Loopfest 2023, 26-28 June

Master Integrals for electroweak corrections to $gg \rightarrow \gamma \gamma$

Gabriele Fiore

Based on: 2306.03956 In collaboration with Ciaran Williams

Loopfest 2023, 26-28 June

Motivations and Introduction

Loopfest 2023 Motivation: Big Picture

Diphoton channel plays a crucial role in Higgs phenomenology. High precision data requires accurate theoretical predictions.

ATLAS Collaboration, 2012 Gavardi, Oleari, Re, 2022

Loopfest 2023

Diphoton Predictions:

 $pp \rightarrow \gamma \gamma$

Full NLO:

➢*Binoth, Guillet, Pilon, Werlen, '99*

NNLO, QCD:

➢*Catani, Cieri, de Florian, Ferrera, Grazzini, 2011*

➢*Campbell, Ellis, Li, Williams, 2016*

NNLO, q_t -resummed:

➢NNLL: *Cieri, Coradeschi, de Florian, 2015*

➢N3LL: *Neumann, 2021*

N3LO amplitude:

➢*Caola, Manteuffel, Tancredi, 2020*

NLO EW corrections:

➢*Bierweiler, Kasprzik, Kühn, 2013*

QCD corrections + jets:

➢*Del Duca, Maltoni, Nagy, Trocsanyi, 2003*

➢*Gehrmann, Greiner, Heinrich, 2013*

➢*Badger, Guffanti, Yundin, 2013*

 $gg \rightarrow \gamma \gamma$

NNLO:

➢*Dicus, Willenbrock, '88* N3LO, QCD (light quarks): ➢Light: *Bern, Dixon, Schmidt 2002* ➢Heavy: *Maltoni, Mandal, Zhao, 2018* N3LO + jet, QCD corrections: ➢*Badger, Gehrmann, Marcoli, Moodie, 2021*

3 Loops (N4LO), QCD:

➢*Bargiela, Caola, Manteuffel, Tancredi, 2022*

Loopfest 2023

Motivation: gg Channel

As part of the partonic process $pp \rightarrow \gamma \gamma$, the corrections enter at NNLO in QCD.

- ➢Sizable contributions to the cross-section due to large initial-state gluon flux.
- \triangleright Given the quality of recent LHC data, $\mathcal{O}(\alpha)$ corrections for the $gg \rightarrow \gamma \gamma$ channel are required to improve the precision our theoretical predictions.

Loopfest 2023

Motivation: Interference

➢Higgs width is too narrow to be directly measured at LHC. Necessity for indirect bounds.

 \triangleright The interference between the diphoton channel $gg \to H \to \gamma \gamma$ and the QCD background $gg \to \gamma \gamma$ plays a crucial role in that regard(*Dixon, Siu, 2006; Martin, 2012; Dixon, Li, 2013*).

$$
\hat{\delta}_{gg \to H \to \gamma\gamma} = -2\left(\hat{s} - m_H^2\right) \frac{\text{Re}(\mathcal{A}_{gg \to H} \mathcal{A}_{H \to \gamma\gamma} \mathcal{A}_{\text{cont}}^*)}{\left(\hat{s} - m_H^2\right)^2 + m_H^2 \Gamma_H^2} - 2m_H \Gamma_H \frac{\text{Im}(\mathcal{A}_{gg \to H} \mathcal{A}_{H \to \gamma\gamma} \mathcal{A}_{\text{cont}}^*)}{\left(\hat{s} - m_H^2\right)^2 + m_H^2 \Gamma_H^2}
$$
\nAnti-symmetric \rightarrow mass shift

\nSymmetric \rightarrow width bounds +

cross-section reduction

Loopfest 2023

Motivation: Interference

 \triangleright NLO analysis shows mass shift effect of ~ 70MeV and width bounded to 20-40 Γ_H^{SM} (Campbell, Carena, Harnik, Liu, 2017).

➢Ongoing effort to extract the NNLO in QCD(Bargiela, Buccioni, Caola, Devoto, Manteuffel, Tancredi, 2022).

➢With the QCD predictions under control, the EW corrections start to become more relevant.

Loopfest 2023

Amplitude and Topologies

- ➢We present the evaluation of the master integrals for massless quark loops.
- ➢Different topologies depending on the vector boson flow. The complexity varies significantly among them.
- \triangleright To extract the helicity amplitude, we introduce 8 projectors in order to extract the form factors.

Loopfest 2023

Tensor structures

- \triangleright We can therefore write the helicity amplitude as combination of form factors.
- ➢The number of independent tensor structures corresponds to the number of physical helicity configurations.
- ➢The projectors are built from the tensor structures.
- ➢The form factors contain thousands of loop integrals \rightarrow MIs reduction!

SLAC, June 26th 2023

$$
\mathcal{A}(s,t)=\sum_{i=1}^8 F_i\,T_i.
$$

 $T_1 = \epsilon_1 \cdot k_3 \epsilon_2 \cdot k_1 \epsilon_3 \cdot k_1 \epsilon_4 \cdot k_2$, $T_2 = \epsilon_1 \cdot k_3 \epsilon_2 \cdot k_1 \epsilon_3 \cdot \epsilon_4$, $T_3 = \epsilon_1 \cdot k_3 \epsilon_3 \cdot k_1 \epsilon_2 \cdot \epsilon_4$ $T_4 = \epsilon_1 \cdot k_3 \epsilon_4 \cdot k_2 \epsilon_2 \cdot \epsilon_3$, $T_5 = \epsilon_2 \cdot k_1 \epsilon_3 \cdot k_1 \epsilon_1 \cdot \epsilon_4$, $T_6 = \epsilon_2 \cdot k_1 \epsilon_4 \cdot k_2 \epsilon_1 \cdot \epsilon_3$, $T_7 = \epsilon_3 \cdot k_1 \epsilon_4 \cdot k_2 \epsilon_1 \cdot \epsilon_2$ $T_8 = \epsilon_1 \cdot \epsilon_2 \epsilon_3 \cdot \epsilon_4 + \epsilon_1 \cdot \epsilon_4 \epsilon_2 \cdot \epsilon_3 + \epsilon_1 \cdot \epsilon_3 \epsilon_2 \cdot \epsilon_4$

$$
\sum_{pol} P_i T_j = \delta_{ij}
$$

Loopfest 2023

Reduction to MIs

 D_2 ➢We introduce an auxiliary topology to D_3 account for all the possible scalar products $D_8\,$ Ω involving the loop momenta. D_{4} D_6 3 ➢All the scalar integrals can be written in D_9 D_7 terms of the auxiliary topology's propagators. ➢These integrals are reduced to a minimal set $I_{a_1...a_9}^{\text{N}_{\text{II}}}=C(\epsilon)\int \frac{d^d\ell_1}{(2\pi)^d}\frac{d^d\ell_2}{(2\pi)^d}\frac{1}{D_1^{a_1}...D_n^{a_9}}$ of Master Integrals (MIs) by using Kira (*Klappert, Lange, Maierhöfer, Usovitsch, 2023*).

Loopfest 2023

DEQ: Overview

➢General strategy to evaluate MIs: Differential Equation method (DEQ) (*Remiddi, 1997*).

Laporta Basis
$$
\vec{\mathcal{I}}(\{x_i\})
$$
 \longrightarrow $\frac{\partial}{\partial x_i}\vec{\mathcal{I}}(\{x_i\}) = \mathcal{A}(\{x_i\}, \epsilon)\vec{\mathcal{I}}(\{x_i\})$

➢The complexity goes up pretty quickly for the Laporta Basis. Solution: Canonical Basis (*Henn, 2013*).

$$
\text{Canonical Basis } \vec{\mathcal{G}}(\{x_i\}) \longrightarrow \frac{\partial}{\partial x_i} \vec{\mathcal{G}}(\{x_i\}) = \epsilon \mathcal{A}(\{x_i\}) \vec{\mathcal{G}}(\{x_i\})
$$

➢The factorization of the space-time parameter allows to write the solution in an iterative way:

$$
\vec{\mathcal{G}}(\{x_i\}) = \left(1 + \epsilon \int_{\gamma} d\mathcal{A} + \epsilon^2 \int_{\gamma} d\mathcal{A} d\mathcal{A} + \dots\right) \vec{\mathcal{G}}(\{x_i^0\})
$$

Loopfest 2023

DEQ: Canonical Basis

 \triangleright The kinematic information is encoded in the alphabet $\{\eta_k\}$ of the differential equation:

$$
d\mathcal{A} = \sum_k \mathcal{M}_k d\log \eta_k
$$

➢The solution for rational letters is expressed in terms of Goncharov Polylogarithms (GPLs) (*Goncharov, 1998*).

➢Efficient numerical evaluation of GPLs using GiNaC(*Vollinga, 2005*)/HandyG(*Naterop, Signer, Ulrich, 2016*).

➢Non-rational letters may or may not be represented in terms of GPLs. We implement a generalized approach based on Chen's Iterated Integrals(*Chen, 2005; Caron-Huot, Henn, 2014*).

Loopfest 2023

Loopfest 2023

SLAC, June 26th 2023

DEQ: Solution

$$
\vec{\mathcal{G}}^{(1)}(\{x_i\}) = \int_{\gamma} d\mathcal{A} \vec{\mathcal{G}}^{(0)}(\{x_i^0\}) + \vec{\mathcal{G}}^{(1)}(\{x_i^0\})
$$

Loopfest 2023

$$
\vec{\mathcal{G}}^{(1)}(\{x_i\}) = \int_{\gamma} d\mathcal{A} \vec{\mathcal{G}}^{(0)}(\{x_i^0\}) + \vec{\mathcal{G}}^{(1)}(\{x_i^0\})
$$

$$
\vec{\mathcal{G}}^{(2)}(\{x_i\}) = \int_{\gamma} d\mathcal{A} \, d\mathcal{A} \, \vec{\mathcal{G}}^{(0)}(\{x_i^0\}) + \int_{\gamma} d\mathcal{A} \, \vec{\mathcal{G}}^{(1)}(\{x_i^0\}) + \vec{\mathcal{G}}^{(2)}(\{x_i^0\})
$$

Loopfest 2023

$$
\vec{\mathcal{G}}^{(1)}(\{x_i\}) = \int_{\gamma} d\mathcal{A} \vec{\mathcal{G}}^{(0)}(\{x_i^0\}) + \vec{\mathcal{G}}^{(1)}(\{x_i^0\})
$$
\n
$$
\vec{\mathcal{G}}^{(2)}(\{x_i\}) = \int_{\gamma} d\mathcal{A} d\mathcal{A} \vec{\mathcal{G}}^{(0)}(\{x_i^0\}) + \int_{\gamma} d\mathcal{A} \vec{\mathcal{G}}^{(1)}(\{x_i^0\}) + \vec{\mathcal{G}}^{(2)}(\{x_i^0\})
$$
\n
$$
\vec{\mathcal{G}}^{(3)}(\{x_i\}) = \int_{\gamma} d\mathcal{A} d\mathcal{A} d\mathcal{A} \vec{\mathcal{G}}^{(0)}(\{x_i^0\}) + \int_{\gamma} d\mathcal{A} d\mathcal{A} \vec{\mathcal{G}}^{(1)}(\{x_i^0\}) + \int_{\gamma} d\mathcal{A} \vec{\mathcal{G}}^{(2)}(\{x_i^0\}) + \vec{\mathcal{G}}^{(3)}(\{x_i^0\})
$$

Loopfest 2023

The solution can be evaluated (up to boundary constants) at any fixed order:

$$
\begin{split}\n\vec{\mathcal{G}}^{(1)}(\{x_i\}) &= \int_{\gamma} d\mathcal{A} \vec{\mathcal{G}}^{(0)}(\{x_i^0\}) + \vec{\mathcal{G}}^{(1)}(\{x_i^0\}) \\
\vec{\mathcal{G}}^{(2)}(\{x_i\}) &= \int_{\gamma} d\mathcal{A} \, d\mathcal{A} \vec{\mathcal{G}}^{(0)}(\{x_i^0\}) + \int_{\gamma} d\mathcal{A} \vec{\mathcal{G}}^{(1)}(\{x_i^0\}) + \vec{\mathcal{G}}^{(2)}(\{x_i^0\}) \\
\vec{\mathcal{G}}^{(3)}(\{x_i\}) &= \int_{\gamma} d\mathcal{A} \, d\mathcal{A} \, d\mathcal{A} \vec{\mathcal{G}}^{(0)}(\{x_i^0\}) + \int_{\gamma} d\mathcal{A} \, d\mathcal{A} \vec{\mathcal{G}}^{(1)}(\{x_i^0\}) + \int_{\gamma} d\mathcal{A} \vec{\mathcal{G}}^{(2)}(\{x_i^0\}) + \vec{\mathcal{G}}^{(3)}(\{x_i^0\}) \\
\vec{\mathcal{G}}^{(4)}(\{x_i\}) &= \int_{\gamma} d\mathcal{A} \, d\mathcal{A} \, d\mathcal{A} \, d\mathcal{A} \vec{\mathcal{G}}^{(0)}(\{x_i^0\}) + \int_{\gamma} d\mathcal{A} \, d\mathcal{A} \, d\mathcal{A} \vec{\mathcal{G}}^{(1)}(\{x_i^0\}) + \int_{\gamma} d\mathcal{A} \, d\mathcal{A} \vec{\mathcal{G}}^{(2)}(\{x_i^0\}) \\
&+ \int_{\gamma} d\mathcal{A} \vec{\mathcal{G}}^{(3)}(\{x_i^0\}) + \vec{\mathcal{G}}^{(4)}(\{x_i^0\}).\n\end{split}
$$

Loopfest 2023

The solution can be evaluated (up to boundary constants) at any fixed order:

$$
\begin{split}\n\vec{\mathcal{G}}^{(1)}(\{x_i\}) &= \int_{\gamma} d\mathcal{A} \vec{\mathcal{G}}^{(0)}(\{x_i^0\}) + \vec{\mathcal{G}}^{(1)}(\{x_i^0\}) \\
\vec{\mathcal{G}}^{(2)}(\{x_i\}) &= \int_{\gamma} d\mathcal{A} \, d\mathcal{A} \vec{\mathcal{G}}^{(0)}(\{x_i^0\}) + \int_{\gamma} d\mathcal{A} \vec{\mathcal{G}}^{(1)}(\{x_i^0\}) + \vec{\mathcal{G}}^{(2)}(\{x_i^0\}) \\
\vec{\mathcal{G}}^{(3)}(\{x_i\}) &= \int_{\gamma} d\mathcal{A} \, d\mathcal{A} \, d\mathcal{A} \vec{\mathcal{G}}^{(0)}(\{x_i^0\}) + \int_{\gamma} d\mathcal{A} \, d\mathcal{A} \vec{\mathcal{G}}^{(1)}(\{x_i^0\}) + \int_{\gamma} d\mathcal{A} \vec{\mathcal{G}}^{(2)}(\{x_i^0\}) + \vec{\mathcal{G}}^{(3)}(\{x_i^0\}) \\
\vec{\mathcal{G}}^{(4)}(\{x_i\}) &= \int_{\gamma} d\mathcal{A} \, d\mathcal{A} \, d\mathcal{A} \, d\mathcal{A} \vec{\mathcal{G}}^{(0)}(\{x_i^0\}) + \int_{\gamma} d\mathcal{A} \, d\mathcal{A} \, d\mathcal{A} \vec{\mathcal{G}}^{(1)}(\{x_i^0\}) + \int_{\gamma} d\mathcal{A} \, d\mathcal{A} \vec{\mathcal{G}}^{(2)}(\{x_i^0\}) \\
&+ \int_{\gamma} d\mathcal{A} \vec{\mathcal{G}}^{(3)}(\{x_i^0\}) + \vec{\mathcal{G}}^{(4)}(\{x_i^0\}).\n\end{split}
$$

Efficient semi-numerical implementation thanks to the recursive nature of the iterated integrals.

Loopfest 2023, 26-28 June

Calculation and Results

Loopfest 2023 Rational vs Non-Rational alphabet

SLAC, June 26 20 th 2023

Loopfest 2023 Topology P^I

25 Master integrals. The Canonical basis is obtained via Magnus Series Expansion (*Blanes, Casas, Oteo, Ros, 2008*):

 $\mathcal{G}_1^{\mathrm{P}_\mathrm{I}} = \mathcal{F}_1,$ $\mathcal{G}_2^{\mathrm{P}_1} = x\mathcal{F}_2,$ $\mathcal{G}_3^{\mathrm{P}_1} = (1+x)\mathcal{F}_3,$ $\mathcal{G}_5^{\mathrm{P}_1} = y\mathcal{F}_5,$ $\mathcal{G}_6^{\mathrm{P}_1} = (1+y)\mathcal{F}_6,$ $\mathcal{G}_4^{\mathrm{P}_\mathrm{I}} = \mathcal{F}_4 - \mathcal{F}_3,$ $\mathcal{G}_8^{\rm P_I} = \epsilon x \mathcal{F}_8, \qquad \qquad \mathcal{G}_9^{\rm P_I} = \epsilon x \mathcal{F}_9,$ $\mathcal{G}_7^{\text{P}_\text{I}} = \mathcal{F}_7,$ $\mathcal{G}_{10}^{\rm P_I} = \epsilon y \mathcal{F}_{10},$ $\mathcal{G}_{11}^{\mathrm{P}_1} = \epsilon y \mathcal{F}_{11},$ $\mathcal{G}_{12}^{\mathrm{P}_1} = y^2 \mathcal{F}_{12},$ $\mathcal{G}_{13}^{\text{P}_\text{I}} = \epsilon^2 x \mathcal{F}_{13},$ $\mathcal{G}_{14}^{\text{P}_\text{I}} = \epsilon^2 y \mathcal{F}_{14},$ $\mathcal{G}_{15}^{\text{P}_\text{I}} = \epsilon (\epsilon - 1) x y \mathcal{F}_{15},$ $\mathcal{G}_{16}^{P_I} = \epsilon y((2\epsilon - 1)\mathcal{F}_{16} + \mathcal{F}_{17}), \quad \mathcal{G}_{17}^{P_I} = \epsilon xy \mathcal{F}_{17}, \qquad \qquad \mathcal{G}_{18}^{P_I} = \epsilon ((2\epsilon - 1)x \mathcal{F}_{18} + \mathcal{F}_{19}),$ $\mathcal{G}_{19}^{\text{P}_1} = \epsilon xy \mathcal{F}_{19},$ $\mathcal{G}_{20}^{\text{P}_1} = \epsilon^2 (x+y) \mathcal{F}_{20},$ $\mathcal{G}_{21}^{\text{P}_1} = -\epsilon (x+y+xy) \mathcal{F}_{21},$ $\mathcal{G}_{22}^{\text{P}_1} = \epsilon (1 - 2\epsilon) y \mathcal{F}_{22},$ $\mathcal{G}_{23}^{\text{P}_1} = \epsilon^2 (1 + x) y^2 \mathcal{F}_{23},$ $\mathcal{G}_{24}^{\text{P}_1} = \epsilon^2 y^2 (\mathcal{F}_{24} - \mathcal{F}_{23}),$ $\mathcal{G}_{25}^{\text{P}_\text{I}}=x\left(\frac{1}{4}y\mathcal{F}_{12}+2\epsilon^2\mathcal{F}_{20}+y\epsilon^2\mathcal{F}_{23}\right)+\epsilon^2y(\mathcal{F}_{25}-\mathcal{F}_{22}).$

The differential equation is then expressed in terms of the variables: pseudo-thresholds.

$$
x = -\frac{2p_1 \cdot p_2}{M_W^2} \qquad \qquad y = -\frac{2p_2 \cdot p_3}{M_W^2}
$$

SLAC, June 26th 2023

➢All letters are rational, solution given by pure GPLs.

➢Three kinematic regions, depending on the permutation of the external legs.

➢Boundary conditions determined by demanding finitness at

$$
\mathcal{G}_1^{\mathrm{P}_\mathrm{I}} = -1 - 2\zeta_2 \epsilon^2 + 2\zeta_3 \epsilon^3 - 9\zeta_4 \epsilon^4
$$

21

Loopfest 2023 Topology PII

24 MIs. The canonical basis is extracted the same way as before:

 $\mathcal{G}_1^{\text{PII}} = \mathcal{F}_1,$ $\mathcal{G}_2^{\text{PII}} = x\mathcal{F}_2,$ $\mathcal{G}_3^{\text{PII}} = (1+x)\mathcal{F}_3,$ $\mathcal{G}_{6}^{\rm P_{II}}=\mathcal{F}_{6},$ $\mathcal{G}_4^{\text{PII}} = \mathcal{F}_4 - \mathcal{F}_3,$ $\mathcal{G}_5^{\text{PII}} = (1+y)\mathcal{F}_5,$ $\mathcal{G}_7^{\text{PII}}=y\mathcal{F}_7,$ $\mathcal{G}_8^{\text{P}_{\text{II}}}=\frac{2x^2(2\epsilon-1)\mathcal{F}_8+2\epsilon x(\mathcal{F}_1-\mathcal{F}_9)+x\mathcal{F}_2}{2(x-1)},$ $\mathcal{G}_{9}^{\rm P_{II}} = \epsilon x \mathcal{F}_{9},$ $\mathcal{G}_{10}^{\text{P}_{II}} = \epsilon y \mathcal{F}_{10}, \qquad \qquad \mathcal{G}_{11}^{\text{P}_{II}} = \epsilon y \mathcal{F}_{11},$ ${\cal G}_{12}^{\rm P_{II}} = \epsilon^2 y {\cal F}_{12},$ $\mathcal{G}_{13}^{\text{PII}} = \epsilon^2 x \mathcal{F}_{13},$ $\mathcal{G}_{14}^{\text{PII}} = \epsilon x \mathcal{F}_{14},$ $\mathcal{G}_{15}^{\text{PII}} = \epsilon x ((2\epsilon - 1) \mathcal{F}_{15} + \mathcal{F}_{16})$ $\mathcal{G}_{16}^{\text{P}_{II}} = \epsilon xy \mathcal{F}_{16}, \qquad \qquad \mathcal{G}_{17}^{\text{P}_{II}} = \epsilon^2 (x+y) \mathcal{F}_{17}, \qquad \qquad \mathcal{G}_{18}^{\text{P}_{II}} = \epsilon (x+y+xy) \mathcal{F}_{18},$ $\mathcal{G}_{19}^{\text{P}_{\text{II}}} = \epsilon(\epsilon-1)xy\mathcal{F}_{19}, \quad \mathcal{G}_{20}^{\text{P}_{\text{II}}} = \epsilon y((2\epsilon-1)\mathcal{F}_{20} + \mathcal{F}_{21}), \quad \mathcal{G}_{21}^{\text{P}_{\text{II}}} = \epsilon xy\mathcal{F}_{21},$ $\mathcal{G}^{\rm P_{II}}_{22} = \epsilon^2 y \mathcal{F}_{22}, \qquad \qquad \mathcal{G}^{\rm P_{II}}_{23} = \epsilon^2 xy \mathcal{F}_{23},$ $\mathcal{G}^{\rm P_{II}}_{24} = \epsilon^2 xy \mathcal{F}_{24},$

Same auxiliary topology, we reuse the same DEQ variables:

$$
x = -\frac{2p_1 \cdot p_2}{M_W^2} \qquad \qquad y = -\frac{2p_2 \cdot p_3}{M_W^2}
$$

SLAC, June 26th 2023

➢All letters are rational, solution given by pure GPLs.

➢Now we have two kinematic regions, depending on the crossing symmetries.

➢Boundary conditions determined by demanding finitness at pseudo-thresholds.

$$
\mathcal{G}_1^{\mathrm{P_{II}}}=-1-2\zeta_2\epsilon^2+2\zeta_3\epsilon^3-9\zeta_4\epsilon^4
$$

22

Loopfest 2023 Topology PIII: Master Integrals

SLAC, June 26th 2023 23 120 120 23 120 23 120 23 120 23 120 23 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120

Loopfest 2023 Topology PIII: Canonical Basis

The Canonical basis is obtained again via Magnus Series Expansion. Here we show the 7-propagators family:

 $\mathcal{G}_{29}^{\text{PIII}} = \epsilon^2 y \sqrt{r_2} \mathcal{F}_{29},$ $\mathcal{G}_{30}^{\text{P}_{\text{III}}} = \epsilon^2 \sqrt{r_1} (2x \mathcal{F}_{28} + xy \mathcal{F}_{29} + y \mathcal{F}_{30}),$ $\mathcal{G}_{31}^{\text{PIII}} = \epsilon^2 y^2 (\mathcal{F}_{29} + \mathcal{F}_{31}),$ $\mathcal{G}_{32}^{\rm P_{III}} = -\frac{1}{2} \epsilon \bigg(2x(1-2\epsilon)\mathcal{F}_{21} + y^2 \epsilon (-\mathcal{F}_{27} + x\mathcal{F}_{29} + \mathcal{F}_{30})$ $+2y\epsilon(2\mathcal{F}_{17}+\mathcal{F}_{22}+x\mathcal{F}_{28}+x\mathcal{F}_{29}-\mathcal{F}_{32})\bigg).$

The differential equation is expressed in terms of the variables:

$$
x = -\frac{2p_1 \cdot p_2}{M_W^2} \qquad \qquad y = -\frac{2p_2 \cdot p_3}{M_W^2}
$$

SLAC, June 26th 2023

➢Non-Rational letters:

 $r_1 = y(4 + y),$ $r_2 = y (y + 2xy + x^2(4 + y)),$ $r_3 = xy(4y + x(4 + y)).$

➢For efficiency reasons, we only rationalize r_1 .

➢Need additional mapping for clean dLog form.

➢Mixed Chen/GPL representation.

Topology P_{III} : Kinematic Sub-Regions

SLAC, June 26 25 th 2023

Loopfest 2023 Topology PIII: Numerical Evaluation

Loopfest 2023

40 **MIs. For brevity, we show the 7-propagators family:**
\n
$$
g_{37}^{N_1} = \epsilon^2 \frac{(x+y)}{2} (x^2 \mathcal{F}_{37} + x(\mathcal{F}_{32} + \mathcal{F}_{34} - 2\mathcal{F}_{37} + y\mathcal{F}_{37} - \mathcal{F}_{39}) + y(-2\mathcal{F}_{37} + \mathcal{F}_{39})) ,
$$
\n
$$
g_{38}^{N_1} = \frac{x}{2y} \Big(\mathcal{F}_1 - \mathcal{F}_2 - \mathcal{F}_3 - 2\mathcal{F}_7 - 2\epsilon(x+y)\mathcal{F}_9 + 6\epsilon^2 x \mathcal{F}_{15} - 2\epsilon(x(-1+y) + y^2) \mathcal{F}_{16} + 2\epsilon y(x+y)\mathcal{F}_{23} + 2\epsilon^2 y \mathcal{F}_{27} - 2\epsilon^2(x+y)\mathcal{F}_{31} \Big)
$$
\n
$$
- \epsilon^2 \frac{x+y}{2} \Big(x(\mathcal{F}_{32} - \mathcal{F}_{34}) + (x+y)((2+x)\mathcal{F}_{37} - 2\mathcal{F}_{38} - \mathcal{F}_{39}) \Big),
$$
\n
$$
g_{39}^{N_1} = -\epsilon^2 \sqrt{r_2} (x^2 \mathcal{F}_{37} + x(\mathcal{F}_{32} + \mathcal{F}_{34} + y\mathcal{F}_{37} - \mathcal{F}_{39}) - y\mathcal{F}_{39}),
$$
\n
$$
g_{40}^{N_1} = -\epsilon^2 x(x+y)\mathcal{F}_{37} + \epsilon^2(x+y)\mathcal{F}_{40} + \frac{x}{16y} \Big(10\mathcal{G}_1^{N_1} + 2\mathcal{G}_2^{N_1} - 11\mathcal{G}_3^{N_1} + 3\mathcal{G}_4^{N_1} - 10\mathcal{G}_5^{N_1} - 4\mathcal{G}_6^{N_1} - 16\mathcal{G}_9^{N_1} - 12\mathcal{G}_{12}^{N_1} + 8\mathcal{G}_{15}^{N_1} - 16\mathcal{G}_{17}^{N_1} + 8\mathcal{G}_{19}^{N_1} - 12\mathcal{G}_{20}^{
$$

We find convenient to switch to the following DEQ variables:

$$
x = \frac{2p_1 \cdot p_2}{M_W^2} \qquad y = \frac{2p_1 \cdot p_3}{M_W^2}
$$

SLAC, June 26th 2023

Topology N_I

 \triangleright Non-rational letters (in x and y):

$$
r_1 = xy(x + y),
$$

$$
r_2 = (4 - x - y)(x + y)
$$

➢We can rationalize both. First mapping rationalizes 33 out of 40:

$$
x \to \frac{uv}{1+v} \qquad y \to \frac{u}{1+v}
$$

➢The others need dedicated mapping for each sub-region. Ultimately, every integral can be expressed as GPL.

Loopfest 2023 Topology NII: Master Integrals

Loopfest 2023 Topology NII: Canonical Basis

The Canonical basis is obtained with the usual strategy. The 7-propagators family is given by:

$$
\begin{aligned} \mathcal{G}_{30}^{\text{N}_{\text{II}}} & = -2\epsilon^2 \bigg(2(x-1)\mathcal{F}_{28} + (1-x-2y+4xy)\mathcal{F}_{30} + \mathcal{F}_{31} \bigg), \\ \mathcal{G}_{31}^{\text{N}_{\text{II}}} & = -\epsilon^2 \frac{\sqrt{r_1}}{2} \bigg(2(x-1)\mathcal{F}_{28} + (1-x)\mathcal{F}_{30} + (1-2x)\mathcal{F}_{31} \bigg), \\ \mathcal{G}_{32}^{\text{N}_{\text{II}}} & = \epsilon^2 (y\mathcal{F}_{30} + \mathcal{F}_{31} + \mathcal{F}_{32}) + \frac{1}{8x} (15\mathcal{G}_1^{\text{N}_{\text{II}}} + 8\mathcal{G}_2^{\text{N}_{\text{II}}} - 8\mathcal{G}_3^{\text{N}_{\text{II}}} + 10\mathcal{G}_4^{\text{N}_{\text{II}}} - 17\mathcal{G}_5^{\text{N}_{\text{II}}} \\ & + 4\mathcal{G}_6^{\text{N}_{\text{II}}} - 4\mathcal{G}_7^{\text{N}_{\text{II}}} - 24\mathcal{G}_{13}^{\text{N}_{\text{II}}} - 12\mathcal{G}_{16}^{\text{N}_{\text{II}}} - 2\mathcal{G}_{17}^{\text{N}_{\text{II}}} + 8\mathcal{G}_{19}^{\text{N}_{\text{II}}} + 20\mathcal{G}_{20}^{\text{N}_{\text{II}}} \\ & + 2\mathcal{G}_{21}^{\text{N}_{\text{II}}} - 24\mathcal{G}_{22}^{\text{N}_{\text{II}}} - 8\mathcal{G}_{23}^{\text{N}_{\text{II}}}). \end{aligned}
$$

The differential equation is expressed in terms of the variables:

$$
x = -\frac{p_1 \cdot p_3}{p_1 \cdot p_2} \qquad y = \frac{M_W^2}{2p_1 \cdot p_2}
$$

SLAC, June 26th 2023

➢Non-Rational letters:

$$
r_1 = 1 - 4y
$$

\n
$$
r_2 = x^2(1 - 4y) + 2xy + y^2
$$

\n
$$
r_3 = x^2(1 - 4y) + x(6y - 2) + (y - 1)^2
$$

\n
$$
r_4 = -x(4xy - x - 4y)
$$

\n
$$
r_5 = xy(x - 1)
$$

\n
$$
r_6 = -(x - 1)(x(4y - 1) + 1)
$$

➢For efficiency reasons, we only rationalize r_1 .

➢Mixed Chen/GPL representation.

Topology N_{II}: Kinematic Sub-Regions

Region A:
$$
[s > 4M_W^2, u < t], y = \frac{z_A}{2} \left(1 - \frac{z_A}{2} \right)
$$

\nRegion B: $[s \leq 4M_W^2, u < t], y = \frac{1 - 2z_B + z_B^2}{4z_B^2}$

\nRegion C: $[s > 4M_W^2, u > t], y = \frac{z_A}{2} \left(1 - \frac{z_A}{2} \right)$

\nRegion D: $[s \leq 4M_W^2, u > t], y = \frac{1 - 2z_B + z_B^2}{4z_B^2}$

 $2²$

Loopfest 2023 Topology NII: Master Integrals

Loopfest 2023, 26-28 June

Conclusions

Loopfest 2023

Moving Forward

Loopfest 2023

Conclusions

Summary:

Evaluation of the MIs for the electroweak corrections to $gg \to \gamma \gamma$ for massless quark loops.

➢Efficient calculation at any kinematic point.

➢Versatility on the alphabet: rational vs non-rational letters.

➢Solution available for every topology.

Future Directions:

➢Evaluation of the amplitude and differential distributions (pheno analysis).

➢Inclusion of the top-quark mediated diagrams.

 \triangleright Complete analysis of the interference order $\mathcal{O}(\alpha)$.

Loopfest 2023, 26-28 June

Grazie!

