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Enhancing the “forward model”

Complete predictions require composing a
number of different components.

There are proposals
for ML at all levels:

* PDFs

* Phase space

* Matrix elements
« Parton showers
- Hadronization

- End-to-end




Enhancing the “forward model”

Complete predictions require composing a
number of different components.

There are proposals
for ML at all levels:

e, % %
'*\*’&é.%\%\
° :&\7» //’/,“

accuracy L
.ﬁ,\‘ ,,,,,,, g
* Phase space !
2 I —

 Matrix elements e
 Parton showers

\\\\\\\\\

,,,,,,,,

00
00

/////

speed/

» End-to-end efficiency



Enhancing the “forward model”

Complete predictions require composing a
number of different components.

There are proposals
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Why hadronization?

We do not understand hadronization from first principles!

EXisting approaches use

physics-inspired models

with lots of parameters
that are fit to data.

Seems to be calling
out for a machine
learning solution!

See also PDFs (and
the pioneer, NNPDF)



What is a deep generative model?

A generator is nothing other than a function
that maps random numbers to structure.

> 3

Deep generative models: the map is a deep neural network.




What is a deep generative model?

GANs Score-
Generative
Adversarial Networks baSEd
Restricted - Mixture
Botlzmann Density
Machines Networks

NFs Energy- VAEs

Normalizing Flows  based Varational Autoencoders
models



Our tool of choice: GANs

. Generative Adversarial Networks (GANSs):
A two-network game where one maps noise to structure
5 and one classifies images as fake or real. '
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Our tool of choice: GANs

There are many new methods that have
superior robustness to GANs, but for
reasons | hope will be clear later, we

need the flexibility of GANs that no other

approach can accommodate (yet).
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ML Hadronization - Overview
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Based on 2203.12660 and 2305.17169, set in the cluster model. Similar studies set in the string model found in 2203.04983.



ML Hadronization - Overview

HadML* v1 Generator
PRD 106 (2022) 096020
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: Parton =% Cluster I Discriminator

S|m|Iar setup for string model MLHad v1: 2203.04983

Based on 2203.12660 and 2305.17169, set in the cluster model. Similar studies set in the string model found in 2203.04983.



Cluster hadronization

Physics inspiration: preconfinement. Universal distribution of
color singlet objects (‘clusters’) which decay into hadrons.

Qur approach: take
preconfinement as a
starting point and
learn the decay. In
the future, we want to
be able to go beyond
this starting point*

*We actually tried fitting a version of Pythia with all the same simplifying assumptions as our Herwig
model and it doesn’t work yet for known reasons. Please ask if you want to hear more about this!



Training HADML

We have a conditional
GAN, with cluster 4-
vector input and two

hadron 4-vector outputs.




Training HADML

We have a conditional
GAN, with cluster 4-
vector input and two

hadron 4-vector outputs.

We simplity this by
considering only pions
and generating two
angles in the cluster
rest frame.




Training HADML
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Performance: Pions

Pseudorapidity distribution of 7~ and 7’ multiplicity, Pert=o
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We extract clusters + hadrons, train, and then using ONNX,
re-insert the model back into Herwig. This then allows us to
run a full event generator and produce plots like these!



Performance: All Hadrons

As a crude “full” model, we simply take the PIDs
from Herwig and the kinematics from the GAN.
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Performance: Data!

With a “full” model, we can compare directly to data!
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N.B. we have trained on H7, so we don't expect
to be any better than it at modeling the data.



ML Hadronization - Overview

HadML v2: Stress Test
(this paper)
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Training HADML v2
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Performance
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Performance: reco. quantities
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Non-perturbative functions are natural candidates
for ML-modeling to improve accuracy.

Long history (but still very active) for PDFs and
now also progress for hadronization. What about
other non-perturbative objects?

For hadronization, there is still clearly multiple
steps before we have a product we can hand off
to users, but it is not science fiction !
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Enhancing the “inverse model”

There are many proposals for using ML to directly infer
model parameters. This is a very exciting topic, but
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Enhancing the “inverse model”

instead, | want to describe a complementary program
on highly differential cross sections.
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Deconvolution (“unfolding”):
correcting for detector effects
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Deconvolution (“unfolding”):
correcting for detector effects

Key aspect of all cross section
measurements, across particle/
nuclear/astro physics (!)
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Deconvolution (“unfolding”):
correcting for detector effects

Key aspect of all cross section
measurements, across particle/
nuclear/astro physics (!)

Particle/Nuclear/Astro Physics Experiments
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Deconvolution (“unfolding”):
correcting for detector effects

Key aspect of all cross section
measurements, across particle/
nuclear/astro physics (!)

Why “unfold” instead of “fold”?

Unfolding is ill-posed, BUT only
way to compare different
experiments and to compare with
Particle/Nuclear/Astro Physics Experiments non fully exclusive predictions.
Data also survive much longer.




The Unfolding Challenge

2203.16722



Particle

The Unfolding Challenge Covel

Want this

2203.16722



Detector Particle

Leve The Unfolding Challenge Leve

Measure this Want this

2203.16722



Detector Particle

Leve The Unfolding Challenge Leve

Measure this Want this

‘ Target
o observable
5 Traditional 5
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Detector
Level

dN/dx

dN/dx
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for unfolding
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Approach I
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Detector X NN reco tailored Particle
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Detector Particle
Level Level

Now
possible
with ML!

Full phase-
space
unfolding



Why unbinned (+high-dimensional)?

For a community white paper, see JINST 17 (2022) P01024, 2109.13243



Why unbinned (+high-dimensional)?

Inference-Aware Binning

Optimal binning depends on
downstream task. Not possible
with current setup.

What about moments?
(see e.qg. this paper)

For a community white paper, see JINST 17 (2022) P01024, 2109.13243


https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_43.pdf

Why unbinned (+high-dimensional)?

Inference-Aware Binning

Optimal binning depends on Derivative Measurements
downstream task. Not possible
with current setup. With binned measurements,
What about moments? essentially impossible to re-

use results for a function of
the phase space.

(see e.qg. this paper)

For a community white paper, see JINST 17 (2022) P01024, 2109.13243


https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_43.pdf

Why unbinned (+high-dimensional)?

Inference-Aware Binning

Optimal binning depends on Derivative Measurements
downstream task. Not possible
with current setup. With binned measurements,

essentially impossible to re-
use results for a function of
the phase space.

What about moments?
(see e.qg. this paper)

Higher Dimensions

Some phenomena can'’t be
probed in a few dimensions.

What about observables that
are not per-event?

For a community white paper, see JINST 17 (2022) P01024, 2109.13243


https://ml4physicalsciences.github.io/2022/files/NeurIPS_ML4PS_2022_43.pdf

Landscape of Methods

Classifier-Based Methods

Learn (unfolded) data
likelihood ratio w.r.t. simulation

For references, see JINST 17 (2022) P01024, 2109.13243 (and papers that cite it!)



Landscape of Methods

Classitier-Based Methods Density-Based Methods
Learn (unfolded) data Learn (unfolded) data probably
likelihood ratio w.r.t. simulation density implicitly or explicitly.

For references, see JINST 17 (2022) P01024, 2109.13243 (and papers that cite it!)



Landscape of Methods

Classitier-Based Methods Density-Based Methods
Learn (unfolded) data Learn (unfolded) data probably
likelihood ratio w.r.t. simulation density implicitly or explicitly.

Both methods work with various
pros/cons that | won't get into here.

The examples | give are based on the classitier approach.



Likelihood ratios

How do we learn LLRs without binning”

dataset 1: sampled from p(x)
dataset 2: sampled from q(x)

Create weights w(x) = g(x)/p(x) so that when dataset 1
IS weighted by w, it Is statistically identical to dataset 2.

What if we don't (and can't easily) know g and p?

(and don’t want to estimate them by binning)



Classification = likelihood ratios

Fact: Neutral networks learn to
approximate the likelihood ratio

Solution: train a neural network to
distinguish the two datasets!

This turns the problem of density estimation
(hard) into a problem of classification (easy)



Neural reweighting: works !
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Full phase-space unfolding in action
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The future Is here!

M. Arratia, BPN, and our H1 collaborators
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Re-using and extending
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The future is unbinned.
Will your predictions be able to make use of this?

There are still challenges that need to be overcome, but many
experiments are starting to use these new methods in parallel.

| just gave one example, but there are also recent/ongoing results from ATLAS, CMS, LHCb, STAR, ...

These data will also benefit inference tasks that can handle
unbinned, multidimensional data (e.g. ML hadronization!)




What is next-to-next?

" simulation

An end-to-end 0 Simulation
differentiable event | NG L At
generator? "’ ‘
Computing benefits: fast, GPU- Detector

compatible, ML-compatible

(Imagine HADML was just
one layer of a NN!)

. Phenomenological

/ o.0.0

Physics benefits: precise Ny
inference + uncertainties SR

calculations

O Inference



The power of a differentiable generator
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Conclusions and Outlook

ML has many exciting use-cases for precision physics at the
LHC. I've only covered a couple of representative examples.

This is not just a tool
for experimentalists.

Physicists are also
developing new ML
methods - we need
iINnnovation in order to
make the most of past,
present, and future datal







Differentiable Simulation

0.4
9 Original
% Moved X ~ /’/(’M’ 6)
£ 0.2—’|_I_I_I_I_|—'_"—|_I_Ef‘ii
: }
0.0 ' ' ' ' ' ' ' X = np.random.normal (mu,sigma)
§ , }
i Z = np.random.uniform(0,1)
*] | x = sigma*Phiinv (z)+mu
®
1- ' d ¢ (Phiinv = inverse Gaussian CDF)
. ®
> 0 , - .
. Now, can compute
-1 4 4 e
o 1N d/du and d/do
-2 4 \/ @
We can then do:
. . . asim
T L 4 6 1 33 o o2 o Sl + €) & simlig) + =5,
X Normalized
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