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Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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7Enhancing the “forward model”

Complete predictions require composing a 
number of different components.
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10Why hadronization?

We do not understand hadronization from first principles!

Seems to be calling 
out for a machine 
learning solution!

See also PDFs (and 
the pioneer, NNPDF)
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11What is a deep generative model?

A generator is nothing other than a function 
that maps random numbers to structure.

Deep generative models: the map is a deep neural network.
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Generative Adversarial Networks (GANs): 

A two-network game where one maps noise to structure 
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14Our tool of choice: GANs

There are many new methods that have 
superior robustness to GANs, but for 
reasons I hope will be clear later, we 

need the flexibility of GANs that no other 
approach can accommodate (yet).
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HadML* v1 
PRD 106 (2022) 096020 

HadML v2: Closure Test 
(this paper)

HadML v2: Stress Test 
(this paper)

similar setup for string model MLHad v1: 2203.04983
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Figure 1. An overview of the model presented in this paper and how it compares to HadML v1
from Ref. [13]. Since the clusters are not observable in data, the discriminator in v2 acts on sets of
hadrons and does not have access to cluster-hadron-hadron labels. We first study the performance
in the same Herwig setup as in Ref. [13] (‘Closure Test’) and then check that it is also able to fit
another Herwig setup (Cluster Frag’) with variations in the cluster hadronization model (‘Stress
Test’).

3 Results

3.1 Datasets

Crucial data for fitting hadronisation models are LEP events collected in e+e� collisions

at the center-of-mass energy
p
s = 91.2 GeV. Therefore, we used such events generated

with version 7.2.1 of the Herwig Monte Carlo generator for a training dataset for our

Generative Hadronization Model. As mentioned earlier, the cluster model [1] is used for

hadronisation in the Herwig generator. Based on the color preconfinement [46], the cluster

model groups a partonic final state into a set of colour-singlet clusters (pre-hadrons) with

an invariant mass distribution that is independent of the specific hard scattering process

or its centre-of-mass energy and that peaks at low masses. Therefore, most clusters decay

into two hadrons. However, a small fraction of clusters are too heavy for this approach

to be justified. Therefore, these heavy clusters are first split into lighter clusters before

decaying. The decay of such massive clusters is not discussed in this publication but will

be considered in future work. Each entry in our training data set includes information

about the four-momentum of all the light clusters in an event and the four-momenta of

their parents (partons) and children (hadrons), along with their flavours. An example of

an entry from our data sets is available on Zenodo at Ref. [47]. To simplify the training

– 4 –

Based on 2203.12660 and 2305.17169, set in the cluster model.  Similar studies set in the string model found in 2203.04983.

ML Hadronization - Overview
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– 4 –

ML Hadronization - Overview

Based on 2203.12660 and 2305.17169, set in the cluster model.  Similar studies set in the string model found in 2203.04983.



17Cluster hadronization

Physics inspiration: preconfinement.  Universal distribution of 
color singlet objects (‘clusters’) which decay into hadrons. 

Our approach: take 
preconfinement as a 

starting point and 
learn the decay.  In 

the future, we want to 
be able to go beyond 

this starting point* 

*We actually tried fitting a version of Pythia with all the same simplifying assumptions as our Herwig 
model and it doesn’t work yet for known reasons.  Please ask if you want to hear more about this!
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We have a conditional 
GAN, with cluster 4-
vector input and two 

hadron 4-vector outputs.
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20Training HADML

256, a batch normalization layer, and a LeakyReLU activation function [94]. These

parameters were not extensively optimized.

To help train a GAN, we preprocessed the training data. The incoming cluster’s four

vector is scaled so that their values are between -1 and 1; so are the two angular variables

(� and ✓). In this way, all inputs and outputs are within the same scale. Finally, we use

the tanh activation function as the last layer of the Generator. The Discriminator and the

Generator are trained separately and alternately by two independentAdam optimizers [95],

both with a learning rate of 10�4, for about 1000 epochs.

Figure 1. Generator loss and discriminator loss and progressive best Wasserstein distance as a
function of the training epochs for training a GAN with events where two partons are with Pert =
0. Both Generator and Discriminator loss are the binary-crossentropy loss, and the Discriminator
loss is divided by two for visualization purposes. The progressive Wasserstein distance is gauged
by the right side of the y axis.

Figure 1 shows the evolution of the Discriminator loss, which is divided by two for

visualization purposes, the Generator loss, and the progressive best total Wasserstein dis-

tances† [96, 97] for training a GAN with events where two partons are with Pert = 0. The

total Wasserstein distance summing over the distances of all variables, is calculated after

training for one epoch and only the smallest value is plotted. At the beginning of the

training (epoch < 70), even though the Generator loss is going up, we see a rapid drop in

the Wasserstein distance until the Generator loss is beyond 0.8. For more than 100 epochs,

the Discriminator keeps outperforming the Generator as seen by the increasing Generator

†This is a common metric in machine learning that quantifies the minimal ‘work’ required to transform

one density into another, where work, in this case, is defined as the integral of the density multiplied by

the distance moved.

– 4 –

This is a typical 
learning curve for 

GAN training.

We have a conditional 
GAN, with cluster 4-
vector input and two 

hadron 4-vector outputs.

We simplify this by 
considering only pions 

and generating two 
angles in the cluster 

rest frame.
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Figure 2. Pseudorapidity (left panels) and transverse momentum (right panels) distribution of
⇡0 from decays of Pert=0 (upper panels) and Pert=1 (lower panels) clusters produced in e+e�

collisions at
p
s = 91.2 GeV.

several orders of magnitude are also well approximated by H7+HADML. Taking a closer

look at these distributions, we see minor di↵erences for low transverse momenta in the

case of clusters that have a memory of perturbative quarks (bottom-left panel in Fig. 2).

Such small di↵erences are, of course, acceptable, especially since the information about the

four-momentum of partons that make up the clusters were not used for training. Taking

this additional information into account in the training process will likely eliminate these

minor di↵erences. However, this is beyond the scope of this publication, and we will leave

this problem for future work.

It is crucial that the hadronization model is universal, i.e., that it works independently

of the hard process or collision energy. As we described in the Sec. 2.1 the cluster model

has this property. To test whether HADML also is universal, we decided to repeat the

comparison made at the beginning of this section, but this time generating events with

collision energies twice as high as those used in the training data. In Fig. 3 we show ⇡0

kinematic variables generated by H7+HADML and Herwig 7 in e+e� collisions at
p
s =

192 GeV. We can see that all distributions are described very similarly by both models,

which reassured us that the HADML model is also universal.

The last thing we need to check before using HADML to simulate the decay of all

clusters into hadron pairs in Herwig is whether the model is able to describe the kinematics

of other hadrons than ⇡0. In Fig. 4 we present the pseudorapidity (left panels) and trans-

– 6 –

We extract clusters + hadrons, train, and then using ONNX, 
re-insert the model back into Herwig. This then allows us to 

run a full event generator and produce plots like these!
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Figure 4. Pseudorapidity (left panels) and transverse momentum (right panels) distribution of
⇡± and ⇡0 (first row), Kaons (second row) and Lambdas (third row).

T = max
~n

✓P
|~pi · ~n|P
|~pi|

◆
, (3.1)

where the sum runs over all final state particle three momenta. The direction ~n that

maximizes the argument of Eq. 3.1 is called the Thrust axis. Thrust major is defined

similarly to Eq. 3.1 but with ~n replaced with vectors transverse to the Thrust axis and

Thrust minor is the same, but with an optimization only over directions perpendicular to

both the Thurst and Thurst major axes. The Sphericity is computed from the eigenvalues

of the quadratic momentum tensor

– 8 –

As a crude “full” model, we simply take the PIDs 
from Herwig and the kinematics from the GAN.
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Figure 5. Normalized, di↵erential cross-sections of Thurst (top left), Thrust major (top right),
Thrust minor (lower left), and Sphericity (lower right) for Herwig, Herwig with HADML, and for
data from DELPHI at LEP. Error bars on the predictions represent statistical uncertainties.

M↵� =
X

p↵i p
�
i , (3.2)

where ↵,� are the spatial momentum indices, and the sum runs over the same particles as

in Eq. 3.1. Sphericity is defined as 3
2(�2+�3) for eigenvalues �i of the 3⇥ 3 matrix defined

in Eq. 3.2 and �3  �2  �1. Hadronization shifts event shapes (see e.g., Ref. [106]) and so

these observables are sensitive to hadronization modeling. Figure 5 shows that HADML

agrees with Herwig within 10% across most of the spectra, which itself agrees with data at

a similar level. Individual particle spectra are shown in Fig. 6 for the transverse momenta

along the Thurst major and minor directions. The level of agreement is similar to the event

shapes where there is su�cient statistical power.

– 9 –

With a “full” model, we can compare directly to data!

N.B. we have trained on H7, so we don’t expect 
to be any better than it at modeling the data. 



24

HadML* v1 
PRD 106 (2022) 096020 

HadML v2: Closure Test 
(this paper)

HadML v2: Stress Test 
(this paper)

similar setup for string model MLHad v1: 2203.04983

HadML

HadML

HadML

HadML

Cluster 
Frag
Cluster 

Frag
Cluster 

Frag

Cluster 
Frag’
Cluster 
Frag’

Cluster 
Frag’

Event

Parton

Parton

Parton

Cluster

Cluster

Cluster

Hadrons

Hadrons

Hadrons

Parton Cluster

Hadrons

HadronsCluster 
Frag

Event

Parton

Parton

Parton

Cluster

Cluster

Cluster

Hadrons

Hadrons

Hadrons

Event

Parton

Parton

Parton

Cluster

Cluster

Cluster

Hadrons

Hadrons

Hadrons

Discriminator

Generator

Generator x n

Discriminator

D
is

cr
im

in
at

or

Figure 1. An overview of the model presented in this paper and how it compares to HadML v1
from Ref. [13]. Since the clusters are not observable in data, the discriminator in v2 acts on sets of
hadrons and does not have access to cluster-hadron-hadron labels. We first study the performance
in the same Herwig setup as in Ref. [13] (‘Closure Test’) and then check that it is also able to fit
another Herwig setup (Cluster Frag’) with variations in the cluster hadronization model (‘Stress
Test’).

3 Results

3.1 Datasets

Crucial data for fitting hadronisation models are LEP events collected in e+e� collisions

at the center-of-mass energy
p
s = 91.2 GeV. Therefore, we used such events generated

with version 7.2.1 of the Herwig Monte Carlo generator for a training dataset for our

Generative Hadronization Model. As mentioned earlier, the cluster model [1] is used for

hadronisation in the Herwig generator. Based on the color preconfinement [46], the cluster

model groups a partonic final state into a set of colour-singlet clusters (pre-hadrons) with

an invariant mass distribution that is independent of the specific hard scattering process

or its centre-of-mass energy and that peaks at low masses. Therefore, most clusters decay

into two hadrons. However, a small fraction of clusters are too heavy for this approach

to be justified. Therefore, these heavy clusters are first split into lighter clusters before

decaying. The decay of such massive clusters is not discussed in this publication but will

be considered in future work. Each entry in our training data set includes information

about the four-momentum of all the light clusters in an event and the four-momenta of

their parents (partons) and children (hadrons), along with their flavours. An example of

an entry from our data sets is available on Zenodo at Ref. [47]. To simplify the training

– 4 –

ML Hadronization - Overview
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Figure 2. Generator loss, discriminator loss and running best Wasserstein distance as a function
of the training epoch. The running best Wasserstein distance is quantified by the y axis on the
right side of the plot.

exactly. In the future, it may be possible to make this more precise by constructing the

model to give a uniform marginal.

After the clusters are decayed, the resulting hadron kinematic properties are Lorentz

boosted to the lab frame and then aggregated over all clusters in the event. The second

row of Fig. 3 shows histograms of the resulting hadron four-vectors, which are the inputs

to the discriminator. We only show the energy E and the x momentum px, but similar

trends hold for py and pz. Since hadronization is a small correction for such inclusive

observables, the kinematic properties are mostly set by the Herwig parton shower, which

is the same for the Herwig and GAN lines in the plots (since the GAN takes the clusters

from the parton shower as input). This is the reason why the initial GAN starts so close

to Herwig truth. However, the alternative Herwig sample di↵ers significantly from the

nominal Herwig sample, in particular in how hadrons split energy, which is most clearly

seen in the tails of the energy and momentum distributions. The GAN model is an excellent

match to the Herwig events across the full spectra.

Figure 4 goes beyond the direct inputs and outputs by studying derived, but measure-

able, quantities. The first plot in Fig. 4 is the number of hadrons. Since we restrict our

attention to 1 ! 2 decays only, the number of hadrons is an even number, with a mode

of 12. It is not possible to uniquely pair observed hadrons with their partner from the

same cluster decay, but we can approximate the combination using nearest neighbor infor-

mation. In particular, since the hadron masses are small compared to the typical cluster

– 6 –

Now, the generator is 
local (per cluster), but 

the discriminator is 
global (whole event).

Discriminator is a 
permutation-invariant 

architecture called 
Deep Sets.

Still works !

Training HADML v2
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Figure 3. Top: the generative model in the true cluster rest frame. Bottom: two of the four-vector
components that are used by the discriminator to update the generator.

energy in the lab frame, the two hadrons tend to be close together in phase space. For all

hadrons, we assign a hadron neighbor as the particle that minimizes§ �R2 = ��2 +�⌘2.

A histogram of the resulting �R distribution is shown in the middle left plot of Fig. 4. The

peak is at about 0.1, with most hadrons having a neighbor less than 0.1. While there is

some di↵erence between models in the �R distribution, a most distinguishing observable

is the energy sharing between hadrons in the reconstructed cluster (middle right of Fig. 4).

The nominal Herwig has more equal sharing of energy, while the alternative Herwig sample

is much more asymmetric. The GAN models are able to match these trends, which both

di↵er significantly from the initialized and untrained GAN model. Future GAN models

could be improved by adding in these features to the discriminator directly.

Additionally, we consider properties of the hadrons in the reconstructed cluster frame

(bottom row of Fig. 4). Since the reconstructed clusters are not exactly the true clusters,

the � and ✓ distributions do not exactly match the top row of Fig. 3, although they are

qualitatively similar. The distribution of � is more discriminating between models, where

the GAN models perform well, except near the edge of phase space where both GAN model

§
This metric is most relevant for hadron colliders, but we use it here for simplicity. Similar results hold

for �✓ instead of �⌘.

– 7 –
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Figure 3. Top: the generative model in the true cluster rest frame. Bottom: two of the four-vector
components that are used by the discriminator to update the generator.
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hadrons, we assign a hadron neighbor as the particle that minimizes§ �R2 = ��2 +�⌘2.

A histogram of the resulting �R distribution is shown in the middle left plot of Fig. 4. The

peak is at about 0.1, with most hadrons having a neighbor less than 0.1. While there is

some di↵erence between models in the �R distribution, a most distinguishing observable

is the energy sharing between hadrons in the reconstructed cluster (middle right of Fig. 4).

The nominal Herwig has more equal sharing of energy, while the alternative Herwig sample

is much more asymmetric. The GAN models are able to match these trends, which both

di↵er significantly from the initialized and untrained GAN model. Future GAN models

could be improved by adding in these features to the discriminator directly.

Additionally, we consider properties of the hadrons in the reconstructed cluster frame

(bottom row of Fig. 4). Since the reconstructed clusters are not exactly the true clusters,

the � and ✓ distributions do not exactly match the top row of Fig. 3, although they are

qualitatively similar. The distribution of � is more discriminating between models, where

the GAN models perform well, except near the edge of phase space where both GAN model

§
This metric is most relevant for hadron colliders, but we use it here for simplicity. Similar results hold

for �✓ instead of �⌘.
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28Performance: reco. quantities

Figure 4. Top: A histogram of the number of hadrons. Since each cluster decays into two pions,
the number of hadrons is an even integer. Middle: �R between a given hadron and its nearest
neighbor in � � ⌘ in the lab frame (left) and the ratio of energies between a given hadron and its
neighbor (right). Bottom: The � (left) and ✓ (right) of the hadrons in the reconstructed cluster
frame.

match the nominal Herwig events.

– 8 –

Nearest 
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29What is next?

Non-perturbative functions are natural candidates 
for ML-modeling to improve accuracy.

Long history (but still very active) for PDFs and 
now also progress for hadronization.  What about 

other non-perturbative objects?

For hadronization, there is still clearly multiple 
steps before we have a product we can hand off 

to users, but it is not science fiction !
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quality control
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…

Connections 
to all areas!

Theory of everything

Physics simulators

Forward 
Model

Plan for today: give representative examples 
from each area to illustrate the potential of ML.  
I’m not going to be comprehensive and I do not 

claim ML will solve all our problems!
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31Enhancing the “inverse model”

There are many proposals for using ML to directly infer 
model parameters.  This is a very exciting topic, but 
instead, I want to describe a complementary program 

on highly differential cross sections.

5

TABLE II. Simultaneous fit for three parameters. The top
row shows the results for the validation fit where we knew the
target parameters, and the bottom row is the blinded fit. The
reported numbers are the mean and standard deviation over
20 runs with di↵erent model initializations.

Parameter Target value Fit value

V
a
l.

TimeShower:alphaSvalue 0.1200 0.1195± 0.0022

StringZ:aLund 0.6000 0.6276± 0.0373

StringFlav:probStoUD 0.1200 0.1203± 0.0071

B
li
n
d
e
d TimeShower:alphaSvalue 0.1700 0.1707± 0.0022

StringZ:aLund 0.7500 0.7425± 0.0453

StringFlav:probStoUD 0.1400 0.1422± 0.0065
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FIG. 3. Two-dimensional slice through the loss surface for
the fit described in Table II. Markers indicate the starting
point at nominal values, the gradient descent path and the
target values. From the starting point, gradient descent using
Adam overshoots the minimum in its first two epochs before
it converges to the target value.

to generate new full-detector simulated samples with a
di↵erent particle-level simulation when at least one fully
simulated sample exists. This could be particularly use-
ful for systematic uncertainties computed using pairs of
simulations (e.g. comparing Pythia and Herwig) and for
legacy data analysis in which the original detector sim-
ulation is no longer available [71]. Continuous reweight-
ing will enable systematic parameter variations for un-
certainty estimation that were not possible before (most
parameters). Such variations can even be profiled during
any statistical test that fits phase space regions sensi-
tive to the varied nuisance parameters. Finally, the full
power of Dctr can be used for parameter tuning. Unlike
traditional tuning which use unfolded data that are usu-
ally one-dimensional and without observable-observable
correlations, a new paradigm is now possible were high-
dimensional detector-level data can be used directly. The
full power of the data can be utilized and all of the cor-

relations are correctly accounted for in the fit. For the
first time, this may allow for proper covariance matri-
ces (and thus correlated uncertainties) to be determined
for simulation parameter values. All of these opportuni-
ties illustrate the broad applicability of full phase-space
reweighting and parameter tuning and the power Dctr

to extend the scope, precision, and accuracy of collider-
based particle physics analyses.
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Figure 2: Left: Estimated expected likelihood ratio based on a traditional doubly differential
histogram analysis (orange dotted) and the new Rascal technique (red dashed). We show a line in

parameter space with particularly large difference between the methods. The grey dotted line
marks the expected exclusion limit at 95% CL according to asymptotics. The vertical arrow shows
how much more data the histogram approach requires to constrain the same parameter point with

the same significance. The horizontal arrow demonstrates the increased physics reach of the
machine-learning-based method. Right: Expected exclusion contours at 68% CL (innermost lines),
95% CL, and 99.7% CL (outermost lines) based on the Neyman construction. In both panels, we

assume 36 observed events and the SM to be true.

the Standard Model, slightly weaker constraints at the 95% CL level show the breakdown of the
local model approximation. All new techniques let us impose significantly tighter bounds on the
parameters than the doubly differential histogram analysis.

CONCLUSIONS

We have developed new analysis techniques to constrain effective field theories in LHC experiments.
Exploiting the particular structure of particle physics processes, we extract additional information
from Monte-Carlo simulations. This augmented data can be used to train neural networks that
estimate arbitrary likelihood ratios for use in limit setting procedures.

We have introduced the Rascal technique, which leverages this extended information to define
likelihood ratio estimators of particularly high fidelity. In an example analysis of weak-boson-fusion
Higgs production, this technique lets us put significantly stronger constraints on two dimension-
six operators, leading to expected exclusion limits that are virtually indistinguishable from the
theoretical optimum.

In the neighborhood of the Standard Model, any observation can be condensed into a low-
dimensional vector, the score, without loss of sensitivity. This motivates a second approach, which
we call Sally. Simpler to implement, it scales very well to high-dimensional parameter spaces. We
have demonstrated that it performs very well close to the Standard Model, and leads to only slightly
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There are many proposals for using ML to directly infer 
model parameters.  This is a very exciting topic, but 
instead, I want to describe a complementary program 

on highly differential cross sections.
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TABLE II. Simultaneous fit for three parameters. The top
row shows the results for the validation fit where we knew the
target parameters, and the bottom row is the blinded fit. The
reported numbers are the mean and standard deviation over
20 runs with di↵erent model initializations.
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FIG. 3. Two-dimensional slice through the loss surface for
the fit described in Table II. Markers indicate the starting
point at nominal values, the gradient descent path and the
target values. From the starting point, gradient descent using
Adam overshoots the minimum in its first two epochs before
it converges to the target value.

to generate new full-detector simulated samples with a
di↵erent particle-level simulation when at least one fully
simulated sample exists. This could be particularly use-
ful for systematic uncertainties computed using pairs of
simulations (e.g. comparing Pythia and Herwig) and for
legacy data analysis in which the original detector sim-
ulation is no longer available [71]. Continuous reweight-
ing will enable systematic parameter variations for un-
certainty estimation that were not possible before (most
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power of Dctr can be used for parameter tuning. Unlike
traditional tuning which use unfolded data that are usu-
ally one-dimensional and without observable-observable
correlations, a new paradigm is now possible were high-
dimensional detector-level data can be used directly. The
full power of the data can be utilized and all of the cor-

relations are correctly accounted for in the fit. For the
first time, this may allow for proper covariance matri-
ces (and thus correlated uncertainties) to be determined
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ties illustrate the broad applicability of full phase-space
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Figure 2: Left: Estimated expected likelihood ratio based on a traditional doubly differential
histogram analysis (orange dotted) and the new Rascal technique (red dashed). We show a line in

parameter space with particularly large difference between the methods. The grey dotted line
marks the expected exclusion limit at 95% CL according to asymptotics. The vertical arrow shows
how much more data the histogram approach requires to constrain the same parameter point with

the same significance. The horizontal arrow demonstrates the increased physics reach of the
machine-learning-based method. Right: Expected exclusion contours at 68% CL (innermost lines),
95% CL, and 99.7% CL (outermost lines) based on the Neyman construction. In both panels, we

assume 36 observed events and the SM to be true.

the Standard Model, slightly weaker constraints at the 95% CL level show the breakdown of the
local model approximation. All new techniques let us impose significantly tighter bounds on the
parameters than the doubly differential histogram analysis.

CONCLUSIONS

We have developed new analysis techniques to constrain effective field theories in LHC experiments.
Exploiting the particular structure of particle physics processes, we extract additional information
from Monte-Carlo simulations. This augmented data can be used to train neural networks that
estimate arbitrary likelihood ratios for use in limit setting procedures.

We have introduced the Rascal technique, which leverages this extended information to define
likelihood ratio estimators of particularly high fidelity. In an example analysis of weak-boson-fusion
Higgs production, this technique lets us put significantly stronger constraints on two dimension-
six operators, leading to expected exclusion limits that are virtually indistinguishable from the
theoretical optimum.

In the neighborhood of the Standard Model, any observation can be condensed into a low-
dimensional vector, the score, without loss of sensitivity. This motivates a second approach, which
we call Sally. Simpler to implement, it scales very well to high-dimensional parameter spaces. We
have demonstrated that it performs very well close to the Standard Model, and leads to only slightly
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Figure 5.2. Pair-wise 95% CL contours for the Wilson coe�cients entering top quark pair production in the dilepton
final state, see Sect. 4.3 for more details. These contours are obtained by marginalizing over the full posterior
distribution provided by Nested Sampling. We consider here neft = 5 Wilson coe�cients that can be simultaneously
constrained from inclusive top-quark pair production at the linear level in the EFT expansion. We compare the
results obtained from both binned and unbinned ML observables constructed on the (p`
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T , ⌘`) kinematic features. As

in Fig. 5.1, the black cross indicates the SM values used to generate the pseudo-data that enters the inference. The
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¯̀
T , ⌘`) with its counterpart trained on the full set of nk = 18

kinematic features is displayed in Fig. 5.3.
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Deconvolution (“unfolding”): 
correcting for detector effects
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Key aspect of all cross section 
measurements, across particle/

nuclear/astro physics (!)
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Key aspect of all cross section 
measurements, across particle/

nuclear/astro physics (!)
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Proton-Proton

Electron-PositronCosmic 
Rays

Neutrino-Nucleus

Nucleus-Nucleus

Particle/Nuclear/Astro Physics Experiments
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Deconvolution (“unfolding”): 
correcting for detector effects

Key aspect of all cross section 
measurements, across particle/

nuclear/astro physics (!)

Why “unfold” instead of “fold”?
Unfolding is ill-posed, BUT only 

way to compare different 
experiments and to compare with 

non fully exclusive predictions.  
Data also survive much longer.

Electron-Proton

Proton-Proton

Electron-PositronCosmic 
Rays

Neutrino-Nucleus

Nucleus-Nucleus

Particle/Nuclear/Astro Physics Experiments
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observables & discretize 

into O(10) binŝT ≈ R−1M
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For a community white paper, see JINST 17 (2022) P01024, 2109.13243

44Why unbinned (+high-dimensional)?



For a community white paper, see JINST 17 (2022) P01024, 2109.13243

Inference-Aware Binning
Optimal binning depends on 

downstream task. Not possible 
with current setup.

45Why unbinned (+high-dimensional)?

What about moments?
(see e.g. this paper) 

https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_43.pdf


For a community white paper, see JINST 17 (2022) P01024, 2109.13243

Inference-Aware Binning
Derivative MeasurementsOptimal binning depends on 

downstream task. Not possible 
with current setup.

What about moments?
(see e.g. this paper) 

With binned measurements, 
essentially impossible to re-
use results for a function of 

the phase space.

46Why unbinned (+high-dimensional)?

https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_43.pdf


For a community white paper, see JINST 17 (2022) P01024, 2109.13243

Inference-Aware Binning
Derivative Measurements

Higher Dimensions

Optimal binning depends on 
downstream task. Not possible 

with current setup. With binned measurements, 
essentially impossible to re-
use results for a function of 

the phase space.

Some phenomena can’t be 
probed in a few dimensions.  

What about observables that 
are not per-event?

47Why unbinned (+high-dimensional)?

What about moments?
(see e.g. this paper) 

https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_43.pdf


Classifier-Based Methods

Learn (unfolded) data 
likelihood ratio w.r.t. simulation

For references, see JINST 17 (2022) P01024, 2109.13243 (and papers that cite it!)
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Density-Based MethodsClassifier-Based Methods

Learn (unfolded) data probably 
density implicitly or explicitly.

Learn (unfolded) data 
likelihood ratio w.r.t. simulation

For references, see JINST 17 (2022) P01024, 2109.13243 (and papers that cite it!)
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Density-Based MethodsClassifier-Based Methods

Learn (unfolded) data probably 
density implicitly or explicitly.

Learn (unfolded) data 
likelihood ratio w.r.t. simulation

For references, see JINST 17 (2022) P01024, 2109.13243 (and papers that cite it!)

50Landscape of Methods

Both methods work with various 
pros/cons that I won’t get into here.

The examples I give are based on the classifier approach.



dataset 1: sampled from p(x)

dataset 2: sampled from q(x)

Create weights w(x) = q(x)/p(x) so that when dataset 1 
is weighted by w, it is statistically identical to dataset 2.

What if we don’t (and can’t easily) know q and p?

(and don’t want to estimate them by binning)

How do we learn LLRs without binning?  

51Likelihood ratios



Solution: train a neural network to 
distinguish the two datasets!

Fact: Neutral networks learn to 
approximate the likelihood ratio = q(x)/p(x)

This turns the problem of density estimation 
(hard) into a problem of classification (easy)

(or something monotonically related to it in a known way)

52Classification = likelihood ratios
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [44, 45], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [49, 50] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in

54Full phase-space unfolding in action
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (“Sim.”/“Gen.”), unfolded with OmniFold and compared to IBU. OmniFold matches or exceeds the unfolding
performance of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas
unfolding with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [32] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [33] implemented in
FastJet 3.3.2 [34, 35]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used
for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [36, 37] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle

�, and particle identification code [38], restricted to the
experimentally-accessible information (PFN-Ex [36]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [36] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [39].
Neural networks are trained with Keras [40] and Tensor-
Flow [41] using the Adam [42] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [43]. The
first four are jet mass m, constituent multiplicity M , the

N -subjettiness ratio ⌧21 = ⌧ (�=1)
2 /⌧ (�=1)

1 [44, 45], and the

jet width w (implemented as ⌧ (�=1)
1 ). Since jet groom-

ing [46–50] is of recent interest, we also show the jet mass
ln ⇢ = ln m2

SD/p2
T and momentum fraction zg after Soft

Drop grooming [49, 50] with zcut = 0.1 and � = 0. Sev-
eral of these observables are computed with the help of
FastJet Contrib 1.042 [51].

The unfolding performance of OmniFold is shown in

55Full phase-space unfolding in action
1911.09107
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Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the data; the bars represent the statistical uncertainty of the data, which is typically smaller than the marker size. The error
bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical uncertainties on the MC
predictions are smaller than the markers.
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Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the data; the bars represent the statistical uncertainty of the data, which is typically smaller than the marker size. The error
bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical uncertainties on the MC
predictions are smaller than the markers.

3

relatively small (qjet
T ⌧ p e

T ⇠ p jet
T ) [33]. This corresponds to a small deviation from ⇡ in azimuthal angle between the

lepton and jet axes (��jet
⌘ |⇡ � (�e

� �jet)|) in the transverse plane. TMD PDFs are an essential ingredient for the
quantum tomography of the proton that probes the origin of its spin, mass, size, and other properties.

Figure 1. A display of the H1 tracker and calorimeter detectors, showing a DIS event with approximate Born kinematics,
eq ! eq, which yields a lepton and a jet in a back-to-back topology perpendicular to the beam axis.

The energy dependence of TMD PDFs can also probe unexplored aspects of QCD as they follow a more complex set
of evolution equations than collinear PDFs [37–39], involving components that cannot be calculated using perturbation
theory. A complete description remains open in part because of a lack of precise measurements over a wide kinematic
range. Existing constraints from DIS data are at very low momentum transfer (Q2

⇡ 1 GeV2) from fixed-target
experiments [40–44]. Drell-Yan production in fixed target [45–49] and collider experiments [50–62] can provide TMD-
sensitive measurements up to high scales (Q2

⇡ 10000 GeV2). The HERA experiments can cover the entire kinematic
region Q2

⇡ 1�10000 GeV2 so they can yield a key ingredient to connecting the existing experimental and theoretical
information, including with lattice QCD calculations, which have made significant advances in describing aspects of
TMD evolution [63, 64].

This Letter presents a measurement of jet production in neutral current (NC) DIS events close to the Born level
configuration, eq ! eq. The cross section of this process is measured differentially as a function of the jet transverse
momentum and pseudorapidity, as well as lepton-jet momentum imbalance and azimuthal angle correlation. This
measurement probes a range of QCD phenomena, including TMD PDFs and their evolution with energy. A novel
machine learning (ML) technique called MultiFold [65, 66] is used to correct for detector effects for the first time in
any experiment, enabling the simultaneous and unbinned unfolding of the target observables.

Experimental method. The H1 detector1 [67–71] is a general purpose particle detector with cylindrical geometry.
The main sub-detectors used in this analysis are the inner tracking detectors and the Liquid Argon (LAr) calorimeter,
which are both immersed in a magnetic field of 1.16 T provided by a superconducting solenoid. The central tracking
system, which covers 15� < ✓ < 165� and the full azimuthal angle, consists of drift and proportional chambers that
are complemented with a silicon vertex detector in the range 30� < ✓ < 150� [72]. It yields a transverse momentum
resolution for charged particles of �pT/pT = 0.2% pT/GeV � 1.5%. The LAr calorimeter, which covers 4� < ✓ < 154�

and full azimuthal angle, consists of an electromagnetic section made of lead absorbers and a hadronic section with

1 This measurement uses a right handed coordinate system defined such that the positive z direction points in the direction of the proton
beam and the nominal interaction point is located at z = 0. The polar angle ✓, is defined with respect to this axis. The pseudorapidity
is defined as ⌘lab = � ln tan(✓/2).
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5 Unfolding

The MULTIFOLD method is an iterative two-step procedure to correct for detector effects as illustrated
in Fig. 2 illustrates this MULTIFOLD. The goal is to infer the top right box (particle-level data) using
detector-level data (top left box) and simulations (lower boxes). The components of MULTIFOLD are
explained in more detail below.
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…

Fig. 2: A schematic diagram of the MULTIFOLD method. The top row represents data (‘Nature’) while the second
row depicts synthetic datasets from MC simulation. The goal is to infer the top right box given the other three
boxes. MULTIFOLD is an iterative two-step procedure. The first step uses detector-level inputs (left column) while
the second step uses particle-level inputs (right column). Adapted from Ref. [6].

Let ~x = (pe
x, pe

y, pe
z , pjet

T ,h jet,f jet,qjet
T /Q,Df jet). The goal is to make a cross section measurement that is

differential in~x. Note that from~x, one can extract Q by using qT computed from the first six components
of~x,~qT = ~pe

T �~pjet
T . Additionally, y can be computed using Q, the lepton kinematic properties, and Eq. 1.

Symbolically:

Q2 =
(qjet

T )2

(qjet
T /Q)2

=
(pe

x + pjet
T cos(f jet))2 +(pe

y + pjet
T sin(f jet))2

(qjet
T /Q)2

(3)

and

y = 1� E2
e sin2 qe

Q2

= 1�
(pe

x
2 + pe

y
2 + pe

z
2 +m2

e)
⇣

pe
x

2+pe
y

2

pe
x

2+pe
y

2+pe
z

2

⌘2

Q2 . (4)

The future is here!
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Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the data; the bars represent the statistical uncertainty of the data, which is typically smaller than the marker size. The error
bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical uncertainties on the MC
predictions are smaller than the markers.
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5 Unfolding

The MULTIFOLD method is an iterative two-step procedure to correct for detector effects as illustrated
in Fig. 2 illustrates this MULTIFOLD. The goal is to infer the top right box (particle-level data) using
detector-level data (top left box) and simulations (lower boxes). The components of MULTIFOLD are
explained in more detail below.
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Fig. 2: A schematic diagram of the MULTIFOLD method. The top row represents data (‘Nature’) while the second
row depicts synthetic datasets from MC simulation. The goal is to infer the top right box given the other three
boxes. MULTIFOLD is an iterative two-step procedure. The first step uses detector-level inputs (left column) while
the second step uses particle-level inputs (right column). Adapted from Ref. [7].

Let ~x = (pe
x, pe

y, pe
z , pjet

T ,h jet,f jet,qjet
T /Q,Df jet

). The goal is to make a cross section measurement that is
differential in~x. Note that from~x, one can extract Q by using qT computed from the first six components
of~x,~qT = ~pe

T �~pjet
T . Additionally, y can be computed using Q, the lepton kinematic properties, and Eq. 1.

Symbolically:

Q2
=

(qjet
T )

2

(qjet
T /Q)2

=
(pe

x + pjet
T cos(f jet

))
2
+(pe

y + pjet
T sin(f jet

))
2

(qjet
T /Q)2

(3)

and

y = 1� E2
e sin2 qe

Q2

= 1�
((pe

x)
2
+(pe

y)
2
+(pe

z)
2
+m2

e)
⇣

(pe
x)

2
+(pe

y)
2

(pe
x)

2+(pe
y)

2+(pe
z)

2

⌘2

Q2 . (4)

Differential Lepton-jet Correlations 1

1 Introduction

Jet measurements in deep-inelastic scattering (DIS) at HERA have provided a powerful tool to explore
quantum-chromodynamics (QCD), including studies to constrain gluon parton-density functions (PDFs)
and to extract the strong coupling constant [2]. While powerful, such measurements have mostly been
limited to the domain of collinear QCD. Theoretical and experimental progress in recent years moti-
vate studying aspects of QCD at high momentum transfer (Q) that go beyond the collinear framework.
In particular, transverse momentum dependent (TMD) PDFs have a more complex evolution than their
collinear counterparts and observables sensitive to TMD PDFs and related quantities will aid the explo-
ration of nucleon structure in multiple dimensions of position and momentum space, as well as quantum
correlation amongst nuclear constituents.

Lepton-jet correlations in DIS have recently been suggested as interesting probes of TMD PDFs and
TMD evolution [3,4]. These jet-based studies complement traditional measurements using single hadrons
(semi-inclusive DIS or SIDIS) by providing observables that can be described theoretically without in-
volving TMD fragmentation functions (FFs). Such decoupling between TMD PDFs and TMD FFs is
currently one of the main challenges for accurate extractions of TMD PDFs with global fits.

Jetp

e e

e

Jet Jetp

e e

e

Jet

Fig. 1: Left: A display of the H1 tracker (open rectangles) and calorimeter detectors (filled rectangles), showing a
neutral current DIS candidate event involving a single jet in the laboratory frame. Right: A leading order Feynman
diagram illustrating a contribution to the process in the top display.

Previously, we presented measurements of lepton-jet correlations in the laboratory frame for events
Q2 >150 GeV2 [1] using H1 data from HERA Run II. In particular, the result included differential
cross section measurements of the jet transverse1 momentum, psseudorapdiity h , relative transverse
electron-jet momentum imbalance qT /Q, and angular separation in the transverse plane, Df . Analytical
calculations within the TMD framework agree well with the data from low to medium values of qT /Q or
Df , whereas collinear perturbative QCD calculations at next-to-next-to-leading order (NNLO) describe
the data well at medium to large values. At intermediate values with qT /Q ⇠ 0.5, both frameworks agree
with the data and with each other. Such observations represent a long-sought matching between the two
frameworks [5], which is not observed at lower-energy DIS from fixed target experiments. The data are
also well described by Monte Carlo (MC) event generators, including CASCADE [6] that includes TMD
effects through the parton-branching method.

Multi-differential measurements of lepton-jet observables in DIS over a wide range of Q2 are needed
to fully constrain TMD evolution effects. The measurement in Ref. [1] was performed simultaneously
and unbinned in eight dimensions including the three each for the jet and lepton kinematic properties,
qT /Q, and Df (redundant with the first six). This measurement was enabled by a new machine learning
technique called MULTIFOLD [7,8]. Even though the data were unfolded simultaneously in eight dimen-

1This measurement uses a right handed coordinate system defined such that the positive z direction points in the direction
of the proton beam and the nominal interaction point is located at z = 0. The polar angle q , is defined with respect to this axis.
The pseudorapidity is defined as hlab = � ln tan(q/2).
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Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the data; the bars represent the statistical uncertainty of the data, which is typically smaller than the marker size. The error
bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical uncertainties on the MC
predictions are smaller than the markers.

Increasing Q 2

4 H1 Collaboration

5 Unfolding

The MULTIFOLD method is an iterative two-step procedure to correct for detector effects as illustrated
in Fig. 2 illustrates this MULTIFOLD. The goal is to infer the top right box (particle-level data) using
detector-level data (top left box) and simulations (lower boxes). The components of MULTIFOLD are
explained in more detail below.
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Fig. 2: A schematic diagram of the MULTIFOLD method. The top row represents data (‘Nature’) while the second
row depicts synthetic datasets from MC simulation. The goal is to infer the top right box given the other three
boxes. MULTIFOLD is an iterative two-step procedure. The first step uses detector-level inputs (left column) while
the second step uses particle-level inputs (right column). Adapted from Ref. [6].

Let ~x = (pe
x, pe

y, pe
z , pjet

T ,h jet,f jet,qjet
T /Q,Df jet). The goal is to make a cross section measurement that is

differential in~x. Note that from~x, one can extract Q by using qT computed from the first six components
of~x,~qT = ~pe

T �~pjet
T . Additionally, y can be computed using Q, the lepton kinematic properties, and Eq. 1.

Symbolically:

Q2 =
(qjet

T )2

(qjet
T /Q)2

=
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x + pjet
T cos(f jet))2 +(pe

y + pjet
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(3)
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The future is unbinned.  

Will your predictions be able to make use of this?  

There are still challenges that need to be overcome, but many 
experiments are starting to use these new methods in parallel.

58What is next?

These data will also benefit inference tasks that can handle 
unbinned, multidimensional data (e.g. ML hadronization!)

I just gave one example, but there are also recent/ongoing results from ATLAS, CMS, LHCb, STAR, …



1 Introduction

1.1 Executive Summary

Ab initio simulations with the same level of detail as experimental data are a critical input for nearly
all aspects of High Energy Physics (HEP). The computational expense of running these simulations
often prohibits their direct integration in high-dimensional statistical analysis. Instead, synthetic
datasets are generated first, often on High Performance Computing (HPC) resources. These static
datasets are analyzed alongside experimental data, usually as low-dimensional summary statistics,
reducing the sensitivity and computational e�cacy. We propose a new paradigm for integrating
simulation and inference by making HEP simulations di↵erentiable with respect to their inputs.
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Figure 1: Schematic Diagram of the Towards Uni-
fying Simulation and Inference.

Simulations in HEP are composed of the
three components highlighted in Fig. 1: first-
principles calculations, phenomenological mod-
els, and detector interactions. Examples of
first-principles calculations include (1) Parton
Shower Event Generator (PSEG) programs,
based on a leading logarithmic approximation
to final state radiation in Quantum Chromody-
namics (QCD), and (2) Cosmological N -body
simulations of the gravitational evolution of
dark matter. Hadronization models that trans-
form the quarks and gluons from the PSEG
to observable hadrons are constructed as phe-
nomenological models, as are simulations that
map dark matter distributions onto observable
galaxies. Detector simulations are often based
on programs like Geant4 [1], which model elec-
tromagnetic and nuclear interactions with mat-
ter.

Each of these simulation steps can be de-
scribed by a function that maps a set of ran-
dom numbers and fixed parameters to struc-
tured data. Some of the input random num-
bers will be physically interesting (e.g., particle
momenta) and some will be nuisance degrees of
freedom (e.g., detector noise). Making a simu-

lation di↵erentiable means that one can compute gradients of the simulation function with respect
to any of the inputs.

Di↵erentiable simulations have many advantages over traditional simulations. Most impor-
tantly, simulations that are di↵erentiable can be used for optimal inference and provide a natural
method for uncertainty quantification. This will significantly enhance the physics capabilities,
such as (Beyond) the Standard (Cosmological) Model parameter estimation, of existing and future
experiments across frontiers. Additionally, di↵erentiable simulations can be used for automated
optimization of experimental apparatuses as well as control and operation. When based on tools
like TensorFlow [2], JAX [3], or PyTorch [4], di↵erentiable simulations are automatically compati-
ble with and benefit from strong community support for performant implementations on Graphical
Processing Units (GPUs) and can be readily combined with machine learning (ML) methods. This

1

An end-to-end 
differentiable event 

generator?

Computing benefits: fast, GPU-
compatible, ML-compatible

Physics benefits: precise 
inference + uncertainties

(Imagine HADML was just 
one layer of a NN!)

59What is next-to-next?



60The power of a differentiable generator

2208.02274

Please consider making 
your calculations/

simulations differentiable !



61Conclusions and Outlook
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ML has many exciting use-cases for precision physics at the 
LHC.  I’ve only covered a couple of representative examples.

This is not just a tool 
for experimentalists.

Physicists are also 
developing new ML 
methods - we need 

innovation in order to 
make the most of past, 

present, and future data!
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63Differentiable Simulation

X ∼ 𝒩(μ, σ)

x = np.random.normal(mu,sigma) 

Z = np.random.uniform(0,1)


x = sigma*Phiinv(z)+mu 

(Phiinv = inverse Gaussian CDF)

Now, can compute 
 and ∂/∂μ ∂/∂σ

We can then do:

sim(μ0 + ϵ) ≈ sim(μ0) + ∂sim

∂μ ϵ

2208.02274


