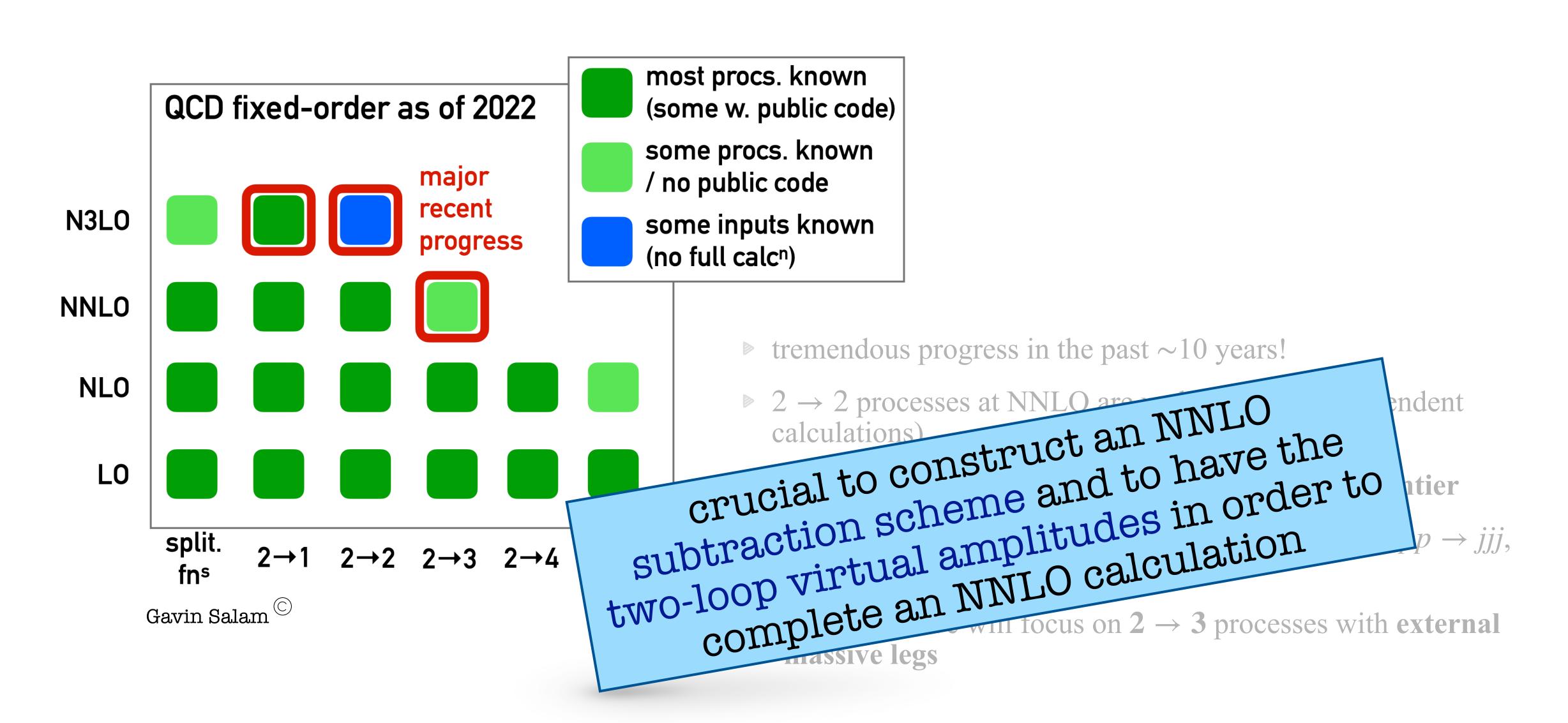
 $t\overline{t}W$

Summary & Outlook

Introduction



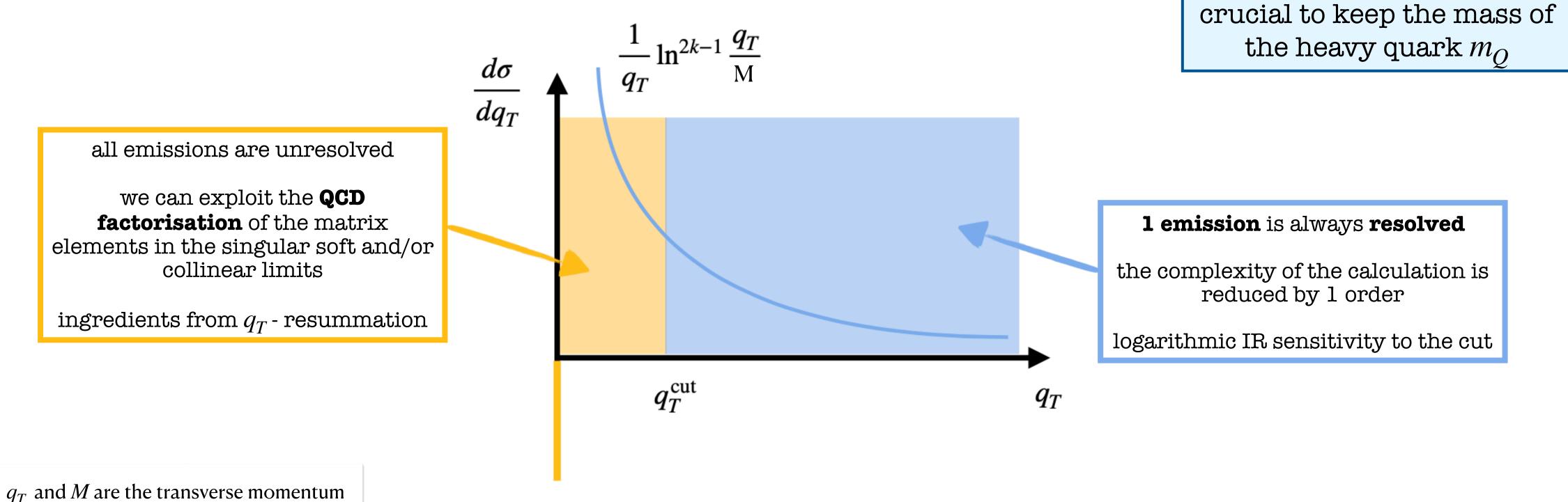
Introduction



The framework: q_T -subtraction

[Catani, Grazzini (2007)]

 \triangleright cross section for the production of a triggered final state at N^kLO (in our case the triggered final state is $Q\bar{Q}F$)



 q_T and M are the transverse momentum and the invariant mass of the $Q\bar{Q}F$ system

$$d\sigma_{N^kLO} = \mathcal{H}_{N^kLO} \otimes d\sigma_{LO} + \left[\frac{d\sigma_{N^{k-1}LO}^R}{d\sigma_{N^{k-1}LO}} - \frac{d\sigma_{N^kLO}^{CT}}{d\sigma_{N^kLO}} \right]_{q_t > q_t^{\text{cut}}} + \mathcal{O}((q_t^{\text{cut}})^p)$$

The framework: q_T -subtraction

[Catani, Grazzini (2007)]

master formula at NNLO

$$d\sigma_{NNLO} = \mathcal{H}_{NNLO} \otimes d\sigma_{LO} + \left[d\sigma_{NLO}^{R} - d\sigma_{NNLO}^{CT} \right]_{q_t > q_t^{\text{cut}}} + \mathcal{O}((q_t^{\text{cut}})^p)$$

the required matrix elements can be computed with automated tools like OpenLoops2

[Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller (2019)]

☑ the remaining NLO-type singularities can be removed by applying a local subtraction method

[Catani, Seymour (1998)] [Catani, Dittmaier, Seymour, Trocsanyi (2002)]

automatised implementation in the MATRIX framework, which relies on the efficient multi-channel Monte Carlo integrator MUNICH

[Grazzini, Kallweit, Wiesemann (2017)]

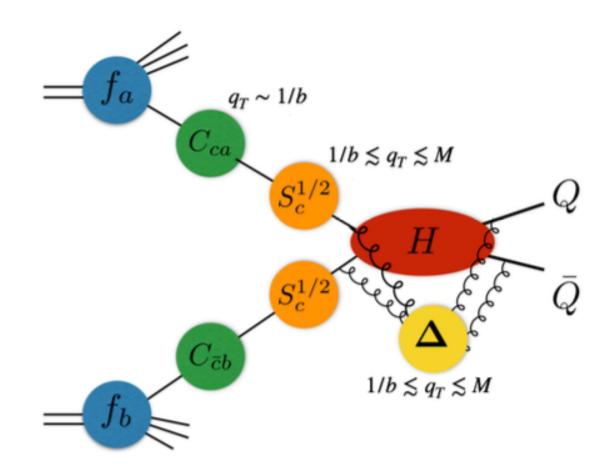
The framework: q_T -subtraction

master formula at NNLO

$$d\sigma_{NNLO} = \mathcal{H}_{NNLO} \otimes d\sigma_{LO} + \left[d\sigma_{NLO}^R - d\sigma_{NNLO}^{CT} \right]_{q_t > q_t^{\text{cut}}} + \mathcal{O}((q_t^{\text{cut}})^p)$$

on trivial ingredient: two-loop soft function for an arbitrary kinematics of the heavy quarks

[Catani, Devoto, Grazzini, Mazzitelli (2023)] [Devoto, Mazzitelli (in preparation)]



- * the resummation formula shows a **richer structure** due to the additional soft singularities
- If the factor Δ (operator in colour space) is specific for heavy-quark production and it encodes the **soft wide-angle radiation** from the $Q\bar{Q}$ pair and from initial-state final-state interference
- * the log-enhanced contributions are controlled by the transverse momentum anomalous dimension Γ_t

master formula at NNLO

$$d\sigma_{NNLO} = \mathcal{H}_{NNLO} \otimes d\sigma_{LO} + \left[d\sigma_{NLO}^R - d\sigma_{NNLO}^{CT} \right]_{q_t > q_t^{\text{cut}}} + \mathcal{O}((q_t^{\text{cut}})^p)$$

- non trivial ingredient: two-loop soft function for an arbitrary kinematics of the heavy quarks
- all ingredients are known except for the two-loop virtual amplitudes contributing to the the hard-collinear coefficient

$$\mathcal{H}_{NNLO} = H^{(2)}\delta(1-z_1)\delta(1-z_2) + \delta\mathcal{H}^{(2)}(z_1,z_2)$$
 where
$$H^{(2)} = \frac{2\Re(\mathcal{M}_{fin}^{(2)}(\mu_{IR},\mu_R)\mathcal{M}^{(0)*})}{|\mathcal{M}^{(0)}|^2} \bigg|_{\mu_R=\mu_{IR}=M}$$
 UV renormalised and IR subtracted amplitude at scale μ_{IR} (overall normalisation $(4\pi)^\epsilon e^{-\gamma_E \epsilon}$)

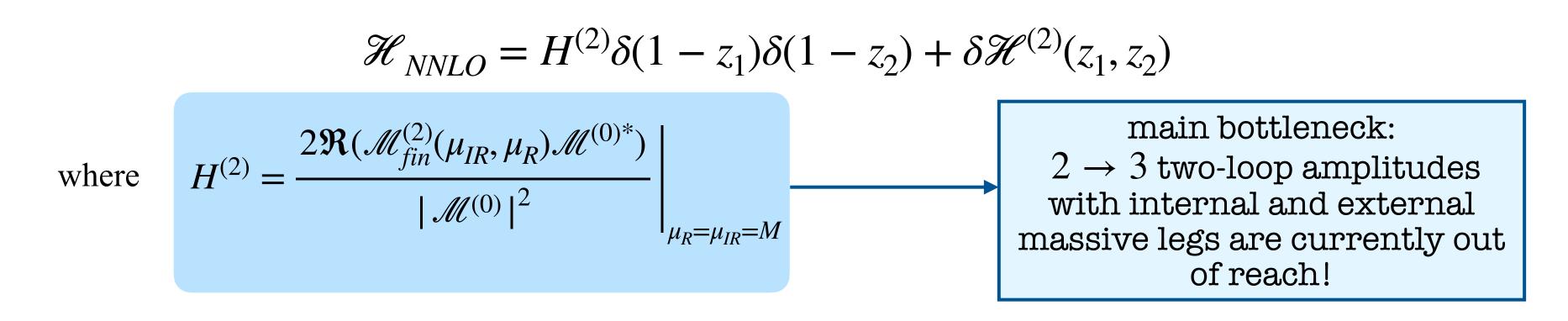
 $H^{(1)} = \frac{2\Re(\mathcal{M}_{fin}^{(1)}(\mu_{IR}, \mu_{R})\mathcal{M}^{(0)})}{|\mathcal{M}^{(0)}|^{2}} \Big|_{\dots = -M}$ Remark: analogous definition for the hard-collinear coefficient at NLO

The framework: q_T -subtraction [Catani, Grazzini (2007)]

master formula at NNLO

$$d\sigma_{NNLO} = \mathcal{H}_{NNLO} \otimes d\sigma_{LO} + \left[d\sigma_{NLO}^R - d\sigma_{NNLO}^{CT} \right]_{q_t > q_t^{\text{cut}}} + \mathcal{O}((q_t^{\text{cut}})^p)$$

- non trivial ingredient: two-loop soft function for an arbitrary kinematics of the heavy quarks
- all ingredients are known except for the two-loop virtual amplitudes contributing to the the hard-collinear coefficient



The framework: q_T -subtraction [Catani, Grazzini (2007)]

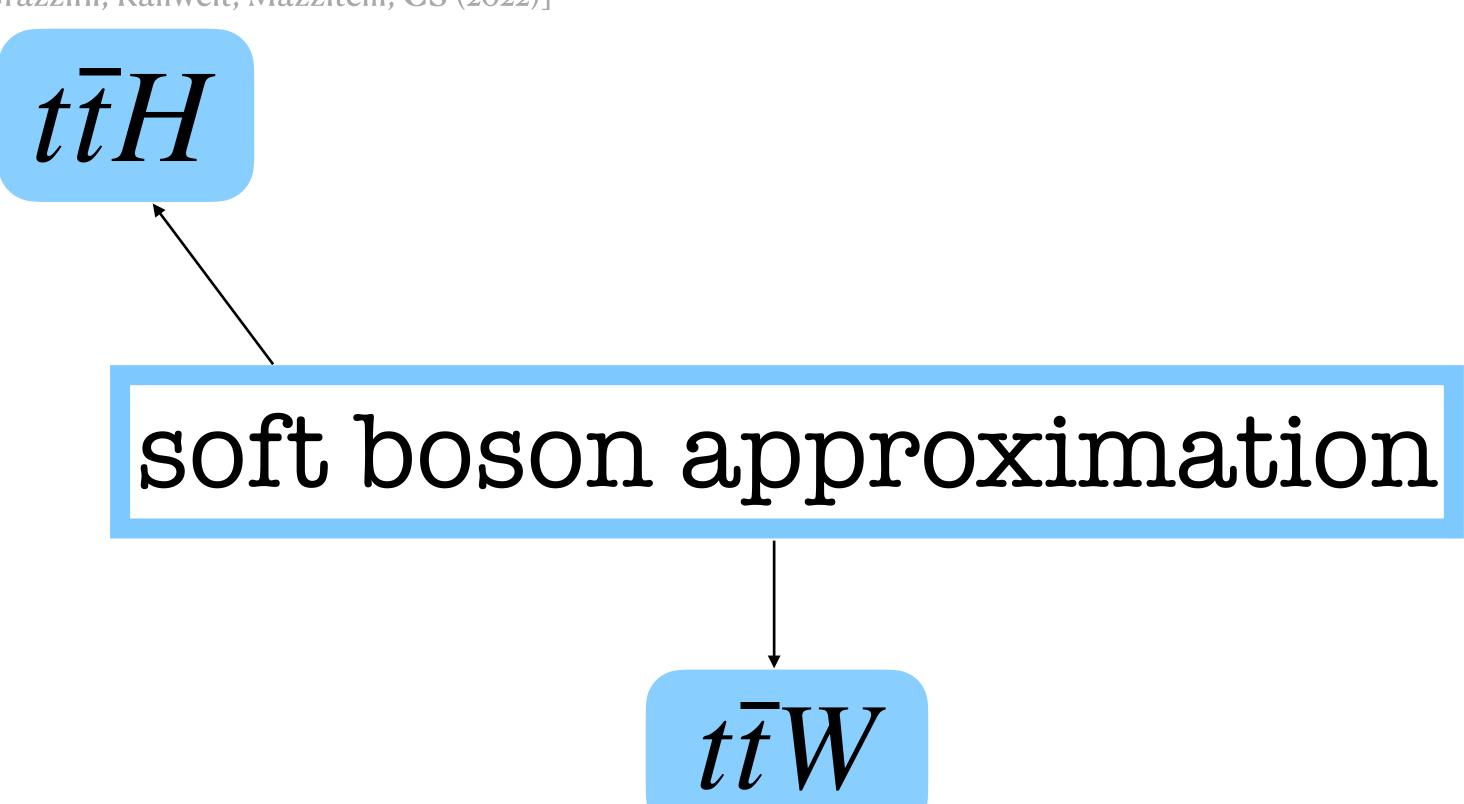
master formula at NNLO

$$d\sigma_{NNLO} = \mathcal{H}_{NNLO} \otimes d\sigma_{LO} + \left[d\sigma_{NLO}^{R} - d\sigma_{NNLO}^{CT}\right]_{q_{t} > q_{t}^{\text{cut}}} + \mathcal{O}((q_{t}^{\text{cut}})^{p})$$

- non trivial ingredient: two-loop soft function for an arbitrary kinematics of the heavy quarks
- all ingredients are known except for the two-loop virtual amplitudes contributing to the the hard-collinear coefficient

$$\mathcal{H}_{NNLO} = H^{(2)}\delta(1-z_1)\delta(1-z_2) + \delta\mathcal{H}^{(2)}(z_1,z_2)$$
 where
$$H^{(2)} = \frac{2\Re(\mathcal{M}_{fin}^{(2)}(\mu_{IR},\mu_{R})\mathcal{M}^{(0)*})}{|\mathcal{M}^{(0)}|^2}$$
 main bottleneck: two-loop amplitudes ternal and external legs are currently out of reach! reasonable approximation

[Catani, Devoto, Grazzini, Kallweit, Mazzitelli, CS (2022)]



[Buonocore, Devoto, Grazzini, Kallweit, Mazzitelli, Rottoli, CS (in preparation)]

bottleneck: the two-loop amplitudes are at the frontier of the current techniques solution: development of a soft boson approximation

by the main idea is to find an analogous formula to the well known factorisation in the case of **soft gluons**

$$\lim_{k\to 0} \mathcal{M}^{bare}(\{p_i\},k) = J(k)\mathcal{M}^{bare}(\{p_i\}) \qquad \text{see e.g. [Catani, Grazzini (2000)]}$$

$$J(k) = g_s \mu^\epsilon(J^{(0)}(k) + g_s^2 J^{(1)}(k) + \dots)$$

purely non abelian

 \triangleright for a **soft scalar Higgs** radiated off a heavy quark with momentum p_j , we have that

soft insertion rules, only external legs matter!

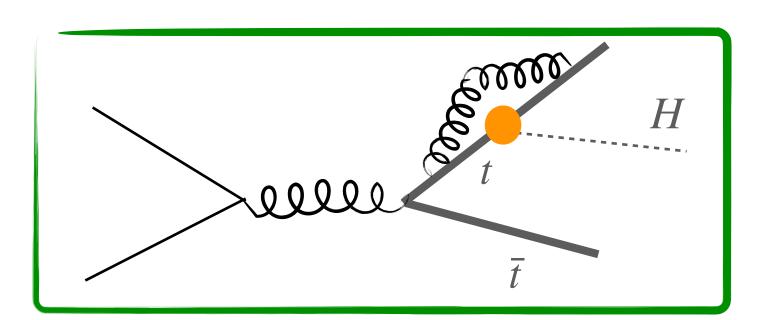
$$\lim_{k\to 0} \mathcal{M}^{bare}(\{p_i\},k) = J^{(0)}(k) \mathcal{M}^{bare}(\{p_i\}) \qquad \text{bare mass of the heavy quark}$$

$$J^{(0)}(k) = \sum_j \frac{m_{j,0}}{v} \frac{m_{j,0}}{p_j \cdot k}$$

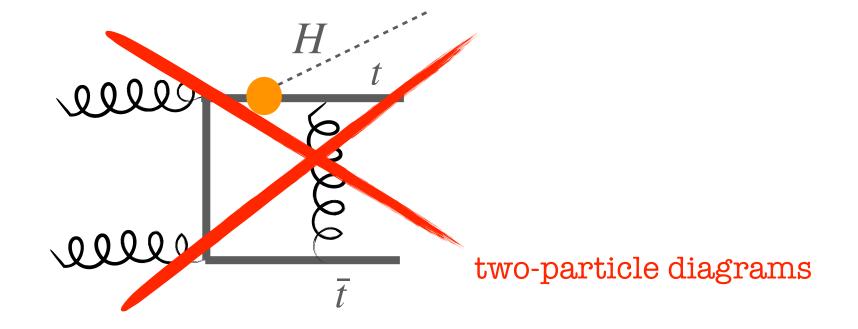
▶ the naïve factorisation formula does NOT hold at the level of renormalised amplitudes!

bottleneck: the two-loop amplitudes are at the frontier of the current techniques solution: development of a soft boson approximation

already at one-loop, diagrams that are not captured by the naïve factorisation formula can give an additional leading contribution in the soft Higgs limit



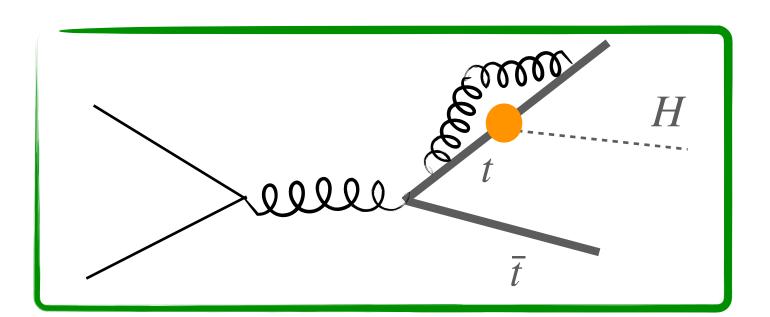
one-particle diagrams



- each 2P diagram contributes to the leading behaviour of the matrix element in the soft Higgs limit, if also the loop momentum is soft
- by considering all possible insertions of the Higgs boson on the top quark line, no additional contributions arise wrt the naïve factorisation formula

bottleneck: the two-loop amplitudes are at the frontier of the current techniques solution: development of a soft boson approximation

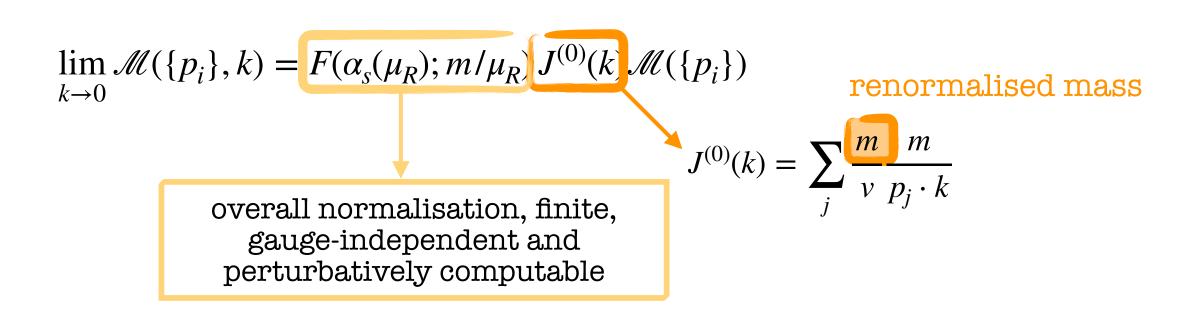
already at one-loop, diagrams that are not captured by the naïve factorisation formula can give an additional leading contribution in the soft Higgs limit



 \overline{t}

one-particle diagrams

- they give an additional contribution to the the naïve factorisation formula
- in other words, the renormalisation of the heavy-quark mass and wave function induces a modification of the Higgs coupling to the heavy quark



▶ master formula in the soft Higgs limit $(k \to 0, m_H \ll m_t)$

$$\lim_{k\to 0} \mathcal{M}_{t\bar{t}H}(\{p_i\}, k) = F(\alpha_s(\mu_R); m_t/\mu_R) J^{(0)}(k) \mathcal{M}_{t\bar{t}}(\{p_i\})$$
[Bärnreuther, Czakon, Fiedler (2013)]

soft limit of the scalar form factor for the heavy quark [Bernreuther et al. (2005)] [Blümlein et al. (2017)]

$$F(\alpha_s(\mu_R); m_t/\mu_R) = 1 + \frac{\alpha_s(\mu_R)}{2\pi} (-3C_F) + \left(\frac{\alpha_s(\mu_R)}{2\pi}\right)^2 \left(\frac{33}{4}C_F^2 - \frac{185}{12}C_FC_A + \frac{13}{6}C_F(n_L + 1) - 6C_F\beta_0 \ln \frac{\mu_R^2}{m_t^2}\right) + \mathcal{O}(\alpha_s^3)$$

we assume that all heavy quarks involved in the process have the same mass up to two-loop order

- ▶ NEW: ongoing check of the soft factorisation formula at three-loop order, based on
 - * three-loop on-shell renormalisation constants Z_m and Z_2 [Melnikov, Ritbergen (2000)]
 - * decoupling relations at $\mathcal{O}(\alpha_s^3)$ [Chetyrkin, Kniehl, Steinhauser (1997)]
 - * three-loop massive form factors [Fael, Lange, Schönwald, Steinhauser (2022, 2023)]

Soft W-boson approximation

bottleneck: the two-loop amplitudes are at the frontier of the current techniques solution: development of a soft boson approximation

- \triangleright goal: compute NNLO QCD corrections for $t\bar{t}W$
- be the idea is to follow a similar approach used in the case of $t\bar{t}H$: develop a **soft factorisation formula** also in the case of a W boson (only coupling to massless quarks, masses break the factorisation...)
- \triangleright for a **soft gauge** W **boson** radiated off a massless quark with momentum p_i , we find that

$$\lim_{k\to 0} \mathcal{M}(\{p_i\},k) = \frac{g_W}{\sqrt{2}} \sum_j \left(\sigma_j \frac{p_j \cdot \epsilon^*(k)}{p_j \cdot k} \right) \frac{\mathcal{M}_{j_L}(\{p_i\})}{\mathcal{M}_{j_L}(\{p_i\})}$$
 valid at all perturbative orders
$$\sigma_j = \begin{cases} +1 & \text{incoming } \bar{q} \text{, outgoing } q \\ -1 & \text{incoming } q \text{, outgoing } \bar{q} \end{cases}$$
 amplitude where the massless quark with momentum p_i is LEFT-HANDED

Soft W-boson approximation

bottleneck: the two-loop amplitudes are at the frontier of the current techniques solution: development of a soft boson approximation

- \triangleright goal: compute NNLO QCD corrections for $t\bar{t}W$
- be the idea is to follow a similar approach used in the case of $t\bar{t}H$: develop a **soft factorisation formula** also in the case of a W boson (only coupling to massless quarks, masses break the factorisation...)
- \triangleright for a **soft gauge** W **boson** radiated off a massless quark with momentum p_i , we find that

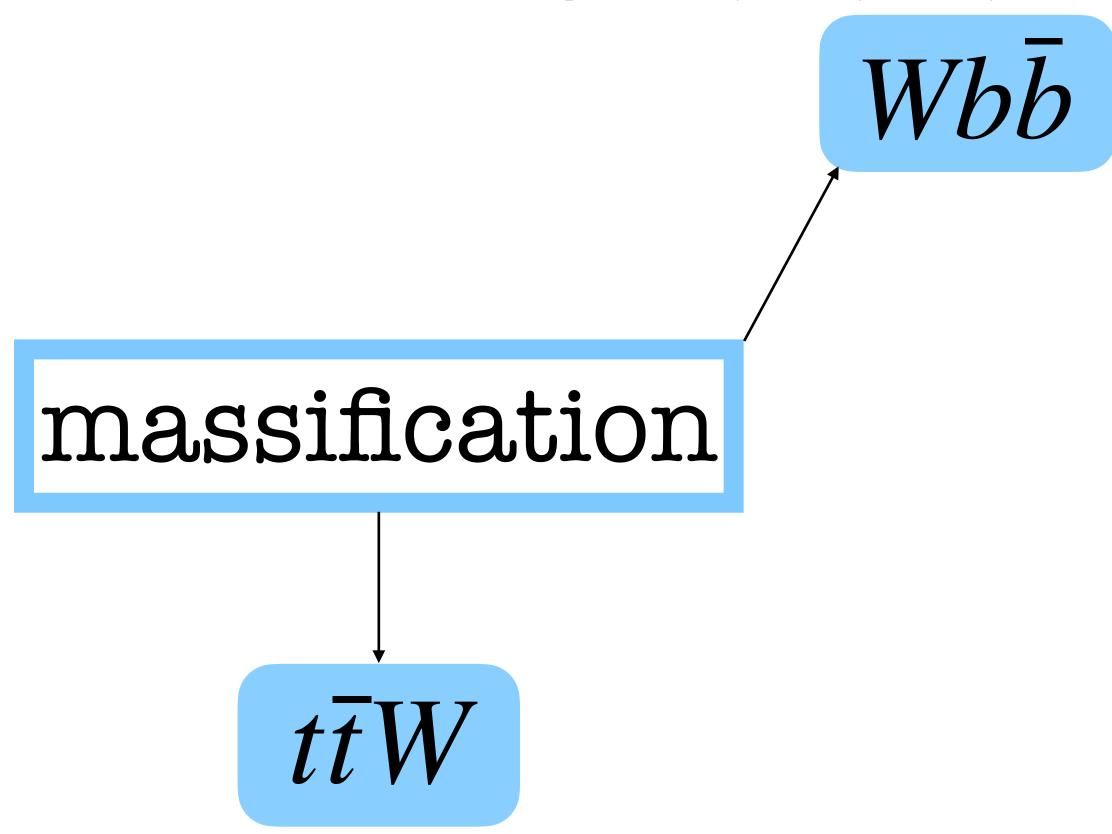
$$\lim_{k \to 0} \mathcal{M}(\{p_i\}, k) = \frac{g_W}{\sqrt{2}} \sum_{i} \left(\sigma_j \frac{p_j \cdot \epsilon^*(k)}{p_j \cdot k} \mathcal{M}_{j_L}(\{p_i\}) \right)$$

valid at all perturbative orders

main differences between W boson and Higgs:

- vectorial vs scalar current
- massless vs massive emitters
- no renormalisation effects
- selection of the polarisation state of the emitter

[Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, CS (2022)]



[Buonocore, Devoto, Grazzini, Kallweit, Mazzitelli, Rottoli, CS (in preparation)]

Massification

- ▶ idea: exploit the recently computed leading-colour massless two-loop 5-point amplitudes for $q\bar{q}' \to WQ\bar{Q}$ production [Abreu at al. (2021)] [Badger at al. (2021)]
- \triangleright and apply the **massification** technique to reconstruct the corresponding massive amplitudes up to power corrections in the mass m_O
- massification relies on the factorisation properties of massless QCD amplitudes (into jet, hard and soft functions)

$$|\mathcal{M}_{\mathrm{p}}\rangle = \mathcal{J}_{0}^{[\mathrm{p}]}\left(\frac{Q^{2}}{\mu^{2}},\alpha_{\mathrm{s}}(\mu^{2}),\epsilon\right)\mathcal{S}_{0}^{[\mathrm{p}]}\left(\{k_{i}\},\frac{Q^{2}}{\mu^{2}},\alpha_{\mathrm{s}}(\mu^{2}),\epsilon\right)|\mathcal{H}_{\mathrm{p}}\rangle$$

when the mass is introduced, some of the collinear singularities are screened

 $1/\epsilon$ poles are traded into $\log m_Q$

 \triangleright in the limit $m_Q \ll Q$, the massive amplitude "shares" essential properties with the corresponding massless amplitude

change in the renormalisation scheme

▶ factorisation of massive QCD amplitudes (up to $\mathcal{O}(m_O/Q)$)

$$|\mathcal{M}_{\mathrm{p}}\rangle = \mathcal{I}^{[\mathrm{p}]}\left(\frac{Q^2}{\mu^2}, \frac{m_i^2}{\mu^2}, \alpha_{\mathrm{s}}(\mu^2), \varepsilon\right) \mathcal{S}_0^{[\mathrm{p}]}\left(\{k_i\}, \frac{Q^2}{\mu^2}, \alpha_{\mathrm{s}}(\mu^2), \varepsilon\right) |\mathcal{H}_{\mathrm{p}}\rangle$$

Massification

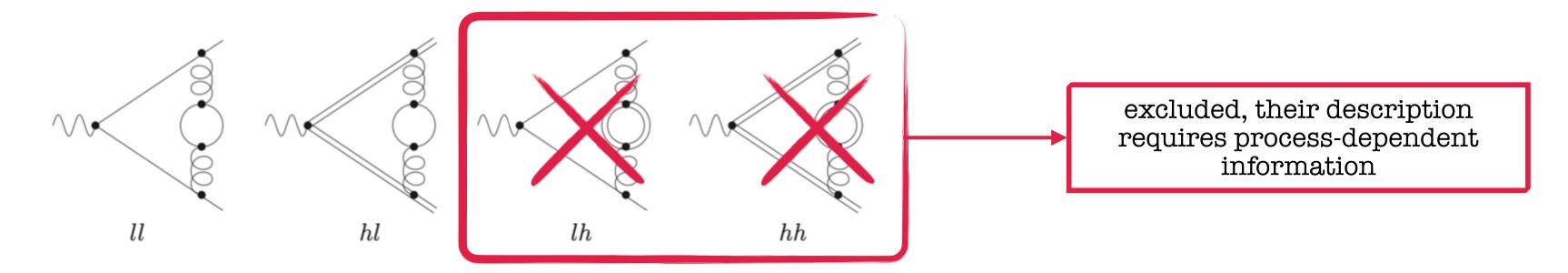
the master formula is

$$\mathcal{M}^{[\mathrm{p}],(m)}\left(\left\{k_{i}\right\},\frac{\mathcal{Q}^{2}}{\mu^{2}},\alpha_{\mathrm{s}}(\mu^{2}),\varepsilon\right)=\prod_{i\in\left\{\mathrm{all\ legs}\right\}}\left(Z_{[i]}^{(m|0)}\left(\frac{m^{2}}{\mu^{2}},\alpha_{\mathrm{s}}(\mu^{2}),\varepsilon\right)\right)^{\frac{1}{2}}\times\mathcal{M}^{[\mathrm{p}],(m=0)}\left(\left\{k_{i}\right\},\frac{\mathcal{Q}^{2}}{\mu^{2}},\alpha_{\mathrm{s}}(\mu^{2}),\varepsilon\right)$$

universal, perturbatively computable, ratio of massive and massless form factors

$$Z_{[i]}^{(m|0)}\left(\frac{m^2}{\mu^2},\alpha_{\rm s},\varepsilon\right) = \mathcal{F}^{[i]}\left(\frac{Q^2}{\mu^2},\frac{m^2}{\mu^2},\alpha_{\rm s},\varepsilon\right)\left(\mathcal{F}^{[i]}\left(\frac{Q^2}{\mu^2},0,\alpha_{\rm s},\varepsilon\right)\right)^{-1}$$

in the case of $WQ\bar{Q}$, the function $Z_{[q]}^{(m_Q|0)}$ is related to $\gamma^*q\bar{q}$ form factor



Massification

the master formula is

$$\mathcal{M}^{[p],(m)}\left(\{k_i\}, \frac{\mathcal{Q}^2}{\mu^2}, \alpha_{\mathrm{s}}(\mu^2), \varepsilon\right) = \prod_{i \in \{\text{all legs}\}} \left(Z_{[i]}^{(m|0)}\left(\frac{m^2}{\mu^2}, \alpha_{\mathrm{s}}(\mu^2), \varepsilon\right) \right)^{\frac{1}{2}} \times \mathcal{M}^{[p],(m=0)}\left(\{k_i\}, \frac{\mathcal{Q}^2}{\mu^2}, \alpha_{\mathrm{s}}(\mu^2), \varepsilon\right)$$

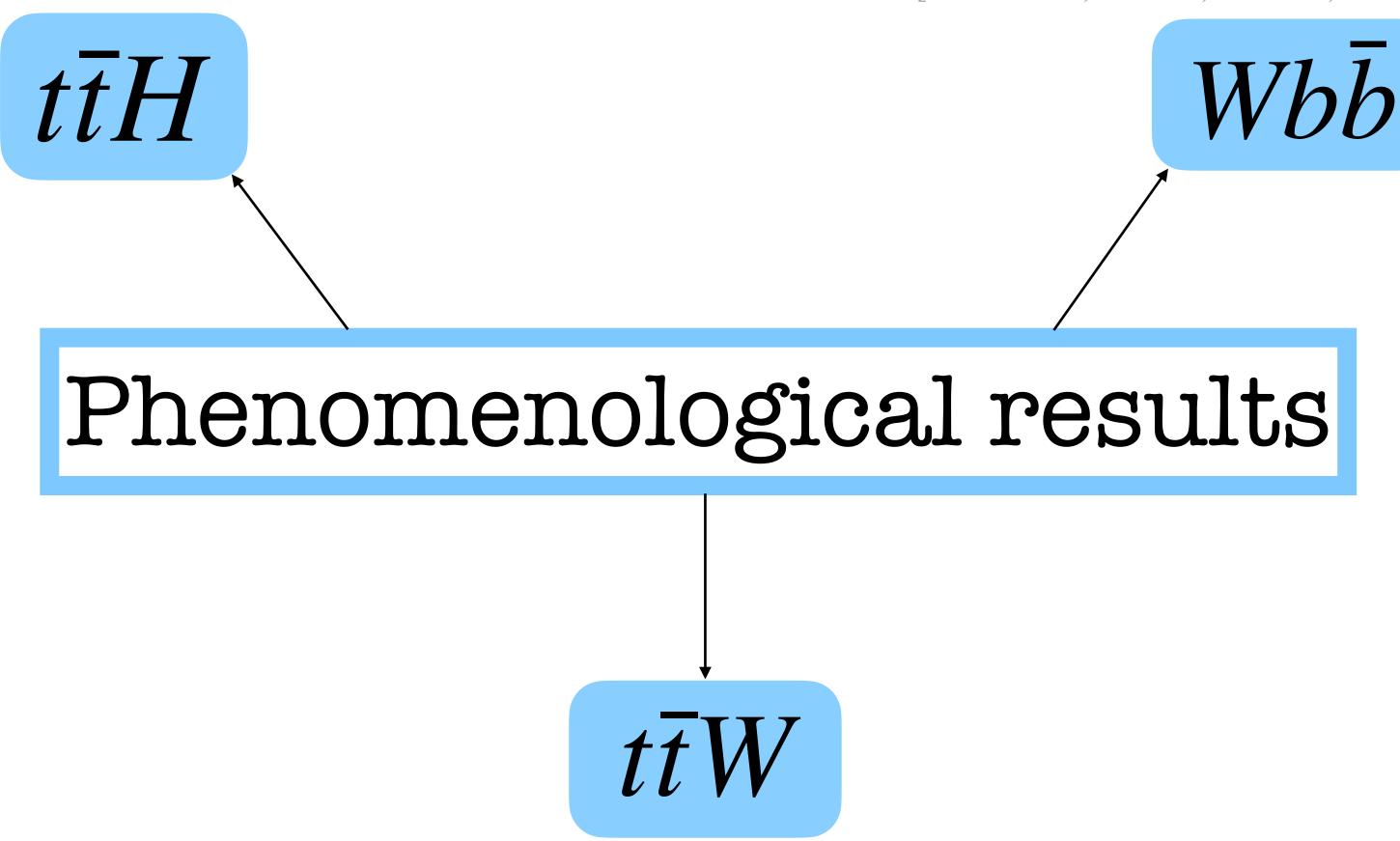
universal, perturbatively computable, ratio of massive and massless form factors

$$Z_{[i]}^{(m|0)}\left(\frac{m^2}{\mu^2},\alpha_{\mathrm{s}},\varepsilon\right) = \mathcal{F}^{[i]}\left(\frac{Q^2}{\mu^2},\frac{m^2}{\mu^2},\alpha_{\mathrm{s}},\varepsilon\right)\left(\mathcal{F}^{[i]}\left(\frac{Q^2}{\mu^2},0,\alpha_{\mathrm{s}},\varepsilon\right)\right)^{-1}$$

 \blacktriangleright in the case of $WQ\bar{Q}$, the function $Z_{[q]}^{(m_Q|0)}$ is related to $\gamma^*q\bar{q}$ form factor

take-home message:

- the massification procedure predicts the correct ϵ poles, logarithms of the mass and mass independent terms of the massive amplitude
- power corrections in the mass and heavy-quark loop contributions cannot be retrieved



[Buonocore, Devoto, Grazzini, Kallweit, Mazzitelli, Rottoli, CS (in preparation)]

setup: NNLO NNPDF31, $m_H = 125 GeV$, $m_t = 173.3 GeV$, $\mu_R = \mu_F = (2m_t + m_H)/2$

- * direct probe of the top Yukawa coupling
- * HL-LHC projection: $\mathcal{O}(2\%)$ [CERN Yellow Report (2019)]
- * current theoretical predictions: $\mathcal{O}(10\%)$

[LHC cross section WG (2016)]

- * mandatory to include NNLO QCD corrections!
- * missing ingredient: $2loop 2 \rightarrow 3$ (2 masses) amplitudes
- * prescription: soft Higgs boson approximation

all ingredients are computed exactly except the two-loop contribution

setup: NNLO NNPDF31, $m_H = 125 GeV$, $m_t = 173.3 GeV$, $\mu_R = \mu_F = (2m_t + m_H)/2$

- * direct probe of the top Yukawa coupling
- * HL-LHC projection: $\mathcal{O}(2\%)$ [CERN Yellow Report (2019)]
- * current theoretical predictions: $\mathcal{O}(10\%)$

[LHC cross section WG (2016)]

- * mandatory to include NNLO QCD corrections!
- * missing ingredient: $2loop 2 \rightarrow 3$ (2 masses) amplitudes
- * prescription: soft Higgs boson approximation

all ingredients are computed exactly except the two-loop contribution

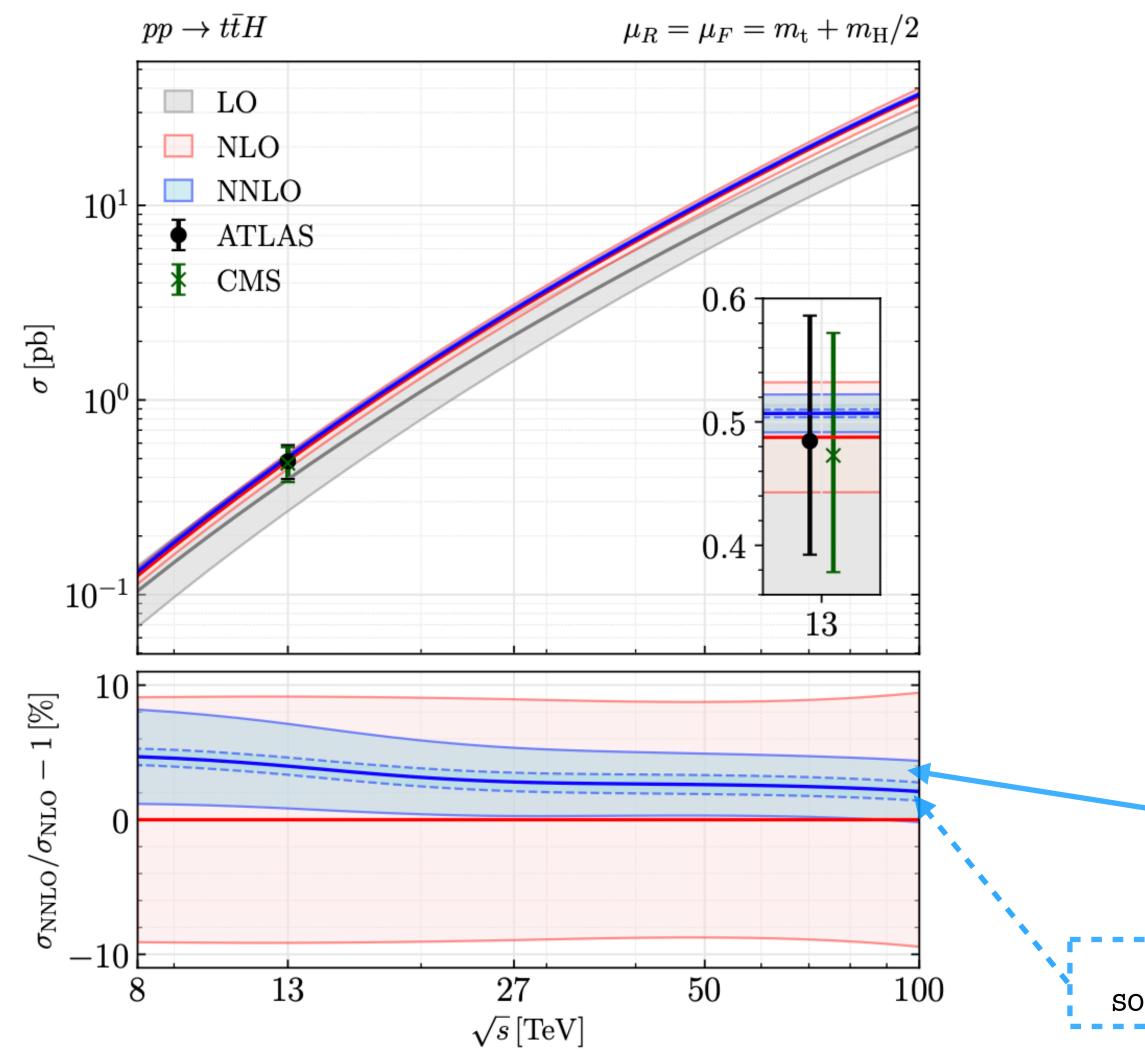
[Catani, de Florian, Ferrera, Grazzini (2015)]

- we construct a **mapping** to project a $t\bar{t}H$ event onto a $t\bar{t}$ one
- we test the **quality** of the approximation at Born and one-loop level: the observed deviation at NLO is used to estimate the uncertainty at NNLO
- ▶ at NNLO, the hard contribution is about 1% of the LO cross section in gg and 2-3% in $q\bar{q}$
- ▶ it is clear that the quality of the final result depends on the size of the contribution we are approximating

FINAL UNCERTAINTY:

 $\pm 0.6\%$ on σ_{NNLO} , $\pm 15\%$ on $\Delta\sigma_{NNLO}$

setup: NNLO NNPDF31, $m_H = 125 GeV$, $m_t = 173.3 GeV$, $\mu_R = \mu_F = (2m_t + m_H)/2$



σ [pb]	$\sqrt{s} = 13 \mathrm{TeV}$	$\sqrt{s} = 100 \mathrm{TeV}$
$\sigma_{ m LO}$	$0.3910{}^{+31.3\%}_{-22.2\%}$	$25.38{}^{+21.1\%}_{-16.0\%}$
$\sigma_{ m NLO}$	$0.4875{}^{+5.6\%}_{-9.1\%}$	$36.43^{+9.4\%}_{-8.7\%}$
$\sigma_{ m NNLO}$	$0.5070 (31)^{+0.9\%}_{-3.0\%}$	$37.20(25)^{+0.1\%}_{-2.2\%}$

- \bigcirc @NLO: +25 (+44)% at $\sqrt{s} = 13 (100) TeV$
- @NNLO: +4 (+2)% at $\sqrt{s} = 13 (100) TeV$
- » significant reduction of the perturbative uncertainties

symmetrised 7-point scale variation

systematic + soft-approximation

[CMS: arXiv 1608.07561]

```
setup: NNLO NNPDF31 4F , \sqrt{s} = 8 \ TeV , \mu_R = \mu_F = E_T(l\nu) + p_T(b_1) + p_T(b_2) p_{T,l} > 30 \ GeV \ |\eta_l| < 2.1 , p_{T,b} > 25 \ GeV \ |\eta_l| < 2.4 , p_{T,j} > 25 \ GeV \ |\eta_l| < 2.4
```

- * irreducible background to VH, single top production, BSM searches
- * test of perturbative QCD: 4FS vs 5FS, modelling of flavoured jets
- * large NLO QCD corrections
- * mandatory to include NNLO QCD corrections!
- * missing ingredient: $2loop 2 \rightarrow 3$ (2 masses) amplitudes
- * prescription: massification technique

all ingredients are computed exactly except the two-loop contribution

[CMS: arXiv 1608.07561]

setup: NNLO NNPDF31 4F ,
$$\sqrt{s} = 8 \ TeV$$
 , $\mu_R = \mu_F = E_T(l\nu) + p_T(b_1) + p_T(b_2)$ $p_{T,l} > 30 \ GeV \ |\eta_l| < 2.1$, $p_{T,b} > 25 \ GeV \ |\eta_l| < 2.4$, $p_{T,i} > 25 \ GeV \ |\eta_l| < 2.4$

- * irreducible background to VH, single top production, BSM searches
- * test of perturbative QCD: 4FS vs 5FS, modelling of flavoured jets
- * large NLO QCD corrections
- * mandatory to include NNLO QCD corrections!
- * missing ingredient: $2loop 2 \rightarrow 3$ (2 masses) amplitudes
- * prescription: massification technique

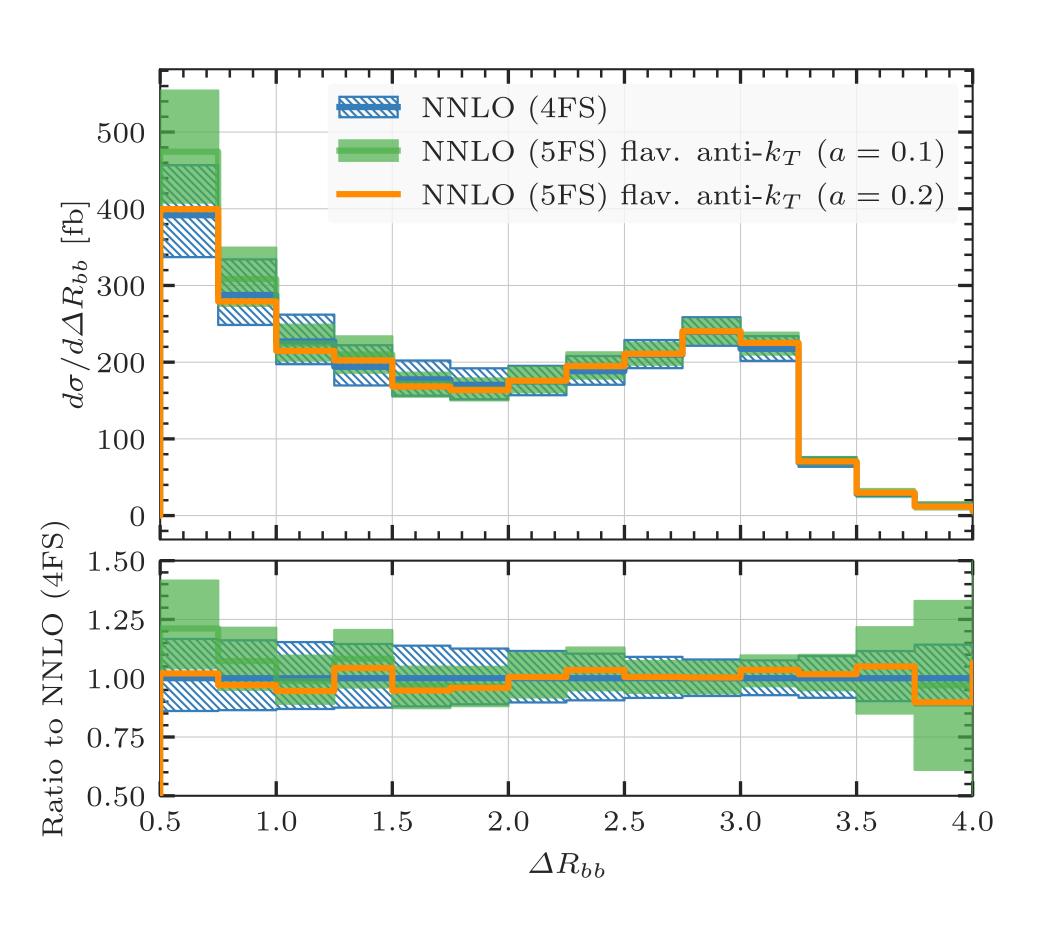
all ingredients are computed exactly except the two-loop contribution

- we construct a **mapping** to project the massive bottom momenta to the massless ones (preserve the four momentum of the $b\bar{b}$ pair)
- we rely on the leading-colour two-loop massless amplitudes for W+4 partons [Abreu at al. (2021)] [Badger at al. (2021)]
- reliability of the procedure:
 - the discrepancy between the exact and massified virtual contribution at NLO is only 3% of the NLO correction
 - the part of the two-loop virtual amplitude computed in LCA contributes at the 2% level of the full NNLO correction

[CMS: arXiv 1608.07561]

setup: NNLO NNPDF31 4F ,
$$\sqrt{s} = 8 \ TeV$$
 , $\mu_R = \mu_F = E_T(l\nu) + p_T(b_1) + p_T(b_2)$

$$p_{T,l} > 30 \, GeV \, |\eta_l| < 2.1 \,, \, p_{T,b} > 25 \, GeV \, |\eta_l| < 2.4 \,, \, p_{T,j} > 25 \, GeV \, |\eta_l| < 2.4$$



order	$\sigma^{ m 4FS}[{ m fb}]$	$\sigma_{a=0.05}^{\rm 5FS}[{ m fb}]$	$\sigma_{a=0.1}^{5\mathrm{FS}}$ [fb]	$\sigma_{a=0.2}^{\mathrm{5FS}}\left[\mathrm{fb}\right]$
LO	$210.42(2)^{+21.4\%}_{-16.2\%}$	$262.52(10)^{+21.4\%}_{-16.1\%}$	$262.47(10)^{+21.4\%}_{-16.1\%}$	$261.71(10)^{+21.4\%}_{-16.1\%}$
NLO	$468.01(5)^{+17.8\%}_{-13.8\%}$	$500.9(8)^{+16.1\%}_{-12.8\%}$	$497.8(8)_{-12.7\%}^{+16.0\%}$	$486.3(8)_{-12.5\%}^{+15.5\%}$
NNLO	$649.9(1.6)^{+12.6\%}_{-11.0\%}$	$690(7)^{+10.9\%}_{-9.7\%}$	$677(7)^{+10.4\%}_{-9.4\%}$	$647(7)_{-9.4\%}^{+9.5\%}$

- comparison against the 5F massless computation [Poncelet et al. (2022)]
 - overall good agreement within the scale uncertainties
 - the uncertainties due to variation of $m_b \in [4.2,4.92] \, GeV$ are at 2% level (smaller than the ones due to the variation of a, $\sim 7\%$)
- large positive NNLO corrections: +40%
- still large perturbative uncertainties

setup: NNLO NNPDF31 luxqed, $\sqrt{s} = 13 \, TeV$, $m_W = 80.385 \, GeV$, $m_t = 173.2 \, GeV$, $\mu_R = \mu_F = (2m_t + m_W)/2$

- * relevant background for SM processes ($t\bar{t}H$, $t\bar{t}t\bar{t}$)
- * multi-lepton signature relevant for BSM sources
- * "special": large NLO QCD and EW corrections
- * well known **tension** between theory and experiments (excess at **1-2**σ **level**)

 [ATLAS-CONF-2023-019]

 [CMS: arXiv 2208.06485]
- * current NLO QCD + EW predictions, supplemented with multi-jet merging are affected by relatively large uncertainties
- * mandatory to include NNLO QCD corrections!
- * missing ingredient: $2loop 2 \rightarrow 3$ (2 masses) amplitudes

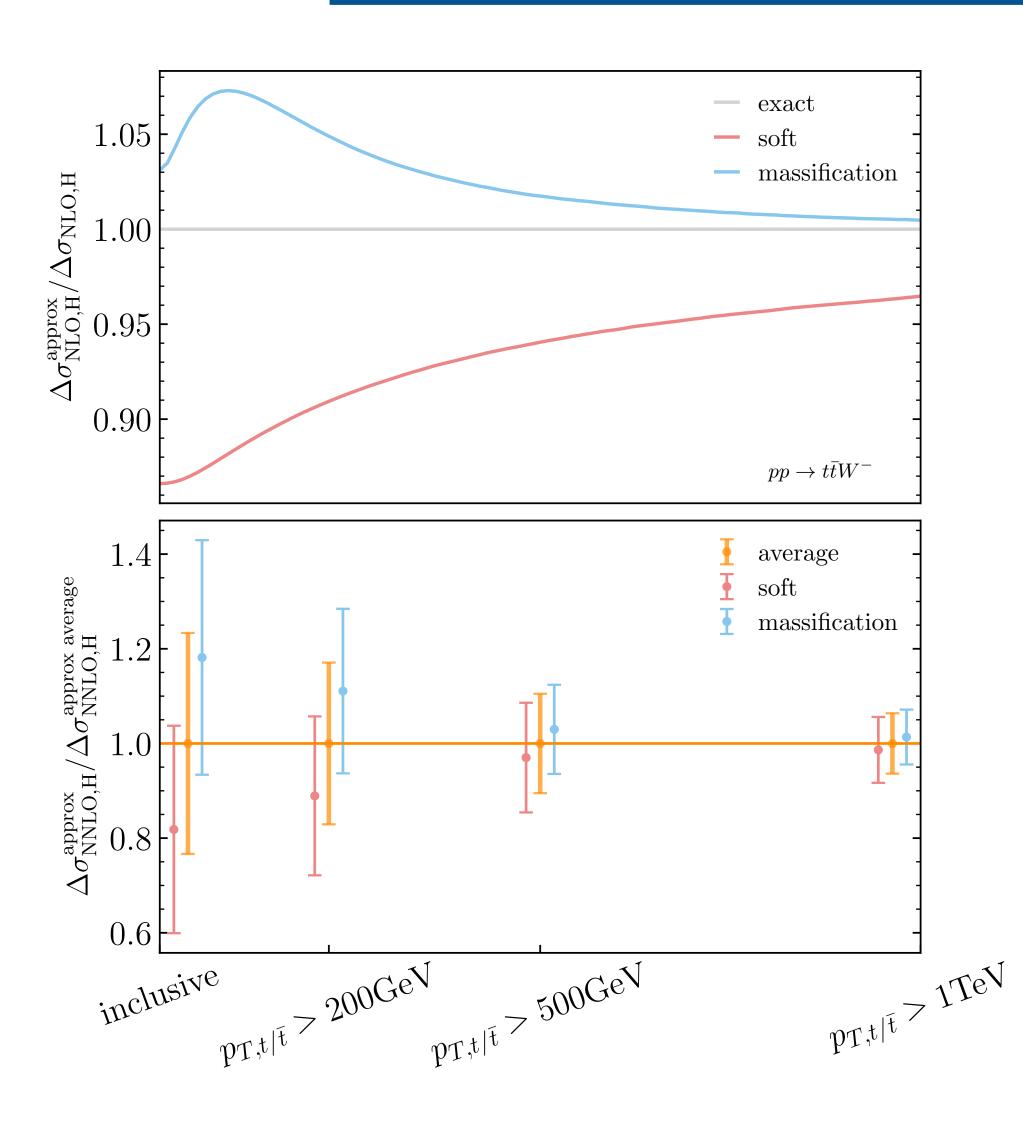
setup: NNLO NNPDF31 luxqed, $\sqrt{s} = 13 \, TeV$, $m_W = 80.385 \, GeV$, $m_t = 173.2 \, GeV$, $\mu_R = \mu_F = (2m_t + m_W)/2$

- * relevant background for SM processes ($t\bar{t}H$, $t\bar{t}t\bar{t}$)
- * multi-lepton signature relevant for BSM sources
- * "special": large NLO QCD and EW corrections
- * well known tension between theory and experiments (excess at $1-2\sigma$ level) [ATLAS-COM-2023-019] [CMS: arXiv 2208.06485]
- * current NLO QCD + EW predictions, supplemented with multi-jet merging are affected by relatively large uncertainties
- * mandatory to include NNLO QCD corrections!
- * missing ingredient: $2loop 2 \rightarrow 3$ (2 masses) amplitudes

we exploit both approximations: **soft approximation** and **massification technique**

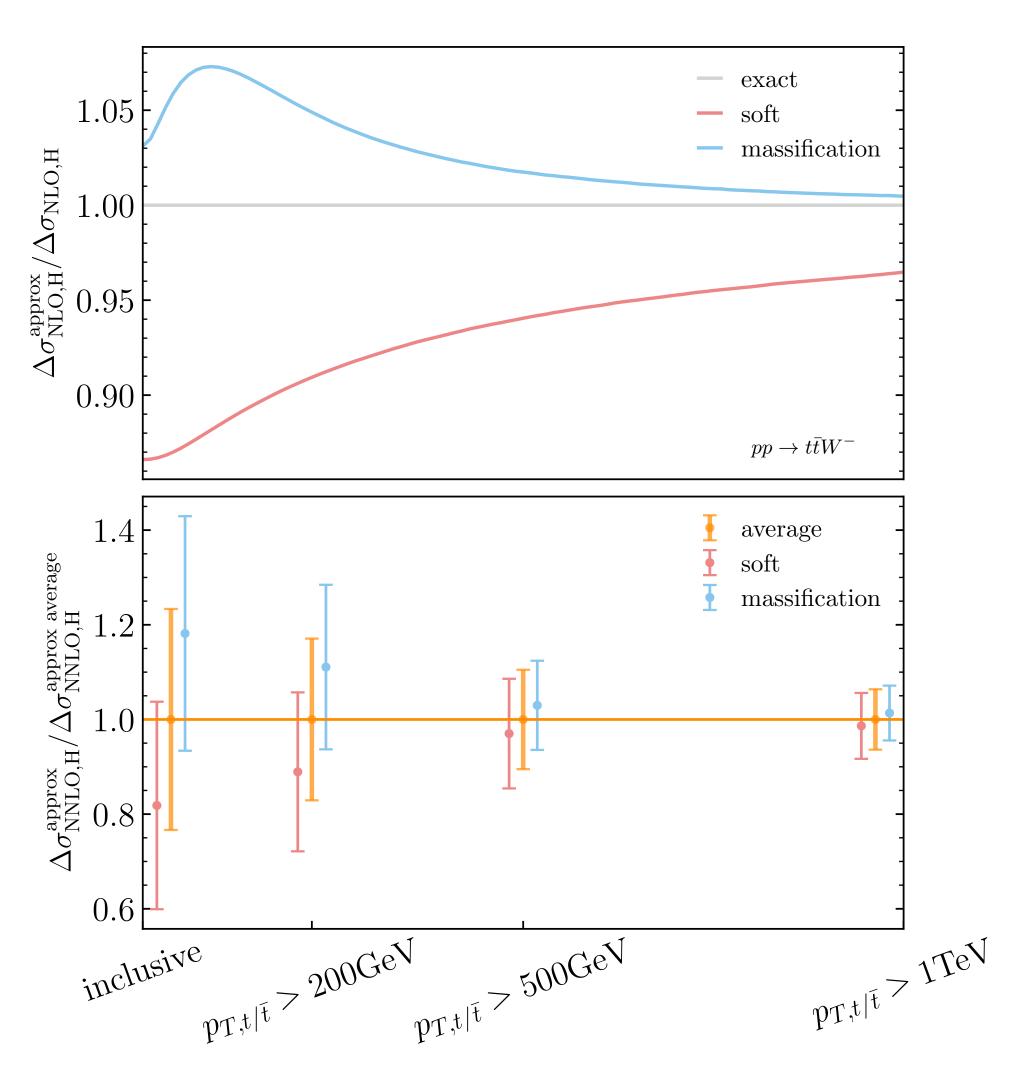
all ingredients are computed exactly except the two-loop contribution

setup: NNLO NNPDF31 luxqed, $\sqrt{s} = 13 \ TeV$, $m_W = 80.385 GeV$, $m_t = 173.2 GeV$, $\mu_R = \mu_F = (2m_t + m_W)/2$



- validation at NLO:
 - both approaches provide a **good quantitative approximation** of the exact virtual coefficient (discrepancy of 5-15%)
 - the soft approximation tends to **undershoot** the exact result while the massification **overshoots** it
 - clear **asymptotic behaviour** towards the exact result for high $p_{T,t}$ where both approximations are expected to perform better (faster convergence of the massification)

setup: NNLO NNPDF31 luxqed, $\sqrt{s} = 13 \ TeV$, $m_W = 80.385 GeV$, $m_t = 173.2 GeV$, $\mu_R = \mu_F = (2m_t + m_W)/2$

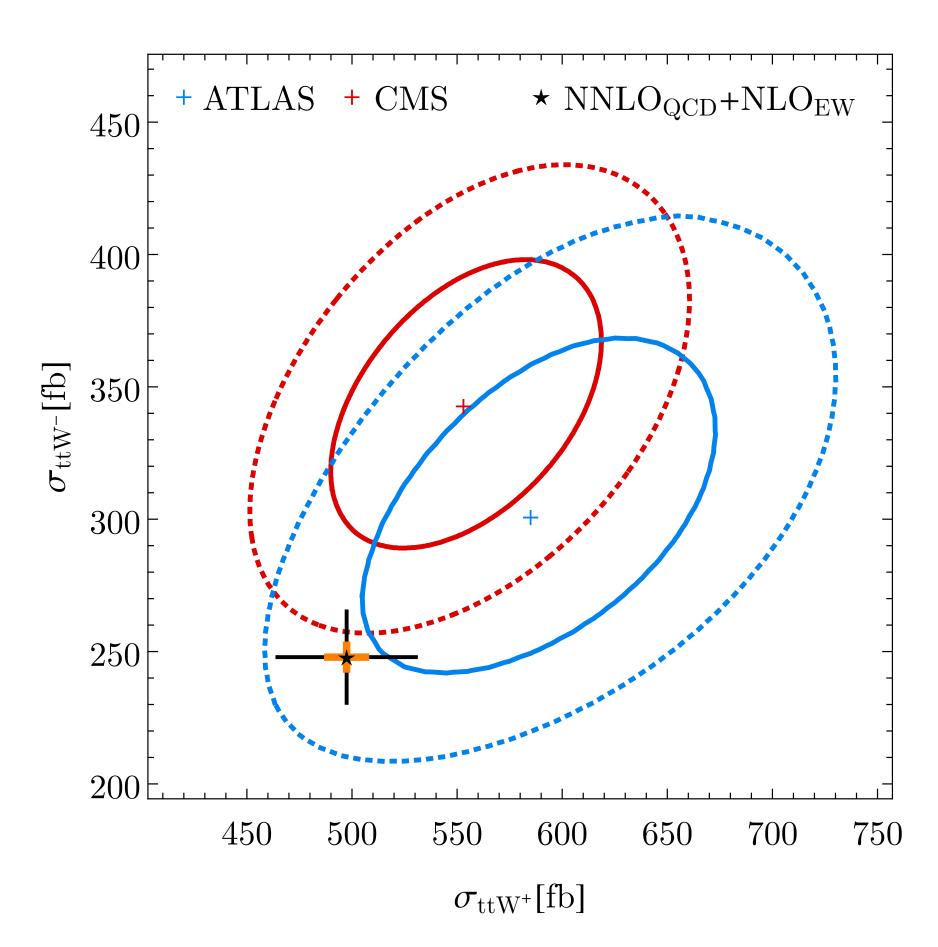


- based on the validation at NLO, we define **our best prediction** at NNLO as the **average** of the two approximated results
- b the **conservative uncertainty** on the approximated two-loop contribution is defined by linearly combining the uncertainties on the two approximations
- the two-loop contribution turns out to be 6-7% of the NNLO cross section (both for $t\bar{t}W^+$ and $t\bar{t}W^-$)

FINAL UNCERTAINTY:

 $\pm 1.8\%$ on σ_{NNLO} , $\mathcal{O}(25\%)$ on $\Delta\sigma_{NNLO,H}$

setup: NNLO NNPDF31 luxqed, $\sqrt{s} = 13 \ TeV$, $m_W = 80.385 GeV$, $m_t = 173.2 GeV$, $\mu_R = \mu_F = (2m_t + m_W)/2$



- comparison against the most recent ATLAS and CMS data:
 - the agreement is at the 1σ and 2σ level respectively
 - reduction of the perturbative scale uncertainties
 - systematic uncertainties due the two-loop approximation are under control and much smaller than the scale uncertainties

take-home message:

two completely different approximations lead to compatible results for the missing two-loop virtual contribution!!

[ATLAS-CONF-2023-019] [CMS: arXiv 2208.06485]

Summary & Outlook

summary:

- ▶ the current and expected precision of LHC data requires NNLO QCD predictions
- \triangleright the actual frontier is represented by NNLO corrections for $2 \rightarrow 3$ processes with several massive external legs
- \triangleright the IR divergencies are regularised within the q_T -subtraction framework: two-loop soft function for arbitrary kinematics
- ▶ the only missing ingredient is represented by the two-loop amplitudes:
 - first approximation based on a soft boson factorisation formula
 - second approximation based on the massification procedure of the corresponding massless amplitudes
- ▶ for all three processes considered ($t\bar{t}H$, $Wb\bar{b}$, $t\bar{t}W$), we have a **good control of the systematic uncertainties** associated to the approximation (much smaller than the perturbative uncertainties)

outlook:

- be test the performance of the soft approximation in a fiducial setup and at the differential level
- ightharpoonup match the $Wb\bar{b}$ fixed order calculation to parton shower
- explore other processes of the same class!

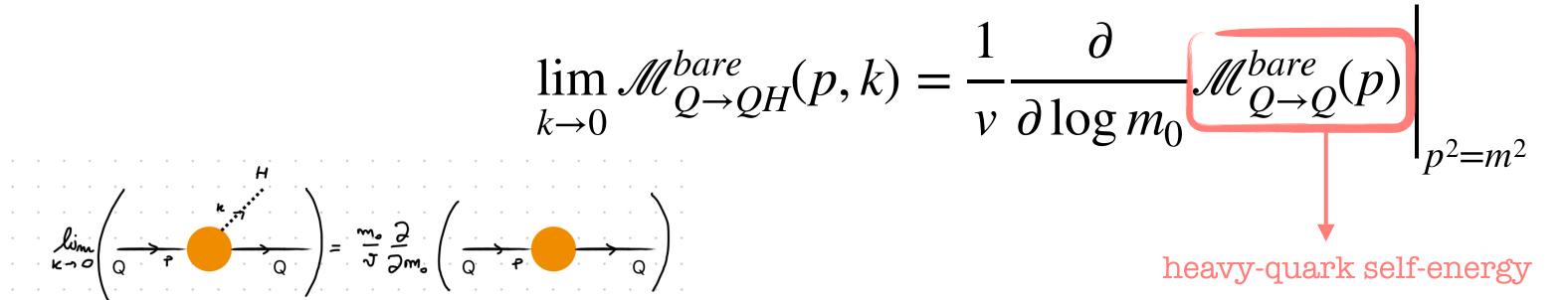
BACKUP SLIDES

Soft Higgs approximation: more details

[Shifman, Vainshtein, Voloshin, Zakharov (1979)]

by the effective coupling can also be derived by exploiting Higgs low-energy theorems (LETs)

[Kniehl, Spira (1995)]



Its effect is to shift the mass of the heavy quark:

$$m_0 \to m_0 \left(1 + \frac{H}{v} \right)$$

$$\mathcal{M}_{Q\to Q}^{bare}(p) = \bar{Q}_0 \left\{ m_0 [-1 + \sum_S(p)] + p \sum_V(p) \right\} Q_0$$
 [Broadhurst, Grafe, Gray, Schilcher (1990)] [Broadhurst, Gray, Schilcher (1991)]

$$\Sigma_{S}(p) = -\sum_{n=1}^{+\infty} \left[\frac{g_{0}^{2}}{(4\pi)^{D/2}(p^{2})^{\epsilon}} \right]^{n} \left(A_{n}(m_{0}^{2}/p^{2}) - B_{n}(m_{0}^{2}/p^{2}) \right)$$

$$\Sigma_{V}(p) = -\sum_{n=1}^{+\infty} \left[\frac{g_{0}^{2}}{(4\pi)^{D/2}(p^{2})^{\epsilon}} \right]^{n} B_{n}(m_{0}^{2}/p^{2})$$

- ▶ renormalisation of the quark mass and wave function $m_0\bar{Q}_0Q_0 = m\bar{Q}QZ_mZ_2$
- $\triangleright \overline{MS}$ renormalisation of the strong coupling + decoupling of the heavy quark

[Chetyrkin, Kniehl, Steinhauser (1997)]