

p-adic reconstruction of rational functions in multi-loop amplitude calculations

Herschel A. Chawdhry University of Oxford

Loopfest 2023 (SLAC) Monday 26th June 2023

Introduction

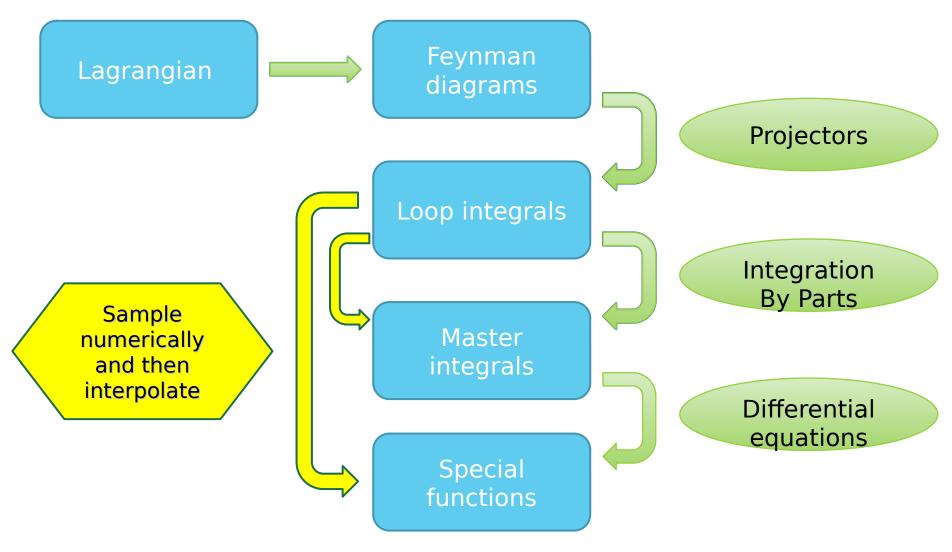
- Calculation of large rational functions is a central bottleneck in multi-loop amplitude computations
- In recent years, finite-field numeric methods have widely been employed to calculate multi-loop amplitudes and IBPs
- In parallel, it has been observed that symbolic expressions can be significantly simplified by partial fractioning
- This talk: can we reconstruct directly in partial-fractioned form?

- 1. Introduction
 - 1. Why numerical reconstruction?
 - 2. Why partial-fractioned form?
 - *p*-adic numbers
- Details of interpolation strategy
- 3. Results
- 4. Conclusion

Finite-field methods

- Long-used in computer algebra (e.g. Mathematica), now also used in physics
 - **e.g.** [1406.4513 Manteuffel, Schabinger], [1608.01902 Peraro]
 - Has enabled calculation of many new multi-loop multi-scale amplitudes
- Core idea: perform repeated numerical calculations and then interpolate result
 - Bypasses large intermediate expressions
 - Generic feature of symbolic calculations (not specific to physics)
 - Use F_p instead of R. (advantage: exact results)
- Most computing time is spent evaluating the numerical probes
 - Number of probes is determined by the polynomial degrees of the expressions in the final result
- Reconstruct analytical results using interpolation and Chinese remainder theorem
 - Various libraries e.g. FireFly, FiniteFlow

A typical multi-loop toolbox



- 1. Introduction
 - 1. Why numerical reconstruction?
 - 2. Why partial-fractioned form?
 - *p*-adic numbers
- Details of interpolation strategy
- 3. Results
- 4. Conclusion

Partial fractioning

- Widespread use in recent years to simplify final (and intermediate) results of heavy calculations
- Popular libraries: Singular, MultivariateApart
- Example throughout this talk: the largest rational function in the largest IBP coefficient needed for 2-loop 5-point massless non-planar QCD amplitudes
 - Analytic expression courtesy of authors (Agarwal, Buccioni, von Manteuffel, Tancredi) of [2105.04585]
 - Partial-fractioned form is O(100) times smaller than commondenominator form
 - ~600 MB vs ~5 MB
 - \sim 1,400,000 free parameters vs \sim 14,000 free parameters
- This talk: from numeric evaluations, reconstruct such expressions directly in partial-fractioned form

Why reconstruct in partialfractioned form?

- Surprise: the 125-times simplification doesn't occur if, prior to partial fractioning, we randomise the numerical coefficients in the numerator of common-denominator form
 - Therefore, simplification comes from physics, not computer algebra
 - Can we exploit this?
 - Yes, if we can reconstruct directly into partial-fractioned form
 - Can we (fully) explain this?
- We will reconstruct piece-by-piece
 - Added benefit: partial-fractioned terms have further structure, which we can spot - and (future work) exploit - on the fly

- 1. Introduction
 - 1. Why numerical reconstruction?
 - 2. Why partial-fractioned form?
 - p-adic numbers
- 2. Details of interpolation strategy
- 3. Results
- 4. Conclusion

A brief history of *p*-adic numbers

- Described/explored by Kurt Hensel in 1897
- Widely used in computer algebra for several decades
 - Finding rational solutions to various types of equations
 - Reconstruct a rational number from its p-adic expansion
- Appearance in particle physics too!
 - p-adic / adelic quantum mechanics / string theory [since '80s/'90s]
 - Ansatze for amplitudes [De Laurentis & Page, 2022]
 - Constrained ansatze in common-denominator form, to then be fitted with standard finite-field methods
- This talk: interpolate rational functions directly in partial-fractioned form, from p-adic evaluations.

Brief intro to p-adic numbers

- \triangleright p-adic numbers Q_p are an alternative completion of the rationals Q_p
 - Alternative metric: $|(a * p^n / b)|_p = 1/p^n$, where p is prime and a,b,p are coprime
 - For each prime p, a separate field Q_p
 - Nice results, e.g. Hasse's local-global principle: certain equations have solutions in Q iff they have solutions in R and in each Q_p
- Can expand any rational number x as a power series in p
 - e.g. $80 = 3 + 4*7 + 1*7^2$
 - e.g. $-1 = 6 + 6*7 + 6*7^2 + 6*7^3 + O(7^4)$
 - e.g. $(2/21) = 3*7^{-1} + 2 + 2*7 + 2*7^2 + 2*7^3 + O(7^4)$
 - If x is integer then the coefficient of p^0 is (x mod p)
 - Expansion operation commutes with all arithmetical operations + * /

- 1. Introduction
 - 1. Why numerical reconstruction?
 - 2. Why partial-fractioned form?
 - *p*-adic numbers
- Details of interpolation strategy
- 3. Results
- 4. Conclusion

Strategy for interpolation

- Assume denominator (in common-denominator form) is known, and factorised.
- 2. Make list of all possible subsets of the denominator factors
- 3. Use p-adic probes to filter the candidates
- Use more p-adic probes to reconstruct numerator of a candidate
- 5. Repeat steps 3 and 4
 - Gives more information that just doing step 3 once.
 - See also [De Laurentis, Maitre, 1904.04067], which uses high-precision floating-point to calculate gggggg @ 1L

P-adic <u>filtering</u>

- Select a subset of denominator factors (ignoring powers)
- Generate a p-adic point that makes each of those factors become padically small (possibly with weights)
 - e.g. $\{S_{12}, S_{12}-S_{23}, S_{34}\} \sim \{O(p^2), O(p), O(p)\}$
- Evaluate the rational function at that p-adic point, and note the order of its "p-adic pole"
 - e.g. rational function $\sim O(1/p^4)$
 - Note: small primes suffice, e.g. p=101
- For safety, repeat with \sim 2-3 more points, keeping same weights. (Preferably change p each time)
- Filter out any candidate factors whose p-adic pole is too strong
 - e.g. $1/[s_{12}^2 * (s_{12} s_{23}) * s_{34}] \sim O(1/p^5)$ at the above point

P-adic reconstruction

- Select a subset of denominator factors (ignoring powers) and weights
 - e.g. $\{s_{12}, s_{12}-s_{23}, s_{34}\} \sim \{O(p^2), O(p), O(p)\}$
- Identify all candidates that could generate highest pole
- Write down ansatz for numerators of those candidates
 - For one candidate, typically 1-50 free parameters
 - As we'll see, numerators of partial-fractioned terms often turn out to be simpler than naïve expectation. Future work: smarter ansatz.
- For fixed p, generate several points that give the p-adic weights chosen above
- Evaluate the rational function at those points.
 - Coefficient of leading pole = ansatz mod p
- Interpolate ansatz, mod p
- Repeat for other choices of p
 - ▶ In this work, typically used ~5 primes of O(100)
- Use Chinese Remainder Theorem (+rational reconstruction) to reconstruct ansatz in Q
 - Must do this before proceeding to other candidates

Choice of probe weights

- Simple choice: exponential weights
 - Naively, might expect to need large powers to uniquely pick out one partialfractioned term.
 - e.g. if singularity degrees are known to be bounded to be below 10, we can set $(s_{12}, s_{23}, s_{34}) \sim (p^{100}, p^{10}, p)$. Then if the rational function diverges there like $1/p^{273}$, we know we have picked out the term $1/(s_{12}^2 s_{23}^7 s_{34})$
 - But this strategy would require evaluating to very high p-adic precision.
- Smart choice: low weights
 - Choose a limited set of small weights
 - e.g. $(s_{12}, s_{23}, s_{34}) \sim (p,p^2,p)$ or (p,p,p)
 - Repeatedly cycle through this set, trying to find a probe point that picks out a single candidate partial-fractioned term.
 - In this work, used \sim 6k probe points, with each kinematic weight always <5.
 - Heuristically, seems to work

A complication: relations / bases

There are relations between partial-fractioned candidate terms

e.g.
$$\frac{1}{x^2 y} - \frac{1}{x^2 (x + y)} - \frac{1}{x y (x + y)} = 0$$

- Choice of basis:
 - Basis in MultivariateApart / Leinartas's decomposition
 - Chosen depending on a specified variable ordering
 - Avoids introducing new spurious factors, but can still introduce spurious higher powers of existing factors
 - Unique basis -> allows vectorised addition in symbolic calculations
 - Basis in this work: prioritises avoiding introducing spurious higher powers
 - Basis customised to given rational function, so that no partial-fractioned term has stronger divergence than the overall function
 - Further study needed to see which basis choices are "best"

- 1. Introduction
 - 1. Why numerical reconstruction?
 - 2. Why partial-fractioned form?
 - *p*-adic numbers
- 2. Details of interpolation strategy
- 3. Results
- 4. Conclusion

Results

- Reconstructed largest rational function in largest IBP coefficient needed for non-planar 2-loop 5-point massless QCD amplitudes.
- Number of free parameters: 52.5k (vs 1.37M in common-denominator form)
 - Of the 52.5k, only 15.4k are non-zero
- Number of numerical probes: see later slide

Results - <u>preliminary</u>

Representation	Terms	Size (ByteCount)	Free parameters	Digits of information	Cost
Common denominator	1	605M	1.37M	O(20M)	1.37M finite-field probes per prime field
MultivariateApart	2.5k	4.7M	14.7k	O(300k)	Input must be analytic
P-adic reconstruction (this work)	2.8k	5.5M	52.5k (of which 15.4k turn out to be non-zero)	O(330k)	#p-adic probes: see later slide

Results - details/caveats

- Common-denominator form
 - Numerator is in fully expanded form
 - Denominator is factorised
- MultivariateApart
 - Default settings
- P-adic reconstruction
 - Numerator reconstructed in fully-expanded form

Number of p-adic probes

- (preliminary) Number of p-adic probes during this calculation
 - Filtering: ~6k probes per p-adic field (but fewer probes would probably suffice)
 - Reconstruction: ~60k probes per p-adic field
 - But can greatly reduce this by recycling probes
 - e.g. probes with $(s_{23}, s_{34}) \sim (p^2, p^1)$ can be used to reconstruct $1/(s_{23}{}^3s_{34}{}^3)$ but also $1/(s_{23}{}^3s_{34}{}^2)$, $1/(s_{23}{}^2s_{34}{}^3)$, $1/(s_{23}s_{34}{}^3)$, etc
 - Number of p-adic fields used: typically 5, e.g. Q_{101} , Q_{103} , Q_{107} , Q_{109} , Q_{113}

A closer look at the reconstructed result

- Of the 52.5k reconstructed coefficients, only 15.4k of them are non-zero.
 - \triangleright e.g. some p-adically reconstructed terms:

$$\frac{-\frac{693}{400} \ t23^2 \ t51^5 - \frac{693}{200} \ t23 \ t51^5 \ x12 - \frac{693 \ t51^5 \ x12^2}{400}}{\left(-7 + 2 \ d\right) \ t45^3 \ (t34 - t51 - x12)^3} + \frac{\left(\text{Notice: only terms} \sim t_{51}^5 \ \text{are non-zero}\right)}{\left(-8 + 3 \ d\right) \ t45^3 \ (t34 - t51 - x12)^3} + \frac{-\frac{28}{225} \ t23^2 \ t51^5 - \frac{56}{225} \ t23 \ t51^5 \ x12 - \frac{28 \ t51^5 \ x12^2}{225}}{\left(-8 + 3 \ d\right) \ t45^3 \ (t34 - t51 - x12)^3} + \frac{-\frac{1}{144} \ t23^2 \ t51^5 - \frac{1}{72} \ t23 \ t51^5 \ x12 - \frac{t51^5 \ x12^2}{144}}{t45^3 \ (t34 - t51 - x12)^3} + \frac{\frac{3 \ t23^2 \ t51^5}{1400} + \frac{320}{700} \ t23 \ t51^5 \ x12 + \frac{160 \ t51^5 \ x12^2}{63}}{\left(-10 + 3 \ d\right) \ t45^3 \ (t34 - t51 - x12)^3} + \frac{160 \ t23^2 \ t51^5}{63} + \frac{320}{63} \ t23 \ t51^5 \ x12 + \frac{160 \ t51^5 \ x12^2}{63}}{\left(-10 + 3 \ d\right) \ t45^3 \ (t34 - t51 - x12)^3} + \frac{100 \ t23^2 \ t51^5}{63} + \frac{320}{63} \ t23 \ t51^5 \ x12 + \frac{160 \ t51^5 \ x12^2}{63}}{(-10 + 3 \ d) \ t45^3 \ (t34 - t51 - x12)^3} + \frac{100 \ t23^2 \ t51^5}{63} + \frac{320}{63} \ t23 \ t51^5 \ x12 + \frac{160 \ t51^5 \ x12^2}{63}}{(-10 + 3 \ d) \ t45^3 \ (t34 - t51 - x12)^3} + \frac{100 \ t23^2 \ t51^5}{63} + \frac{320}{63} \ t23 \ t51^5 \ x12 + \frac{160 \ t51^5 \ x12^2}{63}}{(-10 + 3 \ d) \ t45^3 \ (t34 - t51 - x12)^3} + \frac{100 \ t23^2 \ t51^5}{63} + \frac{1$$

Furthermore, these pieces can be combined to become:

$$-\frac{\left(-2+d\right){}^{2}d\left(2+d\right)\ t51^{5}\ (t23+x12){}^{2}}{8\ (-1+d)\ \left(-7+2\ d\right)\ \left(-10+3\ d\right)\ \left(-8+3\ d\right)\ t45^{3}\ (t34-t51-x12){}^{3}}$$

- Future work: exploit this to further simplify/speed up?
 - Does this simplicity appear only at the highest poles?

Further technical details: some options for performing *p*-adic probes

- One option: work directly with power-series in p up to some chosen p-adic order.
 - Possible loss of precision during probe (but better controlled than in floating-point real numbers)
- Another option: evaluate at integer points which happen to match the desired padic series at the desired p-adic order, then re-expand result as series in p
 - No loss of precision at intermediate stages of calculation
 - Size of integer probe result scales linearly with number of digits, and so with p-adic order
 - Can use finite fields to perform integer probes
 - The size of the finite field does not need to match the p of the p-adic field
 - e.g. use 64-bit finite fields to evaluate at an integer point that is special when viewed in Q_{101}

- 1. Introduction
 - 1. Why numerical reconstruction?
 - 2. Why partial-fractioned form?
 - *p*-adic numbers
- Details of interpolation strategy
- 3. Results
- 4. Conclusion

Summary and Outlook

- Method for p-adic reconstruction of rational functions directly in partial-fractioned form
 - Demonstrated by reconstructing the largest rational function in largest IBP coefficient needed for non-planar 2-loop 5-point massless QCD amplitudes.
- Harnesses the simplification of rational functions under partial fractioning
 - This comes from physics, not from computer algebra
 - (preliminary) Requires fewer numerical evaluations
 - Produces simpler expressions
 - Promising tool for exploring even further simplification.
 - Seek sufficient analytic understanding of the source of this simplification, so that it can be used to further improve speed/reach/elegance of future calculations