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Tracking the flavour of a jet: more and more important
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•More and more precise measurements 
•More and more accurate predictions 
•Apple-to-apple comparison difficult without suitable definition of “jet flavour”
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The problem of jet flavour: IR-unsafe at higher orders

•Experimentally: anti-kt, b-tagging 

•Theory:

dij = min(p−2
t,i , p−2

t,j )
ΔR2
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ij = (yi − yj)2 + (ϕi − ϕj)2

min(dij, diB) = d12
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•Cluster 1+2 

• no flavourb + b̄ →
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The problem of jet flavour: IR-unsafe at higher orders

•Experimentally: anti-kt, b-tagging 
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The problem of jet flavour: IR-unsafe at higher orders

•Experimentally: anti-kt, b-tagging 

•Theory:

dij = min(p−2
t,i , p−2

t,j )
ΔR2

ij

R2

diB = p−2
t,i

ΔR2
ij = (yi − yj)2 + (ϕi − ϕj)2

•Flavour contamination 
•Log sensitivity to 
quark mass, ln(mq/pt,j) IR-unsafe at O(αs2 ) 

i.e. αs2
 ln(mq/pt,j) sensitivity
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The “old” solution: flavour-kt

Flavour-kt [Banfi, Salam, Zanderighi (2006)]:

modify dij, diB to ensure that soft flavoured objects are clustered first
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The “old” solution: flavour-kt

Flavour-kt [Banfi, Salam, Zanderighi (2006)]:

modify dij, diB to ensure that soft flavoured objects are clustered first

✔: remove the contamination 

✘: different dij → different 
recombination → different 
kinematics w.r.t. anti-kt!
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The “old” solution: flavour-kt17

The first two tests will be specific to heavy flavour,
which is the main experimental application of flavoured
jet algorithms. The third test will be for generic flavour
and can be seen as a stress test of the algorithm’s prac-
tical performance with light flavour at parton level.

A. Heavy flavour in pp ! WH(! µ⌫bb̄)

We begin with the case of Higgs production in asso-
ciation with a W boson at hadron colliders, pp ! WH,
where the Higgs boson decays to a pair of b-quarks and
the W decays leptonically. This process is of interest
for obvious phenomenological reasons, e.g. because of the
sensitivity to the HWW and Hbb̄ couplings, and it has
been measured by both ATLAS and CMS [38, 39]. Addi-
tionally, it is one of the processes in which one can probe
high-pt Higgs production [40, 41], especially in conjunc-
tion with jet substructure tools [42, 43], bringing partic-
ular sensitivity to new physics. For a long time, calcu-
lations at NNLO QCD were performed with massless b

quarks, which prohibited the use of the standard anti-kt
algorithm to cluster the final state. Only recently [31]
was the calculation performed with massive b-quarks.

Here, we examine a classic resolved-jet analysis of this
process, similar to that of Ref. [31]. We use Pythia
8.306 [44, 45] with the 4C tune [46] to generate pp !

W (! µ⌫µ)H(! bb̄). Following Ref. [31], we require the
presence of a muon satisfying

|⌘µ| < 2.5 , ptµ > 15GeV . (12a)

We cluster the event with a given jet algorithm, using a
jet radius of R = 0.4, and identify b-flavoured jets that
satisfy

|yjb | < 2.5 , ptjb > 25GeV . (12b)

We require the event to have at least two such jets. Fi-
nally, the reconstructed Higgs boson is defined as the
4-momentum sum of the two b-jets whose invariant mass
is closest to the Higgs mass.

The distribution of the transverse momentum of the re-
constructed Higgs boson is presented in Fig. 8 at hadron
level (with multi-parton interactions turned on), for four
algorithms:

• standard anti-kt with net flavour summation (red),

• anti-kt with our IFN algorithm (↵ = 2, in green),

• the CMP⌦ algorithm (a = 0.1, where the angu-
lar part of the distance measure is corrected as in
Eq. (11), in black), and

• the flavour-kt,⌦ algorithm (↵ = 2, in gold).

The flavour-kt,⌦ algorithm leads to a reconstructed Higgs
spectrum that is markedly di↵erent from that of the anti-
kt algorithm. In particular, for ptH & 300GeV, the

FIG. 8. The transverse momentum spectrum of the recon-
structed Higgs boson in WH(! µ⌫bb̄) at centre-of-mass en-
ergy

p
s = 13.6 TeV, at hadron level (with stable B-hadrons).

The upper panel shows the spectrum for four jet algorithms:
anti-kt with net flavour of the jet constituents (red), our
IFN version of anti-kt (with ↵ = 2, green), the CMP⌦ al-
gorithm (as adapted from Ref. [10] with a fix of the angu-
lar measure, see Eq. (11), black) and the flavour-kt,⌦ algo-
rithm (with ↵ = 2, gold). The lower panel shows the ra-
tio to standard anti-kt. CMP⌦ and our IFN algorithms all
give very similar results to those from the plain anti-kt al-
gorithm. In contrast, as already pointed out in Ref. [31],
flavour-kt,⌦ jets can di↵er significantly from anti-kt kinemat-
ics at large transverse momentum, because they start cluster-
ing the b and b̄ together into a single jet well before the scale
of pt ' 2mH/R = 625GeV where this occurs with the nor-
mal anti-kt algorithm. This is reflected in Eq. (13c), which
is used to generate the “asymptotic analytics” curve in the
lower panel.

distribution starts to drop relative to that with anti-kt,
reaching about 60% of the latter’s value at ptH ⇠ 600
GeV. As noted in Ref. [31], this occurs because the
flavour-kt algorithm starts clustering the b and b̄ together
at lower values of ptH than for the anti-kt algorithm.
When the b and b̄ end up in a single jet, the event fails
the selection requirement of having at least two b-jets.
Specifically for the decay of a scalar particle with invari-
ant massm and transverse momentum pt, for smallR and
in the limit of ptR � m, the e�ciency for having two sep-
arate jets (without any pt or rapidity cut on the jets) is 1
at low pt. Above some threshold in x = ptR/m > xmin,
it becomes

gen-kt : 1�

p
x2 � 4

x
, xmin = 2 , (13a)

↵ = 1 flav-kt :
2

x2
, xmin =

p
2 , (13b)

↵ = 2 flav-kt :
2

1 + x2
, xmin = 1 . (13c)

Reconstructed Higgs pt,  
anti-kt jets, b-tagging

Reconstructed Higgs pt, 
Flavour-kt

50% difference in the boosted region!

VH, H→bb
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The “old” solution: flavour-kt

Reconstructed Higgs pt,  
anti-kt jets, b-tagging

Reconstructed Higgs pt, 
Flavour-kt

50% difference in the boosted region!

VH, H→bb

Flavour-kt ≠ anti-kt 

For a long time: flavour-kt only option 
for higher-order (NNLO) calculations

Precise calculations, but apples to 
oranges comparisons!
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Recently: a flurry of activity

•Caletti, Larkoski, Marzani, Reichelt (2022): “Practical jet flavour through NNLO” 
Fix the problem at NNLO, ignoring higher-order issues 

•Czakon, Mitov, Poncelet [CMP] (2022): “Infrared-safe anti-kt jets” 
All-orders, modify the anti-kt distance, but only close to “dangerous” configurations → similar 
kinematics to anti-kt 

•Gauld, Huss, Stagnitto [GHS] (2022): “A dress of flavour to suit any jet” 
All-orders, separate kinematics and flavour recombination
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Recently: a flurry of activity

•Caletti, Larkoski, Marzani, Reichelt (2022): “Practical jet flavour through NNLO” 
Fix the problem at NNLO, ignoring higher-order issues 

•Czakon, Mitov, Poncelet [CMP] (2022): “Infrared-safe anti-kt jets” 
All-orders, modify the anti-kt distance, but only close to “dangerous” configurations → similar 
kinematics to anti-kt 

•Gauld, Huss, Stagnitto [GHS] (2022): “A dress of flavour to suit any jet” 
All-orders, separate kinematics and flavour recombination

What are the features of an 
ideal flavoured-jet algorithm?
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Flavoured-jet algorithms: wish-list

•allow for reliable data-theory comparisons, at high precision → exact anti-kt kinematics 
•Flavour-kt: ✘ 
•CMP: ~ 
•GHS: ✔ 

•allow for reliable jet substructure studies → track the flavour along the clustering 
sequence, Cambridge/Aachen  

•be IR-safe to all-orders 

A good jet flavour algorithm should:

Achieving this is more difficult than it may sound
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Our proposal: Interleaved Flavour Neutralisation (IFN)

keep the standard clustering procedure (anti-kt, C/A), but modify flavour-
recombination at each step of the clustering sequence

By construction then: 

•same identical kinematics of anti-kt, C/A 

•at each stage of the recombination: IR-safe (sub)-jets → substructure 
friendly

9

The main idea:  



Integrated Flavour Neutralisation (IFN): a cartoon
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FIG. 2. Illustration of the flavour-neutralisation approach. The event displayed here (a) has the property that there is a soft
q̄q pair (particles 1 and 2), and a hard q̄ (particle 3) with pt1 ⇠ pt2 ⌧ pt3. Additionally, we have all �R distances of order one,
but with the constraint that �R23 < R, while �R12 > R, so that within the anti-kt algorithm, 2 and 3 cluster into one jet,
while 1 would form a separate soft jet. In (b), just before the 2 + 3 clustering, the flavour of 1 is used to neutralise the flavour
of 2, which results in the intermediate stage shown in (c), where particles 1 and 2 have lost their flavour (as represented by the
black dashed lines). Finally, in (d) the (now) flavourless pseudojet 2 is clustered with 3 into a pseudojet 2+3 with the q̄ flavour
of just particle 3.

believe can be applied in a variety of ways, is illustrated
in Fig. 2. When a pseudojet with non-zero flavour is
about to undergo a kinematic clustering (soft q (2), clus-
tering with hard q̄ (3) in Fig. 2a), the algorithm needs
to establish whether the flavours of 2 and 3 should be
combined as per usual net-flavour summation, or instead
whether the flavour of either of the particles should be
“neutralised” by some other particle(s) in the event be-
fore allowing the kinematic (2+3) clustering to proceed.
For example, in Fig. 2b, with a soft q̄ (particle 1) in the
vicinity of the soft q (2), the algorithm may decide to first
neutralise the flavours of particles 1 and 2, before mov-
ing ahead with the 2+3 clustering. If that neutralisation
happens, then particles 1 and 2 become flavourless, as il-
lustrated by the black dashed lines in Fig. 2c. This is
then followed by the kinematic clustering in Fig. 2d, re-
sulting in a 2 + 3 jet that retains the q̄ flavour of hard
particle 3, as needed for IRC safety.

In general, the IRC safety (or otherwise) of the al-
gorithm resides in the criteria used to decide whether to
neutralise a given pseudojet’s flavour, and if so then with
which other pseudojet(s). As with earlier flavoured clus-
tering algorithms, such a procedure will need to rely on
some measure of the likelihood that a given flavoured pair
came from an e↵ective parent gluon’s splitting, versus the
flavour originating from a genuine hard parton.

B. Introducing the IFN algorithm

We now construct a concrete algorithm based on Fig. 2
that integrates jet clustering with flavour neutralisation:
Interleaved Flavour Neutralisation (IFN). The core of our
algorithm is the search for neutralisation candidates at
any given stage of the clustering. Among the ingredients
of that search is a measure of flavour neutralisation dis-
tance uij between any pair of particles i and j, the softer
of which will always be flavoured. For now, the reader

may wish to think of uij as being a flavour-kt type dis-
tance, cf. Eq. (2), though there are important further
subtleties, discussed below in Sec. III C.
In defining the algorithm in the next few paragraphs,

we shall frequently make reference to Fig. 2 to illustrate
the function of the di↵erent steps, keeping in mind that
the flavour of the final hard jet (made of particles 2 and
3) should ultimately just be that of the hard particle 3q̄
without contamination from the flavours of the soft 1q̄2q
pair.
We write the core neutralisation search part of

the algorithm in the style of a computer subroutine
N(i, umax, C,E), taking a number of arguments as in-
puts, specifically:

• the index i of the pseudojet for which to identify
potential neutralisation partner(s) (e.g. i = 2 in
Fig. 2a);

• a threshold umax above which to ignore neutralisa-
tion candidates (e.g. in the context of the 2+3 kine-
matic clustering in Fig. 2a this would be umax =
u23);

• a list C of all potential neutralisation candidates,
i.e. all currently flavoured pseudojets in the event
(C = {1, 2, 3} in Fig. 2a);

• a subset E among those flavoured pseudojets to be
excluded in the neutralisation search because they
have already been considered in some prior step
of the algorithm (E = {2, 3} in Fig. 2a, because
particles 2 and 3 have already been considered in
that they set umax = u23).

The N(i, umax, C,E) algorithm is formulated as follows:

N1. Create a list L of uik distances for all k among the
candidates C that satisfy uik < umax, excluding
those in the exclusion set E.

•soft flavoured object (2) about to kinematically 
recombined per (anti-kt/CA…) → trigger a 
“flavour neutralisation” search

About to 
recombine 10



Integrated Flavour Neutralisation (IFN): a cartoon
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FIG. 2. Illustration of the flavour-neutralisation approach. The event displayed here (a) has the property that there is a soft
q̄q pair (particles 1 and 2), and a hard q̄ (particle 3) with pt1 ⇠ pt2 ⌧ pt3. Additionally, we have all �R distances of order one,
but with the constraint that �R23 < R, while �R12 > R, so that within the anti-kt algorithm, 2 and 3 cluster into one jet,
while 1 would form a separate soft jet. In (b), just before the 2 + 3 clustering, the flavour of 1 is used to neutralise the flavour
of 2, which results in the intermediate stage shown in (c), where particles 1 and 2 have lost their flavour (as represented by the
black dashed lines). Finally, in (d) the (now) flavourless pseudojet 2 is clustered with 3 into a pseudojet 2+3 with the q̄ flavour
of just particle 3.

believe can be applied in a variety of ways, is illustrated
in Fig. 2. When a pseudojet with non-zero flavour is
about to undergo a kinematic clustering (soft q (2), clus-
tering with hard q̄ (3) in Fig. 2a), the algorithm needs
to establish whether the flavours of 2 and 3 should be
combined as per usual net-flavour summation, or instead
whether the flavour of either of the particles should be
“neutralised” by some other particle(s) in the event be-
fore allowing the kinematic (2+3) clustering to proceed.
For example, in Fig. 2b, with a soft q̄ (particle 1) in the
vicinity of the soft q (2), the algorithm may decide to first
neutralise the flavours of particles 1 and 2, before mov-
ing ahead with the 2+3 clustering. If that neutralisation
happens, then particles 1 and 2 become flavourless, as il-
lustrated by the black dashed lines in Fig. 2c. This is
then followed by the kinematic clustering in Fig. 2d, re-
sulting in a 2 + 3 jet that retains the q̄ flavour of hard
particle 3, as needed for IRC safety.

In general, the IRC safety (or otherwise) of the al-
gorithm resides in the criteria used to decide whether to
neutralise a given pseudojet’s flavour, and if so then with
which other pseudojet(s). As with earlier flavoured clus-
tering algorithms, such a procedure will need to rely on
some measure of the likelihood that a given flavoured pair
came from an e↵ective parent gluon’s splitting, versus the
flavour originating from a genuine hard parton.

B. Introducing the IFN algorithm

We now construct a concrete algorithm based on Fig. 2
that integrates jet clustering with flavour neutralisation:
Interleaved Flavour Neutralisation (IFN). The core of our
algorithm is the search for neutralisation candidates at
any given stage of the clustering. Among the ingredients
of that search is a measure of flavour neutralisation dis-
tance uij between any pair of particles i and j, the softer
of which will always be flavoured. For now, the reader

may wish to think of uij as being a flavour-kt type dis-
tance, cf. Eq. (2), though there are important further
subtleties, discussed below in Sec. III C.
In defining the algorithm in the next few paragraphs,

we shall frequently make reference to Fig. 2 to illustrate
the function of the di↵erent steps, keeping in mind that
the flavour of the final hard jet (made of particles 2 and
3) should ultimately just be that of the hard particle 3q̄
without contamination from the flavours of the soft 1q̄2q
pair.
We write the core neutralisation search part of

the algorithm in the style of a computer subroutine
N(i, umax, C,E), taking a number of arguments as in-
puts, specifically:

• the index i of the pseudojet for which to identify
potential neutralisation partner(s) (e.g. i = 2 in
Fig. 2a);

• a threshold umax above which to ignore neutralisa-
tion candidates (e.g. in the context of the 2+3 kine-
matic clustering in Fig. 2a this would be umax =
u23);

• a list C of all potential neutralisation candidates,
i.e. all currently flavoured pseudojets in the event
(C = {1, 2, 3} in Fig. 2a);

• a subset E among those flavoured pseudojets to be
excluded in the neutralisation search because they
have already been considered in some prior step
of the algorithm (E = {2, 3} in Fig. 2a, because
particles 2 and 3 have already been considered in
that they set umax = u23).

The N(i, umax, C,E) algorithm is formulated as follows:

N1. Create a list L of uik distances for all k among the
candidates C that satisfy uik < umax, excluding
those in the exclusion set E.

About to 
recombine

•soft flavoured object (2) about to kinematically 
recombined per (anti-kt/CA…) → trigger a 
“flavour neutralisation” search 

•look globally in the event for objects that 
should neutralise → identify 1

“Close”
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Integrated Flavour Neutralisation (IFN): a cartoon

About to 
recombine

•soft flavoured object (2) about to kinematically 
recombined per (anti-kt/CA…) → trigger a 
“flavour neutralisation” search 

•look globally in the event for objects that 
should neutralise → identify 1
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FIG. 2. Illustration of the flavour-neutralisation approach. The event displayed here (a) has the property that there is a soft
q̄q pair (particles 1 and 2), and a hard q̄ (particle 3) with pt1 ⇠ pt2 ⌧ pt3. Additionally, we have all �R distances of order one,
but with the constraint that �R23 < R, while �R12 > R, so that within the anti-kt algorithm, 2 and 3 cluster into one jet,
while 1 would form a separate soft jet. In (b), just before the 2 + 3 clustering, the flavour of 1 is used to neutralise the flavour
of 2, which results in the intermediate stage shown in (c), where particles 1 and 2 have lost their flavour (as represented by the
black dashed lines). Finally, in (d) the (now) flavourless pseudojet 2 is clustered with 3 into a pseudojet 2+3 with the q̄ flavour
of just particle 3.

believe can be applied in a variety of ways, is illustrated
in Fig. 2. When a pseudojet with non-zero flavour is
about to undergo a kinematic clustering (soft q (2), clus-
tering with hard q̄ (3) in Fig. 2a), the algorithm needs
to establish whether the flavours of 2 and 3 should be
combined as per usual net-flavour summation, or instead
whether the flavour of either of the particles should be
“neutralised” by some other particle(s) in the event be-
fore allowing the kinematic (2+3) clustering to proceed.
For example, in Fig. 2b, with a soft q̄ (particle 1) in the
vicinity of the soft q (2), the algorithm may decide to first
neutralise the flavours of particles 1 and 2, before mov-
ing ahead with the 2+3 clustering. If that neutralisation
happens, then particles 1 and 2 become flavourless, as il-
lustrated by the black dashed lines in Fig. 2c. This is
then followed by the kinematic clustering in Fig. 2d, re-
sulting in a 2 + 3 jet that retains the q̄ flavour of hard
particle 3, as needed for IRC safety.

In general, the IRC safety (or otherwise) of the al-
gorithm resides in the criteria used to decide whether to
neutralise a given pseudojet’s flavour, and if so then with
which other pseudojet(s). As with earlier flavoured clus-
tering algorithms, such a procedure will need to rely on
some measure of the likelihood that a given flavoured pair
came from an e↵ective parent gluon’s splitting, versus the
flavour originating from a genuine hard parton.

B. Introducing the IFN algorithm

We now construct a concrete algorithm based on Fig. 2
that integrates jet clustering with flavour neutralisation:
Interleaved Flavour Neutralisation (IFN). The core of our
algorithm is the search for neutralisation candidates at
any given stage of the clustering. Among the ingredients
of that search is a measure of flavour neutralisation dis-
tance uij between any pair of particles i and j, the softer
of which will always be flavoured. For now, the reader

may wish to think of uij as being a flavour-kt type dis-
tance, cf. Eq. (2), though there are important further
subtleties, discussed below in Sec. III C.
In defining the algorithm in the next few paragraphs,

we shall frequently make reference to Fig. 2 to illustrate
the function of the di↵erent steps, keeping in mind that
the flavour of the final hard jet (made of particles 2 and
3) should ultimately just be that of the hard particle 3q̄
without contamination from the flavours of the soft 1q̄2q
pair.
We write the core neutralisation search part of

the algorithm in the style of a computer subroutine
N(i, umax, C,E), taking a number of arguments as in-
puts, specifically:

• the index i of the pseudojet for which to identify
potential neutralisation partner(s) (e.g. i = 2 in
Fig. 2a);

• a threshold umax above which to ignore neutralisa-
tion candidates (e.g. in the context of the 2+3 kine-
matic clustering in Fig. 2a this would be umax =
u23);

• a list C of all potential neutralisation candidates,
i.e. all currently flavoured pseudojets in the event
(C = {1, 2, 3} in Fig. 2a);

• a subset E among those flavoured pseudojets to be
excluded in the neutralisation search because they
have already been considered in some prior step
of the algorithm (E = {2, 3} in Fig. 2a, because
particles 2 and 3 have already been considered in
that they set umax = u23).

The N(i, umax, C,E) algorithm is formulated as follows:

N1. Create a list L of uik distances for all k among the
candidates C that satisfy uik < umax, excluding
those in the exclusion set E.

Neutralise

10



•soft flavoured object (2) about to kinematically 
recombined per (anti-kt/CA…) → trigger a 
“flavour neutralisation” search 

•look globally in the event for objects that 
should neutralise → identify 1 

•neutralise 1 and 2, then recombine  

•Flavoured jets with anti-kt/CA kinematics

Integrated Flavour Neutralisation (IFN): a cartoon
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FIG. 2. Illustration of the flavour-neutralisation approach. The event displayed here (a) has the property that there is a soft
q̄q pair (particles 1 and 2), and a hard q̄ (particle 3) with pt1 ⇠ pt2 ⌧ pt3. Additionally, we have all �R distances of order one,
but with the constraint that �R23 < R, while �R12 > R, so that within the anti-kt algorithm, 2 and 3 cluster into one jet,
while 1 would form a separate soft jet. In (b), just before the 2 + 3 clustering, the flavour of 1 is used to neutralise the flavour
of 2, which results in the intermediate stage shown in (c), where particles 1 and 2 have lost their flavour (as represented by the
black dashed lines). Finally, in (d) the (now) flavourless pseudojet 2 is clustered with 3 into a pseudojet 2+3 with the q̄ flavour
of just particle 3.

believe can be applied in a variety of ways, is illustrated
in Fig. 2. When a pseudojet with non-zero flavour is
about to undergo a kinematic clustering (soft q (2), clus-
tering with hard q̄ (3) in Fig. 2a), the algorithm needs
to establish whether the flavours of 2 and 3 should be
combined as per usual net-flavour summation, or instead
whether the flavour of either of the particles should be
“neutralised” by some other particle(s) in the event be-
fore allowing the kinematic (2+3) clustering to proceed.
For example, in Fig. 2b, with a soft q̄ (particle 1) in the
vicinity of the soft q (2), the algorithm may decide to first
neutralise the flavours of particles 1 and 2, before mov-
ing ahead with the 2+3 clustering. If that neutralisation
happens, then particles 1 and 2 become flavourless, as il-
lustrated by the black dashed lines in Fig. 2c. This is
then followed by the kinematic clustering in Fig. 2d, re-
sulting in a 2 + 3 jet that retains the q̄ flavour of hard
particle 3, as needed for IRC safety.

In general, the IRC safety (or otherwise) of the al-
gorithm resides in the criteria used to decide whether to
neutralise a given pseudojet’s flavour, and if so then with
which other pseudojet(s). As with earlier flavoured clus-
tering algorithms, such a procedure will need to rely on
some measure of the likelihood that a given flavoured pair
came from an e↵ective parent gluon’s splitting, versus the
flavour originating from a genuine hard parton.

B. Introducing the IFN algorithm

We now construct a concrete algorithm based on Fig. 2
that integrates jet clustering with flavour neutralisation:
Interleaved Flavour Neutralisation (IFN). The core of our
algorithm is the search for neutralisation candidates at
any given stage of the clustering. Among the ingredients
of that search is a measure of flavour neutralisation dis-
tance uij between any pair of particles i and j, the softer
of which will always be flavoured. For now, the reader

may wish to think of uij as being a flavour-kt type dis-
tance, cf. Eq. (2), though there are important further
subtleties, discussed below in Sec. III C.
In defining the algorithm in the next few paragraphs,

we shall frequently make reference to Fig. 2 to illustrate
the function of the di↵erent steps, keeping in mind that
the flavour of the final hard jet (made of particles 2 and
3) should ultimately just be that of the hard particle 3q̄
without contamination from the flavours of the soft 1q̄2q
pair.
We write the core neutralisation search part of

the algorithm in the style of a computer subroutine
N(i, umax, C,E), taking a number of arguments as in-
puts, specifically:

• the index i of the pseudojet for which to identify
potential neutralisation partner(s) (e.g. i = 2 in
Fig. 2a);

• a threshold umax above which to ignore neutralisa-
tion candidates (e.g. in the context of the 2+3 kine-
matic clustering in Fig. 2a this would be umax =
u23);

• a list C of all potential neutralisation candidates,
i.e. all currently flavoured pseudojets in the event
(C = {1, 2, 3} in Fig. 2a);

• a subset E among those flavoured pseudojets to be
excluded in the neutralisation search because they
have already been considered in some prior step
of the algorithm (E = {2, 3} in Fig. 2a, because
particles 2 and 3 have already been considered in
that they set umax = u23).

The N(i, umax, C,E) algorithm is formulated as follows:

N1. Create a list L of uik distances for all k among the
candidates C that satisfy uik < umax, excluding
those in the exclusion set E.

10
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FIG. 2. Illustration of the flavour-neutralisation approach. The event displayed here (a) has the property that there is a soft
q̄q pair (particles 1 and 2), and a hard q̄ (particle 3) with pt1 ⇠ pt2 ⌧ pt3. Additionally, we have all �R distances of order one,
but with the constraint that �R23 < R, while �R12 > R, so that within the anti-kt algorithm, 2 and 3 cluster into one jet,
while 1 would form a separate soft jet. In (b), just before the 2 + 3 clustering, the flavour of 1 is used to neutralise the flavour
of 2, which results in the intermediate stage shown in (c), where particles 1 and 2 have lost their flavour (as represented by the
black dashed lines). Finally, in (d) the (now) flavourless pseudojet 2 is clustered with 3 into a pseudojet 2+3 with the q̄ flavour
of just particle 3.

believe can be applied in a variety of ways, is illustrated
in Fig. 2. When a pseudojet with non-zero flavour is
about to undergo a kinematic clustering (soft q (2), clus-
tering with hard q̄ (3) in Fig. 2a), the algorithm needs
to establish whether the flavours of 2 and 3 should be
combined as per usual net-flavour summation, or instead
whether the flavour of either of the particles should be
“neutralised” by some other particle(s) in the event be-
fore allowing the kinematic (2+3) clustering to proceed.
For example, in Fig. 2b, with a soft q̄ (particle 1) in the
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neutralise the flavours of particles 1 and 2, before mov-
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In general, the IRC safety (or otherwise) of the al-
gorithm resides in the criteria used to decide whether to
neutralise a given pseudojet’s flavour, and if so then with
which other pseudojet(s). As with earlier flavoured clus-
tering algorithms, such a procedure will need to rely on
some measure of the likelihood that a given flavoured pair
came from an e↵ective parent gluon’s splitting, versus the
flavour originating from a genuine hard parton.

B. Introducing the IFN algorithm

We now construct a concrete algorithm based on Fig. 2
that integrates jet clustering with flavour neutralisation:
Interleaved Flavour Neutralisation (IFN). The core of our
algorithm is the search for neutralisation candidates at
any given stage of the clustering. Among the ingredients
of that search is a measure of flavour neutralisation dis-
tance uij between any pair of particles i and j, the softer
of which will always be flavoured. For now, the reader

may wish to think of uij as being a flavour-kt type dis-
tance, cf. Eq. (2), though there are important further
subtleties, discussed below in Sec. III C.
In defining the algorithm in the next few paragraphs,

we shall frequently make reference to Fig. 2 to illustrate
the function of the di↵erent steps, keeping in mind that
the flavour of the final hard jet (made of particles 2 and
3) should ultimately just be that of the hard particle 3q̄
without contamination from the flavours of the soft 1q̄2q
pair.
We write the core neutralisation search part of

the algorithm in the style of a computer subroutine
N(i, umax, C,E), taking a number of arguments as in-
puts, specifically:

• the index i of the pseudojet for which to identify
potential neutralisation partner(s) (e.g. i = 2 in
Fig. 2a);

• a threshold umax above which to ignore neutralisa-
tion candidates (e.g. in the context of the 2+3 kine-
matic clustering in Fig. 2a this would be umax =
u23);

• a list C of all potential neutralisation candidates,
i.e. all currently flavoured pseudojets in the event
(C = {1, 2, 3} in Fig. 2a);

• a subset E among those flavoured pseudojets to be
excluded in the neutralisation search because they
have already been considered in some prior step
of the algorithm (E = {2, 3} in Fig. 2a, because
particles 2 and 3 have already been considered in
that they set umax = u23).

The N(i, umax, C,E) algorithm is formulated as follows:

N1. Create a list L of uik distances for all k among the
candidates C that satisfy uik < umax, excluding
those in the exclusion set E.

Flavoured jets with anti-kt/CA kinematics

Crucial for IR-safety + good behaviour 
•proper choice of a “flavour distance” 
•making sure neutralising partner is not “stolen” from more suitable candidate (→recursion)
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N2. Identify the k that corresponds to the smallest uik

in the list.

N3. If k contains no flavour that can neutralise flavour
in i (e.g. k is a b-quark and i is a c-quark), remove
the corresponding uik from list L, and loop back to
step N2.

N4. Before using k to neutralise flavour in i, check to see
whether there are other pseudojets that could more
naturally be paired with k in order to neutralise k’s
flavour. Do so through a recursive use of flavour
neutralisation, searching for neutralisation partners
of k by running N(k, uik, C,E [ {k}). Sec. IIID
explains the importance of recursion for IRC safety.

N5. For each flavour currently in i, neutralise as much
of that flavour as one can with any flavour that is
still present in k.6 For example, if i has flavour cb̄
and k has flavour bb, use k to cancel the b̄ flavour,
so that the updated i has flavour c and the updated
k has flavour b.

N6. If i is now flavourless, exit.

N7. Otherwise remove the current uik from list L. If any
entries are still left in list L, loop back to step N2.
Otherwise exit.

In our IFN formulation, the flavour neutralisation
search is triggered whenever a clustering is about to occur
for which the softer pseudojet is flavoured, specifically:

I1. When pseudojets i and j recombine in the standard
kinematic clustering sequence, let i be the pseudo-
jet with lower pt. If i is flavourless, then i+j simply
takes the flavour of j and one moves on to the next
kinematic jet clustering step.

I2. Otherwise, identify all pseudojets that currently
carry flavour, including any flavoured jets declared
earlier according to a diB step, and put them into
a list C of potential neutralisation candidates. Ini-
tialise the set E = {i, j} of particles to be excluded
from the search for neutralisation candidates.

I3. Call the flavour-neutralisation search,
N(i, uij , C,E), which may use one or more
flavoured particles in set C to neutralise some or
all of the flavour contained in i.

I4. For any remaining flavour in i, apply the standard
net-flavour (or flavour modulo-2) summation of i

with j and move on to the next kinematic jet clus-
tering step.

6 If working with flavour modulo-2, then initial flavours are always
to be understood as being modulo-2, and each comparison and/or
combination is also to be performed in a modulo-2 sense.

Interleaving flavour neutralisation at each step of the
clustering is important from the point of view of collinear
safety. To illustrate this, it is helpful to suppose that
particles i, j and k all have comparable transverse mo-
menta and inter-particle distances �R ⇠ R. In this sit-
uation uij ⇠ uik. Consider the case where j undergoes a
collinear splitting, j ! ja, jb with �Rja,jb ⌧ R. If one
ran flavour neutralisation without clustering, one could
find oneself in a situation where uik < uij , but uik > uija ,
thus changing the neutralisation sequence.
Now let us examine how this changes if neutralisation

is interleaved with clustering. The clustering algorithms
that we consider are the anti-kt and C/A algorithms.
They both have the property that when all particles have
similar transverse momenta, clustering of the collinear
ja, jb pair will precede the ij clustering step. At the
ja, jb clustering, if the neutralisation search gets trig-
gered, then ja and jb will cluster with normal net-flavour
recombination, since ujajb is much smaller than all other
u’s. When the clustering reaches the ij step, all distances
will see the kinematics of j, rather than that of the un-
derlying ja and jb, thus ensuring that the algorithm is
collinear safe.7

C. Choice of neutralisation distance

Let us now turn to the uik flavour neutralisation dis-
tance between a pair of particles i and k. Recall that
the softer of the two will always be flavoured, while the
harder one may or may not be.
We write the uik distance generically with two param-

eters, ↵ and !:

uik ⌘ [max (pti, ptk)]
↵[min (pti, ptk)]

2�↵
⇥ ⌦2

ik
, (7a)

⌦2
ik

⌘ 2


1

!2
(cosh(!�yik)� 1)� (cos��ik � 1)

�
,

(7b)

where �yik = yi � yk and analogously for ��ik. Let us
start with the part related to the transverse momenta.
This is identical to that used in the flavour-kt algorithm,
cf. Eq. (2), with the same parameter ↵. As in typical
flavour-kt studies, we assume 0 < ↵  2, and in particu-
lar concentrate on ↵ = 1 and ↵ = 2.
Next, we examine the angular part of the distance, ⌦2

ik
,

which involves a parameter !. For any ! of order 1, in the

7 When considering collinear splitting in events with a hierarchy
of energies, the di↵erent members of the generalised-kt family
may perform the soft and the collinear clusterings in di↵erent
orders. However, when the neutralisation search is, say, compar-
ing neutralisation distances involving two soft particles i and k
and a hard particle j (uik ⌧ uij , ukj), a collinear splitting of
any of the soft or hard particles will only modify the u’s by a
factor of order 1 and it will leave the hierarchies untouched, and
correspondingly also the resulting neutralisation pattern.

~ flavour-kt, soft objects are close

Angular distance. 
Critical: able to compare objects 

event-wide → far apart
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N2. Identify the k that corresponds to the smallest uik

in the list.

N3. If k contains no flavour that can neutralise flavour
in i (e.g. k is a b-quark and i is a c-quark), remove
the corresponding uik from list L, and loop back to
step N2.

N4. Before using k to neutralise flavour in i, check to see
whether there are other pseudojets that could more
naturally be paired with k in order to neutralise k’s
flavour. Do so through a recursive use of flavour
neutralisation, searching for neutralisation partners
of k by running N(k, uik, C,E [ {k}). Sec. IIID
explains the importance of recursion for IRC safety.

N5. For each flavour currently in i, neutralise as much
of that flavour as one can with any flavour that is
still present in k.6 For example, if i has flavour cb̄
and k has flavour bb, use k to cancel the b̄ flavour,
so that the updated i has flavour c and the updated
k has flavour b.

N6. If i is now flavourless, exit.

N7. Otherwise remove the current uik from list L. If any
entries are still left in list L, loop back to step N2.
Otherwise exit.

In our IFN formulation, the flavour neutralisation
search is triggered whenever a clustering is about to occur
for which the softer pseudojet is flavoured, specifically:

I1. When pseudojets i and j recombine in the standard
kinematic clustering sequence, let i be the pseudo-
jet with lower pt. If i is flavourless, then i+j simply
takes the flavour of j and one moves on to the next
kinematic jet clustering step.

I2. Otherwise, identify all pseudojets that currently
carry flavour, including any flavoured jets declared
earlier according to a diB step, and put them into
a list C of potential neutralisation candidates. Ini-
tialise the set E = {i, j} of particles to be excluded
from the search for neutralisation candidates.

I3. Call the flavour-neutralisation search,
N(i, uij , C,E), which may use one or more
flavoured particles in set C to neutralise some or
all of the flavour contained in i.

I4. For any remaining flavour in i, apply the standard
net-flavour (or flavour modulo-2) summation of i

with j and move on to the next kinematic jet clus-
tering step.

6 If working with flavour modulo-2, then initial flavours are always
to be understood as being modulo-2, and each comparison and/or
combination is also to be performed in a modulo-2 sense.

Interleaving flavour neutralisation at each step of the
clustering is important from the point of view of collinear
safety. To illustrate this, it is helpful to suppose that
particles i, j and k all have comparable transverse mo-
menta and inter-particle distances �R ⇠ R. In this sit-
uation uij ⇠ uik. Consider the case where j undergoes a
collinear splitting, j ! ja, jb with �Rja,jb ⌧ R. If one
ran flavour neutralisation without clustering, one could
find oneself in a situation where uik < uij , but uik > uija ,
thus changing the neutralisation sequence.
Now let us examine how this changes if neutralisation

is interleaved with clustering. The clustering algorithms
that we consider are the anti-kt and C/A algorithms.
They both have the property that when all particles have
similar transverse momenta, clustering of the collinear
ja, jb pair will precede the ij clustering step. At the
ja, jb clustering, if the neutralisation search gets trig-
gered, then ja and jb will cluster with normal net-flavour
recombination, since ujajb is much smaller than all other
u’s. When the clustering reaches the ij step, all distances
will see the kinematics of j, rather than that of the un-
derlying ja and jb, thus ensuring that the algorithm is
collinear safe.7

C. Choice of neutralisation distance

Let us now turn to the uik flavour neutralisation dis-
tance between a pair of particles i and k. Recall that
the softer of the two will always be flavoured, while the
harder one may or may not be.
We write the uik distance generically with two param-

eters, ↵ and !:

uik ⌘ [max (pti, ptk)]
↵[min (pti, ptk)]
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where �yik = yi � yk and analogously for ��ik. Let us
start with the part related to the transverse momenta.
This is identical to that used in the flavour-kt algorithm,
cf. Eq. (2), with the same parameter ↵. As in typical
flavour-kt studies, we assume 0 < ↵  2, and in particu-
lar concentrate on ↵ = 1 and ↵ = 2.
Next, we examine the angular part of the distance, ⌦2

ik
,

which involves a parameter !. For any ! of order 1, in the

7 When considering collinear splitting in events with a hierarchy
of energies, the di↵erent members of the generalised-kt family
may perform the soft and the collinear clusterings in di↵erent
orders. However, when the neutralisation search is, say, compar-
ing neutralisation distances involving two soft particles i and k
and a hard particle j (uik ⌧ uij , ukj), a collinear splitting of
any of the soft or hard particles will only modify the u’s by a
factor of order 1 and it will leave the hierarchies untouched, and
correspondingly also the resulting neutralisation pattern.

~ flavour-kt, soft objects are close
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FIG. 3. NNLO contribution to the pp ! Z+jet process, that
helps illustrate the origin of the condition, Eq. (9), on the !

parameter in the angular part of the uij distance, Eq. (7a). It
involves a hard jet with a final-state splitting (where the jet
constituents, q and a gluon, are labelled 2 and 3 respectively),
as well as an initial-state collinear splitting (g ! qq̄, with the
q̄ labelled 1). When ↵+! < 2, the initial-state collinear q̄ (1)
neutralises the flavour of the q (2).

limit of small �yik and small ��ik, ⌦2
ik

reduces to the
standard �R

2
ik

= �y
2
ik
+��

2
ik
. The reason for using ⌦2

ik

rather than the standard �R
2 is to ensure IRC safety

as concerns the interplay between collinear initial-state
splittings and splittings elsewhere in the event. This is
best explained with the help of Fig. 3. In the anti-kt
and C/A algorithms, particles 2 and 3 will cluster first.8

When pt2 < pt3, the 2 + 3 clustering triggers a flavour
neutralisation search. The only candidate for flavour neu-
tralisation is particle 1 and one should compare the u12

and u23 distances. We will suppose that particles 2 and 3
have similar pt’s and are at central rapidity. The initial-
state collinear splitting that creates particle 1 typically
results in y1 = ln pt3/pt1+O(1). Neglecting O(1) factors,
we then have

u12 ⇠ p
↵

t2p
2�↵

t1

✓
pt3

pt1

◆!

⇠ p
(↵+!)
t3 p

(2�↵�!)
t1 , (8a)

u23 ⇠ p
↵

t3p
2�↵

t2 �R
2
23 ⇠ p

2
t3�R

2
23 . (8b)

where in the rightmost part of each equation we have
exploited pt2 ⇠ pt3. One immediately observes that if
↵+ ! < 2, then in the initial-state collinear limit, where
pt1 ⌧ pt3, one has u12 ⌧ u23. This causes particle 1
to neutralise the flavour of particle 2, even when 1 is
arbitrarily collinear, resulting in a flavourless hard jet.
In contrast, when the initial-state splitting is absent, the
hard jet will be flavoured. Thus, the algorithm would be

8 This would not be the case for the kt algorithm, and an investi-
gation of the interplay of kt clustering with IFN is left to future
work.
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FIG. 4. N3LO contribution to the Z+jet process that helps
illustrate the need for recursion in step N4 of the flavour neu-
tralisation search. It involves a hard jet with a non-collinear
splitting (flavoured 3 and flavourless 4) and a flavoured initial-
state double-soft pair (labelled 1 and 2). Without recursion,
particle 2 can end up neutralising the flavour of 3.

unsafe with respect to initial-state collinear splittings.
On the other hand, if we take

↵+ ! > 2 , (9)

then u12 will always be parametrically larger than u23 in
the limit pt1 ! 0, thus e↵ectively forbidding neutralisa-
tion of 1 and 2; see App. B 1 for further discussion.9 In
practice, we will nearly always take

default: ! = 3� ↵ , (10)

and where not explicitly stated in plots, this will be the
choice that we adopt.
IRC-safety subtleties connected with the large �yij

behaviour of normal �R
2
ij

distances are relevant for all
flavour algorithms, though sometimes the issues appear
only at orders beyond ↵

2
s
. Further discussion of this point

is provided in Apps. B 1, C 1 and C3. Note also that the
original formulation of the kt algorithm for hadron col-
liders [4] foresaw the possibility of an angular distance
⌦2

ik
with ! = 1, though this does not have IRC safety

implications for the kinematic aspects of normal jet clus-
tering.

9 We have also explored the border case of ↵+! = 2 and find that
it diverges. This is relevant in particular to the case of ↵ = 1 and
! = 1, for which uik coincides with the ik squared invariant mass
when i and k are massless, i.e. a JADE-like distance [29, 30].
An issue to be aware of with an invariant-mass distance in a
hadron collider context is that the invariant mass between an
energetic initial-state collinear emission and a hard final-state
particle is commensurate with that between two well separated
hard final-state particles. Furthermore, a potential solution to
this issue, i.e. clustering initial-state collinear emissions early, via
their small invariant mass with the beam, involves ambiguities
in the identification of the beam energy.

Angular distance. 
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event-wide → far apart
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as concerns the interplay between collinear initial-state
splittings and splittings elsewhere in the event. This is
best explained with the help of Fig. 3. In the anti-kt
and C/A algorithms, particles 2 and 3 will cluster first.8

When pt2 < pt3, the 2 + 3 clustering triggers a flavour
neutralisation search. The only candidate for flavour neu-
tralisation is particle 1 and one should compare the u12

and u23 distances. We will suppose that particles 2 and 3
have similar pt’s and are at central rapidity. The initial-
state collinear splitting that creates particle 1 typically
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where in the rightmost part of each equation we have
exploited pt2 ⇠ pt3. One immediately observes that if
↵+ ! < 2, then in the initial-state collinear limit, where
pt1 ⌧ pt3, one has u12 ⌧ u23. This causes particle 1
to neutralise the flavour of particle 2, even when 1 is
arbitrarily collinear, resulting in a flavourless hard jet.
In contrast, when the initial-state splitting is absent, the
hard jet will be flavoured. Thus, the algorithm would be

8 This would not be the case for the kt algorithm, and an investi-
gation of the interplay of kt clustering with IFN is left to future
work.
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the limit pt1 ! 0, thus e↵ectively forbidding neutralisa-
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9 We have also explored the border case of ↵+! = 2 and find that
it diverges. This is relevant in particular to the case of ↵ = 1 and
! = 1, for which uik coincides with the ik squared invariant mass
when i and k are massless, i.e. a JADE-like distance [29, 30].
An issue to be aware of with an invariant-mass distance in a
hadron collider context is that the invariant mass between an
energetic initial-state collinear emission and a hard final-state
particle is commensurate with that between two well separated
hard final-state particles. Furthermore, a potential solution to
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N2. Identify the k that corresponds to the smallest uik

in the list.

N3. If k contains no flavour that can neutralise flavour
in i (e.g. k is a b-quark and i is a c-quark), remove
the corresponding uik from list L, and loop back to
step N2.

N4. Before using k to neutralise flavour in i, check to see
whether there are other pseudojets that could more
naturally be paired with k in order to neutralise k’s
flavour. Do so through a recursive use of flavour
neutralisation, searching for neutralisation partners
of k by running N(k, uik, C,E [ {k}). Sec. IIID
explains the importance of recursion for IRC safety.

N5. For each flavour currently in i, neutralise as much
of that flavour as one can with any flavour that is
still present in k.6 For example, if i has flavour cb̄
and k has flavour bb, use k to cancel the b̄ flavour,
so that the updated i has flavour c and the updated
k has flavour b.

N6. If i is now flavourless, exit.

N7. Otherwise remove the current uik from list L. If any
entries are still left in list L, loop back to step N2.
Otherwise exit.

In our IFN formulation, the flavour neutralisation
search is triggered whenever a clustering is about to occur
for which the softer pseudojet is flavoured, specifically:

I1. When pseudojets i and j recombine in the standard
kinematic clustering sequence, let i be the pseudo-
jet with lower pt. If i is flavourless, then i+j simply
takes the flavour of j and one moves on to the next
kinematic jet clustering step.

I2. Otherwise, identify all pseudojets that currently
carry flavour, including any flavoured jets declared
earlier according to a diB step, and put them into
a list C of potential neutralisation candidates. Ini-
tialise the set E = {i, j} of particles to be excluded
from the search for neutralisation candidates.

I3. Call the flavour-neutralisation search,
N(i, uij , C,E), which may use one or more
flavoured particles in set C to neutralise some or
all of the flavour contained in i.

I4. For any remaining flavour in i, apply the standard
net-flavour (or flavour modulo-2) summation of i

with j and move on to the next kinematic jet clus-
tering step.

6 If working with flavour modulo-2, then initial flavours are always
to be understood as being modulo-2, and each comparison and/or
combination is also to be performed in a modulo-2 sense.

Interleaving flavour neutralisation at each step of the
clustering is important from the point of view of collinear
safety. To illustrate this, it is helpful to suppose that
particles i, j and k all have comparable transverse mo-
menta and inter-particle distances �R ⇠ R. In this sit-
uation uij ⇠ uik. Consider the case where j undergoes a
collinear splitting, j ! ja, jb with �Rja,jb ⌧ R. If one
ran flavour neutralisation without clustering, one could
find oneself in a situation where uik < uij , but uik > uija ,
thus changing the neutralisation sequence.
Now let us examine how this changes if neutralisation

is interleaved with clustering. The clustering algorithms
that we consider are the anti-kt and C/A algorithms.
They both have the property that when all particles have
similar transverse momenta, clustering of the collinear
ja, jb pair will precede the ij clustering step. At the
ja, jb clustering, if the neutralisation search gets trig-
gered, then ja and jb will cluster with normal net-flavour
recombination, since ujajb is much smaller than all other
u’s. When the clustering reaches the ij step, all distances
will see the kinematics of j, rather than that of the un-
derlying ja and jb, thus ensuring that the algorithm is
collinear safe.7

C. Choice of neutralisation distance

Let us now turn to the uik flavour neutralisation dis-
tance between a pair of particles i and k. Recall that
the softer of the two will always be flavoured, while the
harder one may or may not be.
We write the uik distance generically with two param-

eters, ↵ and !:

uik ⌘ [max (pti, ptk)]
↵[min (pti, ptk)]

2�↵
⇥ ⌦2

ik
, (7a)

⌦2
ik

⌘ 2


1

!2
(cosh(!�yik)� 1)� (cos��ik � 1)

�
,

(7b)

where �yik = yi � yk and analogously for ��ik. Let us
start with the part related to the transverse momenta.
This is identical to that used in the flavour-kt algorithm,
cf. Eq. (2), with the same parameter ↵. As in typical
flavour-kt studies, we assume 0 < ↵  2, and in particu-
lar concentrate on ↵ = 1 and ↵ = 2.
Next, we examine the angular part of the distance, ⌦2

ik
,

which involves a parameter !. For any ! of order 1, in the

7 When considering collinear splitting in events with a hierarchy
of energies, the di↵erent members of the generalised-kt family
may perform the soft and the collinear clusterings in di↵erent
orders. However, when the neutralisation search is, say, compar-
ing neutralisation distances involving two soft particles i and k
and a hard particle j (uik ⌧ uij , ukj), a collinear splitting of
any of the soft or hard particles will only modify the u’s by a
factor of order 1 and it will leave the hierarchies untouched, and
correspondingly also the resulting neutralisation pattern.
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FIG. 3. NNLO contribution to the pp ! Z+jet process, that
helps illustrate the origin of the condition, Eq. (9), on the !

parameter in the angular part of the uij distance, Eq. (7a). It
involves a hard jet with a final-state splitting (where the jet
constituents, q and a gluon, are labelled 2 and 3 respectively),
as well as an initial-state collinear splitting (g ! qq̄, with the
q̄ labelled 1). When ↵+! < 2, the initial-state collinear q̄ (1)
neutralises the flavour of the q (2).

limit of small �yik and small ��ik, ⌦2
ik

reduces to the
standard �R

2
ik

= �y
2
ik
+��

2
ik
. The reason for using ⌦2

ik

rather than the standard �R
2 is to ensure IRC safety

as concerns the interplay between collinear initial-state
splittings and splittings elsewhere in the event. This is
best explained with the help of Fig. 3. In the anti-kt
and C/A algorithms, particles 2 and 3 will cluster first.8

When pt2 < pt3, the 2 + 3 clustering triggers a flavour
neutralisation search. The only candidate for flavour neu-
tralisation is particle 1 and one should compare the u12

and u23 distances. We will suppose that particles 2 and 3
have similar pt’s and are at central rapidity. The initial-
state collinear splitting that creates particle 1 typically
results in y1 = ln pt3/pt1+O(1). Neglecting O(1) factors,
we then have

u12 ⇠ p
↵

t2p
2�↵

t1

✓
pt3

pt1

◆!

⇠ p
(↵+!)
t3 p

(2�↵�!)
t1 , (8a)

u23 ⇠ p
↵

t3p
2�↵

t2 �R
2
23 ⇠ p

2
t3�R

2
23 . (8b)

where in the rightmost part of each equation we have
exploited pt2 ⇠ pt3. One immediately observes that if
↵+ ! < 2, then in the initial-state collinear limit, where
pt1 ⌧ pt3, one has u12 ⌧ u23. This causes particle 1
to neutralise the flavour of particle 2, even when 1 is
arbitrarily collinear, resulting in a flavourless hard jet.
In contrast, when the initial-state splitting is absent, the
hard jet will be flavoured. Thus, the algorithm would be

8 This would not be the case for the kt algorithm, and an investi-
gation of the interplay of kt clustering with IFN is left to future
work.

Z

1 2

3

4

q q̄

q

FIG. 4. N3LO contribution to the Z+jet process that helps
illustrate the need for recursion in step N4 of the flavour neu-
tralisation search. It involves a hard jet with a non-collinear
splitting (flavoured 3 and flavourless 4) and a flavoured initial-
state double-soft pair (labelled 1 and 2). Without recursion,
particle 2 can end up neutralising the flavour of 3.

unsafe with respect to initial-state collinear splittings.
On the other hand, if we take

↵+ ! > 2 , (9)

then u12 will always be parametrically larger than u23 in
the limit pt1 ! 0, thus e↵ectively forbidding neutralisa-
tion of 1 and 2; see App. B 1 for further discussion.9 In
practice, we will nearly always take

default: ! = 3� ↵ , (10)

and where not explicitly stated in plots, this will be the
choice that we adopt.
IRC-safety subtleties connected with the large �yij

behaviour of normal �R
2
ij

distances are relevant for all
flavour algorithms, though sometimes the issues appear
only at orders beyond ↵

2
s
. Further discussion of this point

is provided in Apps. B 1, C 1 and C3. Note also that the
original formulation of the kt algorithm for hadron col-
liders [4] foresaw the possibility of an angular distance
⌦2

ik
with ! = 1, though this does not have IRC safety

implications for the kinematic aspects of normal jet clus-
tering.

9 We have also explored the border case of ↵+! = 2 and find that
it diverges. This is relevant in particular to the case of ↵ = 1 and
! = 1, for which uik coincides with the ik squared invariant mass
when i and k are massless, i.e. a JADE-like distance [29, 30].
An issue to be aware of with an invariant-mass distance in a
hadron collider context is that the invariant mass between an
energetic initial-state collinear emission and a hard final-state
particle is commensurate with that between two well separated
hard final-state particles. Furthermore, a potential solution to
this issue, i.e. clustering initial-state collinear emissions early, via
their small invariant mass with the beam, involves ambiguities
in the identification of the beam energy.

1 and 2 must be “far” 
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N2. Identify the k that corresponds to the smallest uik

in the list.

N3. If k contains no flavour that can neutralise flavour
in i (e.g. k is a b-quark and i is a c-quark), remove
the corresponding uik from list L, and loop back to
step N2.

N4. Before using k to neutralise flavour in i, check to see
whether there are other pseudojets that could more
naturally be paired with k in order to neutralise k’s
flavour. Do so through a recursive use of flavour
neutralisation, searching for neutralisation partners
of k by running N(k, uik, C,E [ {k}). Sec. IIID
explains the importance of recursion for IRC safety.

N5. For each flavour currently in i, neutralise as much
of that flavour as one can with any flavour that is
still present in k.6 For example, if i has flavour cb̄
and k has flavour bb, use k to cancel the b̄ flavour,
so that the updated i has flavour c and the updated
k has flavour b.

N6. If i is now flavourless, exit.

N7. Otherwise remove the current uik from list L. If any
entries are still left in list L, loop back to step N2.
Otherwise exit.

In our IFN formulation, the flavour neutralisation
search is triggered whenever a clustering is about to occur
for which the softer pseudojet is flavoured, specifically:

I1. When pseudojets i and j recombine in the standard
kinematic clustering sequence, let i be the pseudo-
jet with lower pt. If i is flavourless, then i+j simply
takes the flavour of j and one moves on to the next
kinematic jet clustering step.

I2. Otherwise, identify all pseudojets that currently
carry flavour, including any flavoured jets declared
earlier according to a diB step, and put them into
a list C of potential neutralisation candidates. Ini-
tialise the set E = {i, j} of particles to be excluded
from the search for neutralisation candidates.

I3. Call the flavour-neutralisation search,
N(i, uij , C,E), which may use one or more
flavoured particles in set C to neutralise some or
all of the flavour contained in i.

I4. For any remaining flavour in i, apply the standard
net-flavour (or flavour modulo-2) summation of i

with j and move on to the next kinematic jet clus-
tering step.

6 If working with flavour modulo-2, then initial flavours are always
to be understood as being modulo-2, and each comparison and/or
combination is also to be performed in a modulo-2 sense.

Interleaving flavour neutralisation at each step of the
clustering is important from the point of view of collinear
safety. To illustrate this, it is helpful to suppose that
particles i, j and k all have comparable transverse mo-
menta and inter-particle distances �R ⇠ R. In this sit-
uation uij ⇠ uik. Consider the case where j undergoes a
collinear splitting, j ! ja, jb with �Rja,jb ⌧ R. If one
ran flavour neutralisation without clustering, one could
find oneself in a situation where uik < uij , but uik > uija ,
thus changing the neutralisation sequence.
Now let us examine how this changes if neutralisation

is interleaved with clustering. The clustering algorithms
that we consider are the anti-kt and C/A algorithms.
They both have the property that when all particles have
similar transverse momenta, clustering of the collinear
ja, jb pair will precede the ij clustering step. At the
ja, jb clustering, if the neutralisation search gets trig-
gered, then ja and jb will cluster with normal net-flavour
recombination, since ujajb is much smaller than all other
u’s. When the clustering reaches the ij step, all distances
will see the kinematics of j, rather than that of the un-
derlying ja and jb, thus ensuring that the algorithm is
collinear safe.7

C. Choice of neutralisation distance

Let us now turn to the uik flavour neutralisation dis-
tance between a pair of particles i and k. Recall that
the softer of the two will always be flavoured, while the
harder one may or may not be.
We write the uik distance generically with two param-

eters, ↵ and !:

uik ⌘ [max (pti, ptk)]
↵[min (pti, ptk)]

2�↵
⇥ ⌦2

ik
, (7a)

⌦2
ik

⌘ 2


1
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(cosh(!�yik)� 1)� (cos��ik � 1)
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where �yik = yi � yk and analogously for ��ik. Let us
start with the part related to the transverse momenta.
This is identical to that used in the flavour-kt algorithm,
cf. Eq. (2), with the same parameter ↵. As in typical
flavour-kt studies, we assume 0 < ↵  2, and in particu-
lar concentrate on ↵ = 1 and ↵ = 2.
Next, we examine the angular part of the distance, ⌦2

ik
,

which involves a parameter !. For any ! of order 1, in the

7 When considering collinear splitting in events with a hierarchy
of energies, the di↵erent members of the generalised-kt family
may perform the soft and the collinear clusterings in di↵erent
orders. However, when the neutralisation search is, say, compar-
ing neutralisation distances involving two soft particles i and k
and a hard particle j (uik ⌧ uij , ukj), a collinear splitting of
any of the soft or hard particles will only modify the u’s by a
factor of order 1 and it will leave the hierarchies untouched, and
correspondingly also the resulting neutralisation pattern.

•Ω~ΔR for small distances 
•Exponentially large distance if far apart in rapidity

0 < α ≤ 2; α + ω > 2IR-safety:
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A framework for IR-safety tests

Systematic IRC-safety tests 6 / 11

I Implemented such a fixed-order framework:

Cluster “hard” event

FSR-DS = double-soft

ISR-DS

FC = FS hard-collinear

IC = IS hard-collinear

possibly nested

Set of hard jets
Jhard = {(p1, f1), ...}

Set of hard+IR jets
Jhard+IR = {(p̃1, f̃1), ...}

!
=

•Consider a hard underlying event 
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•As extra radiation becomes unresolved: 
Hard+IR → Hard
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Example: plain anti-kt+DS
14

(a) (b) (c)

FIG. 7. Example results from our numerical IRC safety tests showing (a) the IRC unsafety of standard anti-kt at order ↵
2
s,

and (b,c) the IRC safety of anti-kt with Interleaved Flavour Neutralisation (IFN) at orders ↵2
s and ↵

4
s, respectively. In all plots,

the phase-space weighted failure rate is shown as a function of the maximum hardness of the extra radiation ln pt,max, where
we sample values 3 ln pt,max < ln pt < ln pt,max for any bin of ln pt,max. In (a), the integrated failure rate is plotted on a linear
scale for standard anti-kt in the FDS configuration from Fig. 1 with one double-soft pair and 2 hard particles in the event. The
classic anti-kt IRC safety issue is confirmed numerically by the linear divergence ↵

2
s ln pt,max, from one soft gluon splitting to a

flavoured pair at large angle. In (b) and (c), the integrated failure rate is plotted on a logarithmic scale for anti-kt with IFN for
parameters (↵ = 1,! = 2) and (↵ = 2,! = 1), for all configurations that contribute at (b) order ↵

2
s and (c) order ↵

4
s, with up

to 8 hard particles in the event and up to 6 flavours. The total failure rate goes to zero as ln pt,max ! �1, implying the IRC
safety of anti-kt with IFN to the tested order and accuracy. The absence of points below ln pt,max ' �15 signals no IRC safety
failures out of the 5 · 109 events studied for lower ln pt,max values (the number of events in each of three regions of ln pt,max is
indicated in the shaded bands at the bottom of the plot). The plots also include moderately small values of ln pt,max so as to
better show the overall scaling behaviour.

results provide a strong indication of IRC safety for the
anti-kt+IFN algorithm developed in this paper.

Table I summarises the results of our testing frame-
work applied to a range of jet algorithms. At lowest
order, we organise the results according to the class of
divergence being probed, as indicated in the second col-
umn of the table, while at higher orders we limit the
breakdown to configurations that have turned out to be
of specific interest. The corresponding failure rate plots
for the IFN algorithms (with the anti-kt and C/A algo-
rithms) are given in App. D.

Algorithms whose failure rate goes down as the extra
radiation becomes softer/more collinear are indicated by
a checkmark (X). Algorithms that develop a divergence
(a non-vanishing integrated failure rate as ln pt,max !

�1) for a given target configuration, are marked by a
red cross (⇥). For each case that has shown a divergence,
we have examined a few events where there is a clear
failure and developed an analytic understanding of the
nature of the problem. We will briefly discuss each issue
here, while the table also links to the relevant part of
App. C with further analytic and numerical studies.

The first two rows of Table I emphasise that at order
↵s with just one emission (FHC or IHC), there are no di-
vergences for any jet algorithm with IRC safe kinematics,
even without a special treatment of flavour. The classic

of L where there are still failures, because it includes the (cL)n

integration volume.

IRC safety problem of standard anti-kt only shows up at
order ↵2

s
, as highlighted in the next two rows of Table I

for a configuration with one double-soft pair (see Fig. 1).
That problem arises in both the FDS and the IDS chan-
nels, and in each case it appears for the subset of events
where the FDS or IDS pair is at large angles. From the
table, it is clear that all flavour jet algorithms solve that
original IRC safety issue.
However, the tests reveal new issues for all algorithms

other than our IFN-based procedure. In two cases,
flavour-kt,⌦ and CMP⌦, we will propose modifications
that seem to resolve the problem(s). For the interested
reader, the summary of the issues is as follows:

• Initial-state (IHC⇥IDS) subtlety at ↵3
s for

flavour-kt and GHS. The “⇠” for ↵ = 2 flavour-
kt and GHS at ↵

3
s
(IHC⇥IDS) indicates a border-

line case. It arises, for example, for a hard event
consisting of a single energetic parton (and result-
ing hard jet), supplemented with a hard-collinear
initial-state splitting and a large-angle double-soft
pair, which may be IDS or FDS (see Fig. 15,
together with the complete details in App. C 1).
When one (anti)quark from the double-soft pair
is somewhat softer than the other, its dij distance
with the hard-collinear particle can be smaller than
that with the other (anti)quark from the soft pair,
essentially because the �R

2
ij
distance goes as �y

2
ij
,

which is only logarithmically large. The large-
angle soft (anti)quark and the initial-state collinear
quark cluster, leaving a lone large-angle soft quark,

IR limit

#bad events

O(αs2)

~αs2 L

16
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FIG. 7. Example results from our numerical IRC safety tests showing (a) the IRC unsafety of standard anti-kt at order ↵
2
s,

and (b,c) the IRC safety of anti-kt with Interleaved Flavour Neutralisation (IFN) at orders ↵2
s and ↵

4
s, respectively. In all plots,

the phase-space weighted failure rate is shown as a function of the maximum hardness of the extra radiation ln pt,max, where
we sample values 3 ln pt,max < ln pt < ln pt,max for any bin of ln pt,max. In (a), the integrated failure rate is plotted on a linear
scale for standard anti-kt in the FDS configuration from Fig. 1 with one double-soft pair and 2 hard particles in the event. The
classic anti-kt IRC safety issue is confirmed numerically by the linear divergence ↵
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s ln pt,max, from one soft gluon splitting to a

flavoured pair at large angle. In (b) and (c), the integrated failure rate is plotted on a logarithmic scale for anti-kt with IFN for
parameters (↵ = 1,! = 2) and (↵ = 2,! = 1), for all configurations that contribute at (b) order ↵
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s, with up

to 8 hard particles in the event and up to 6 flavours. The total failure rate goes to zero as ln pt,max ! �1, implying the IRC
safety of anti-kt with IFN to the tested order and accuracy. The absence of points below ln pt,max ' �15 signals no IRC safety
failures out of the 5 · 109 events studied for lower ln pt,max values (the number of events in each of three regions of ln pt,max is
indicated in the shaded bands at the bottom of the plot). The plots also include moderately small values of ln pt,max so as to
better show the overall scaling behaviour.

results provide a strong indication of IRC safety for the
anti-kt+IFN algorithm developed in this paper.

Table I summarises the results of our testing frame-
work applied to a range of jet algorithms. At lowest
order, we organise the results according to the class of
divergence being probed, as indicated in the second col-
umn of the table, while at higher orders we limit the
breakdown to configurations that have turned out to be
of specific interest. The corresponding failure rate plots
for the IFN algorithms (with the anti-kt and C/A algo-
rithms) are given in App. D.

Algorithms whose failure rate goes down as the extra
radiation becomes softer/more collinear are indicated by
a checkmark (X). Algorithms that develop a divergence
(a non-vanishing integrated failure rate as ln pt,max !

�1) for a given target configuration, are marked by a
red cross (⇥). For each case that has shown a divergence,
we have examined a few events where there is a clear
failure and developed an analytic understanding of the
nature of the problem. We will briefly discuss each issue
here, while the table also links to the relevant part of
App. C with further analytic and numerical studies.

The first two rows of Table I emphasise that at order
↵s with just one emission (FHC or IHC), there are no di-
vergences for any jet algorithm with IRC safe kinematics,
even without a special treatment of flavour. The classic

of L where there are still failures, because it includes the (cL)n

integration volume.

IRC safety problem of standard anti-kt only shows up at
order ↵2

s
, as highlighted in the next two rows of Table I

for a configuration with one double-soft pair (see Fig. 1).
That problem arises in both the FDS and the IDS chan-
nels, and in each case it appears for the subset of events
where the FDS or IDS pair is at large angles. From the
table, it is clear that all flavour jet algorithms solve that
original IRC safety issue.
However, the tests reveal new issues for all algorithms

other than our IFN-based procedure. In two cases,
flavour-kt,⌦ and CMP⌦, we will propose modifications
that seem to resolve the problem(s). For the interested
reader, the summary of the issues is as follows:

• Initial-state (IHC⇥IDS) subtlety at ↵3
s for

flavour-kt and GHS. The “⇠” for ↵ = 2 flavour-
kt and GHS at ↵

3
s
(IHC⇥IDS) indicates a border-

line case. It arises, for example, for a hard event
consisting of a single energetic parton (and result-
ing hard jet), supplemented with a hard-collinear
initial-state splitting and a large-angle double-soft
pair, which may be IDS or FDS (see Fig. 15,
together with the complete details in App. C 1).
When one (anti)quark from the double-soft pair
is somewhat softer than the other, its dij distance
with the hard-collinear particle can be smaller than
that with the other (anti)quark from the soft pair,
essentially because the �R

2
ij
distance goes as �y

2
ij
,

which is only logarithmically large. The large-
angle soft (anti)quark and the initial-state collinear
quark cluster, leaving a lone large-angle soft quark,

IR limit

#bad events

O(αs2)

~αs2 L
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order relative to Born anti-kt
flav-kt
(↵ = 2) CMP

GHS↵,�

(2, 2)
anti-

kt+IFN↵ C/A+IFN↵

↵s

FHC X X X X X X
IHC X X X X X X

↵
2
s

FDS ⇥II B X X X X X
IDS ⇥II B X X X X X

FHC⇥IHC X X X X X X
IHC2 X X ⇥C2 X X X
FHC2 X X X ⇥C4 X X

↵
3
s

IHC⇥IDS ⇠C1 ⇥C3 ⇠C1 X X
rest X X

↵
4
s

IDS⇥FDS ⇥C5 X X
rest X X

↵
5
s X X

↵
6
s X X

TABLE I. Summary of the IRC safety test results. Red crosses (⇥) indicate a clear failure of IRC safety. Checkmarks (X)
signify that the algorithm passes numerical tests at that order or for that configuration. The tilde (⇠) for flavour-kt (and by
extension GHS, which uses flavour-kt distances) indicates marginal convergence, though one expects divergent behaviour at
higher orders. For algorithms that fail or are marginal at a given order, we display greyed-out boxes at higher orders, since
those higher orders are also bound to fail. In a few cases, we have identified a new class of problem that only arises at higher
order and we explicitly mark these with a red cross. The GHS parameters here are set to ↵ = 2,� = 2. The IFN procedure is
tested both for the anti-kt and C/A algorithms, and the IFN parameters are chosen as ↵ 2 {1, 2} with ! = 3 � ↵ (tests are
successful for both sets of parameters). Detailed discussions of the issues identified are linked to from the relevant table cells.
Plots in support of the IRC safety conclusion for the IFN combinations are to be found in App. D, specifically Figs. 24 and
25, as are plots (Figs. 26 and 27) supporting the IRC safety of our modified versions of the flavour-kt and CMP algorithms,
respectively flavour-kt,⌦ and CMP⌦, which are discussed in the text. (They are not shown in the table, because we have run
them with lower statistics.)

which can contaminate the flavour of the hard jet.
At O

�
↵
3
s

�
one ends up with an integral that goes

as
R
d ln pt/(ln pt)2. This integral converges for

pt ! 0, however the way in which the integrand
(multiplying d ln pt) vanishes as pt ! 0 is not a
power-law in pt. One may thus consider the al-
gorithm to be marginally safe at this order, how-
ever at the next order one would expect to see ad-
ditional logarithmic enhancements. These might
arise, e.g. from the running of the QCD coupling or
evolution of the PDF, and would ultimately cause
the integral to diverge. Indeed, our study identi-
fied a problem in the IHC2

⇥IDS channel at order
↵
4
s
. However, a conclusive understanding of this

configuration requires inclusion also of the virtual
and PDF-counterterm contributions, which is be-
yond the scope of this study. A similar problem
arises with ↵ = 1, but with extra logarithms in the
denominator of the corresponding integral. This
generic class of problem can be solved by replacing
�R

2
ij
! ⌦2

ij
, and, as before, we will use Eq. (10) as

our default choice for its ! parameter. We refer to
the modified algorithm as flavour-kt,⌦. This sim-
ple adaptation is possible because the issue is not
with the original underlying strategy, but rather
with the subtleties that arise in distance measures
with QCD initial-state radiation (the same com-
ment holds for related issues in other algorithms).
As a consequence we do not expect to have to

make any modifications to the e
+
e
� version of the

flavour-kt algorithm.

• Initial-state (IHC
2
) issue at ↵2

s for CMP.

This issue arises, for example, for a hard (Born)
event consisting of a single hard parton, supple-
mented with two collinear initial-state quark and
anti-quark emissions, one on each beam (see Fig. 17
and App. C 2). Those initial-state emissions cluster
in the first step of the algorithm, producing a large-
mass, low-pt flavourless pseudojet at central rapidi-
ties, which can then cluster with the hard parton,
modifying its kinematics. The problem arises be-
cause in the CMP distance Eq. (4), the small factor
from the transverse-momenta dominates over the
(only logarithmically large) factor from the rapid-
ity separation between the pair. Ultimately this
leads to an ↵

2
s
L
2 divergence. It can be resolved by

replacing

Sij ! Sij = Sij

⌦2
ij

�R
2
ij

(11)

for oppositely flavoured pairs and requiring the pa-
rameter ! > 1 in the ⌦ij distance. In practice, we
find that this modification has almost no impact on
the phenomenological behaviour of the algorithm
(e.g. . 1% in Fig. 9 below). We refer to this mod-
ified version of the CMP algorithm as CMP⌦ and
unless otherwise specified we use ! = 2.
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s X X

TABLE I. Summary of the IRC safety test results. Red crosses (⇥) indicate a clear failure of IRC safety. Checkmarks (X)
signify that the algorithm passes numerical tests at that order or for that configuration. The tilde (⇠) for flavour-kt (and by
extension GHS, which uses flavour-kt distances) indicates marginal convergence, though one expects divergent behaviour at
higher orders. For algorithms that fail or are marginal at a given order, we display greyed-out boxes at higher orders, since
those higher orders are also bound to fail. In a few cases, we have identified a new class of problem that only arises at higher
order and we explicitly mark these with a red cross. The GHS parameters here are set to ↵ = 2,� = 2. The IFN procedure is
tested both for the anti-kt and C/A algorithms, and the IFN parameters are chosen as ↵ 2 {1, 2} with ! = 3 � ↵ (tests are
successful for both sets of parameters). Detailed discussions of the issues identified are linked to from the relevant table cells.
Plots in support of the IRC safety conclusion for the IFN combinations are to be found in App. D, specifically Figs. 24 and
25, as are plots (Figs. 26 and 27) supporting the IRC safety of our modified versions of the flavour-kt and CMP algorithms,
respectively flavour-kt,⌦ and CMP⌦, which are discussed in the text. (They are not shown in the table, because we have run
them with lower statistics.)

which can contaminate the flavour of the hard jet.
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one ends up with an integral that goes

as
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d ln pt/(ln pt)2. This integral converges for

pt ! 0, however the way in which the integrand
(multiplying d ln pt) vanishes as pt ! 0 is not a
power-law in pt. One may thus consider the al-
gorithm to be marginally safe at this order, how-
ever at the next order one would expect to see ad-
ditional logarithmic enhancements. These might
arise, e.g. from the running of the QCD coupling or
evolution of the PDF, and would ultimately cause
the integral to diverge. Indeed, our study identi-
fied a problem in the IHC2

⇥IDS channel at order
↵
4
s
. However, a conclusive understanding of this

configuration requires inclusion also of the virtual
and PDF-counterterm contributions, which is be-
yond the scope of this study. A similar problem
arises with ↵ = 1, but with extra logarithms in the
denominator of the corresponding integral. This
generic class of problem can be solved by replacing
�R

2
ij
! ⌦2

ij
, and, as before, we will use Eq. (10) as

our default choice for its ! parameter. We refer to
the modified algorithm as flavour-kt,⌦. This sim-
ple adaptation is possible because the issue is not
with the original underlying strategy, but rather
with the subtleties that arise in distance measures
with QCD initial-state radiation (the same com-
ment holds for related issues in other algorithms).
As a consequence we do not expect to have to

make any modifications to the e
+
e
� version of the

flavour-kt algorithm.

• Initial-state (IHC
2
) issue at ↵2

s for CMP.

This issue arises, for example, for a hard (Born)
event consisting of a single hard parton, supple-
mented with two collinear initial-state quark and
anti-quark emissions, one on each beam (see Fig. 17
and App. C 2). Those initial-state emissions cluster
in the first step of the algorithm, producing a large-
mass, low-pt flavourless pseudojet at central rapidi-
ties, which can then cluster with the hard parton,
modifying its kinematics. The problem arises be-
cause in the CMP distance Eq. (4), the small factor
from the transverse-momenta dominates over the
(only logarithmically large) factor from the rapid-
ity separation between the pair. Ultimately this
leads to an ↵

2
s
L
2 divergence. It can be resolved by

replacing

Sij ! Sij = Sij

⌦2
ij

�R
2
ij

(11)

for oppositely flavoured pairs and requiring the pa-
rameter ! > 1 in the ⌦ij distance. In practice, we
find that this modification has almost no impact on
the phenomenological behaviour of the algorithm
(e.g. . 1% in Fig. 9 below). We refer to this mod-
ified version of the CMP algorithm as CMP⌦ and
unless otherwise specified we use ! = 2.

IFN passes IR-safety tests, up to 
highest order we were able to probeEasy to fix
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Pheno results: Pythia8, Hadron-level + MPI17

The first two tests will be specific to heavy flavour,
which is the main experimental application of flavoured
jet algorithms. The third test will be for generic flavour
and can be seen as a stress test of the algorithm’s prac-
tical performance with light flavour at parton level.

A. Heavy flavour in pp ! WH(! µ⌫bb̄)

We begin with the case of Higgs production in asso-
ciation with a W boson at hadron colliders, pp ! WH,
where the Higgs boson decays to a pair of b-quarks and
the W decays leptonically. This process is of interest
for obvious phenomenological reasons, e.g. because of the
sensitivity to the HWW and Hbb̄ couplings, and it has
been measured by both ATLAS and CMS [38, 39]. Addi-
tionally, it is one of the processes in which one can probe
high-pt Higgs production [40, 41], especially in conjunc-
tion with jet substructure tools [42, 43], bringing partic-
ular sensitivity to new physics. For a long time, calcu-
lations at NNLO QCD were performed with massless b

quarks, which prohibited the use of the standard anti-kt
algorithm to cluster the final state. Only recently [31]
was the calculation performed with massive b-quarks.

Here, we examine a classic resolved-jet analysis of this
process, similar to that of Ref. [31]. We use Pythia
8.306 [44, 45] with the 4C tune [46] to generate pp !

W (! µ⌫µ)H(! bb̄). Following Ref. [31], we require the
presence of a muon satisfying

|⌘µ| < 2.5 , ptµ > 15GeV . (12a)

We cluster the event with a given jet algorithm, using a
jet radius of R = 0.4, and identify b-flavoured jets that
satisfy

|yjb | < 2.5 , ptjb > 25GeV . (12b)

We require the event to have at least two such jets. Fi-
nally, the reconstructed Higgs boson is defined as the
4-momentum sum of the two b-jets whose invariant mass
is closest to the Higgs mass.

The distribution of the transverse momentum of the re-
constructed Higgs boson is presented in Fig. 8 at hadron
level (with multi-parton interactions turned on), for four
algorithms:

• standard anti-kt with net flavour summation (red),

• anti-kt with our IFN algorithm (↵ = 2, in green),

• the CMP⌦ algorithm (a = 0.1, where the angu-
lar part of the distance measure is corrected as in
Eq. (11), in black), and

• the flavour-kt,⌦ algorithm (↵ = 2, in gold).

The flavour-kt,⌦ algorithm leads to a reconstructed Higgs
spectrum that is markedly di↵erent from that of the anti-
kt algorithm. In particular, for ptH & 300GeV, the

FIG. 8. The transverse momentum spectrum of the recon-
structed Higgs boson in WH(! µ⌫bb̄) at centre-of-mass en-
ergy

p
s = 13.6 TeV, at hadron level (with stable B-hadrons).

The upper panel shows the spectrum for four jet algorithms:
anti-kt with net flavour of the jet constituents (red), our
IFN version of anti-kt (with ↵ = 2, green), the CMP⌦ al-
gorithm (as adapted from Ref. [10] with a fix of the angu-
lar measure, see Eq. (11), black) and the flavour-kt,⌦ algo-
rithm (with ↵ = 2, gold). The lower panel shows the ra-
tio to standard anti-kt. CMP⌦ and our IFN algorithms all
give very similar results to those from the plain anti-kt al-
gorithm. In contrast, as already pointed out in Ref. [31],
flavour-kt,⌦ jets can di↵er significantly from anti-kt kinemat-
ics at large transverse momentum, because they start cluster-
ing the b and b̄ together into a single jet well before the scale
of pt ' 2mH/R = 625GeV where this occurs with the nor-
mal anti-kt algorithm. This is reflected in Eq. (13c), which
is used to generate the “asymptotic analytics” curve in the
lower panel.

distribution starts to drop relative to that with anti-kt,
reaching about 60% of the latter’s value at ptH ⇠ 600
GeV. As noted in Ref. [31], this occurs because the
flavour-kt algorithm starts clustering the b and b̄ together
at lower values of ptH than for the anti-kt algorithm.
When the b and b̄ end up in a single jet, the event fails
the selection requirement of having at least two b-jets.
Specifically for the decay of a scalar particle with invari-
ant massm and transverse momentum pt, for smallR and
in the limit of ptR � m, the e�ciency for having two sep-
arate jets (without any pt or rapidity cut on the jets) is 1
at low pt. Above some threshold in x = ptR/m > xmin,
it becomes

gen-kt : 1�

p
x2 � 4

x
, xmin = 2 , (13a)

↵ = 1 flav-kt :
2

x2
, xmin =

p
2 , (13b)

↵ = 2 flav-kt :
2

1 + x2
, xmin = 1 . (13c)

VH, H→bb

Both IFN & CMPΩ indistinguishable 
from plain anti-kt
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(a) (b)

FIG. 9. Inclusive b-jet spectrum from Pythia 8.3 in pp ! tt̄ +X ! bµ
+
⌫b̄qq̄

0 +X events at
p
s = 13.6 TeV, at (a) partonic

tree level (i.e. no showering or hadronisation) and (b) hadron level (with stable B-hadrons). The distribution is shown in the
upper panels, for four jet algorithms (as in Fig. 8) and additionally for anti-kt with “any-flavour” recombination (i.e. a bb̄ jet
counts as b-tagged). The lower panels show the ratio to anti-kt jets with net flavour summation. The anti-kt+IFN algorithm
yields a b-jet spectrum that is almost identical to that from the net-flavour anti-kt algorithm, across the whole pt range. The
closeness to anti-kt holds both at tree level and after showering and hadronisation (with the spectrum di↵ering maximally by
less than a percent at pt = 20 GeV, at hadron level). See text for further details.

C. Full flavour at parton level in pp ! Z + j

Our final hadron-collider test is carried out at parton
level (after showering) and applies jet flavour algorithms
to all flavours of partons in the context of events with a
hard jet recoiling against a high-pt Z boson. This study
is not intended to be of direct experimental relevance,
but rather to test the flavour algorithm’s performance
and limitations for addressing more theoretical questions
such as the fractions of quark v. gluon jets. In particu-
lar, knowledge of the quark v. gluon fractions in a given
sample is important when assessing the performance of
approaches that attempt to distinguish quark v. gluon-
induced jets from jet substructure and energy flow ob-
servables [48]. To do so we study pp ! Z + j events.
We focus here on the Z(! µ

+
µ
�) + q final state, where

we require exactly two muons to reconstruct a high-pt Z
candidate:

|⌘µ| < 2.4 , ptµ > 20GeV , (15a)

pt,µ+µ� > 1TeV , mµ+µ� 2 [80, 102]GeV . (15b)

We find qualitatively consistent results for the Z+g case.
We use Pythia 8.306 with the Monash13 tune to gen-

erate the events, and specifically consider its pp ! Z + q

process. We cluster the events with a given jet algorithm,
and examine the flavour of the leading-pt jet. At leading

order, we expect the hard recoiling jet to always carry
the flavour of the underlying quark or antiquark, and the
question that we examine is that of how often the leading
jet in the full showered sample has a flavour other than
that of a single quark or anti-quark.

Schematically, it is useful to think of two mechanisms
that can cause the flavour to di↵er. One is that the
quark can split to q + g with a separation �Rqg > R.
If the gluon carries more energy than the quark, then
the leading jet will actually be a gluon jet. The rate for
this to happen is logarithmically enhanced in the small-
R limit [49]. The second mechanism to keep in mind
is the contamination of the flavour of a hard quark jet
from a soft g ! qq̄ splitting (i.e. the issue of Fig. 1,
which flavoured jet algorithms are supposed to miti-
gate against). This can have two e↵ects: if the soft
qq̄ pair’s flavour coincides with that of the jet, then it
can cancel the jet’s flavour; much more often, a fraction
⇠ 1� 1/(2nf ) of the time, it will lead to a multi-flavour
jet. To a first approximation, this e↵ect is expected to
grow with increasing jet radius. We show results both
with and without multi-parton interactions (MPI), and
we expect the flavour contamination to be worsened by
MPI, insofar as it adds significant numbers of additional
low-pt qq̄ pairs.

In Fig. 10, we show the fraction of leading-pt jets that
are flavourless (green), singly-flavoured (quark or anti-

Pheno results: Pythia8, Hadron-level + MPI
Semileptonic tt

Inclusive b-jet pt

Plain anti-kt, at least 1 b-tag

Plain anti-kt, net flavour ≈ IFN

Flavour-kt,Ω
CMPΩ

~10% differences at low pt
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FIG. 9. Inclusive b-jet spectrum from Pythia 8.3 in pp ! tt̄ +X ! bµ
+
⌫b̄qq̄

0 +X events at
p
s = 13.6 TeV, at (a) partonic

tree level (i.e. no showering or hadronisation) and (b) hadron level (with stable B-hadrons). The distribution is shown in the
upper panels, for four jet algorithms (as in Fig. 8) and additionally for anti-kt with “any-flavour” recombination (i.e. a bb̄ jet
counts as b-tagged). The lower panels show the ratio to anti-kt jets with net flavour summation. The anti-kt+IFN algorithm
yields a b-jet spectrum that is almost identical to that from the net-flavour anti-kt algorithm, across the whole pt range. The
closeness to anti-kt holds both at tree level and after showering and hadronisation (with the spectrum di↵ering maximally by
less than a percent at pt = 20 GeV, at hadron level). See text for further details.

C. Full flavour at parton level in pp ! Z + j

Our final hadron-collider test is carried out at parton
level (after showering) and applies jet flavour algorithms
to all flavours of partons in the context of events with a
hard jet recoiling against a high-pt Z boson. This study
is not intended to be of direct experimental relevance,
but rather to test the flavour algorithm’s performance
and limitations for addressing more theoretical questions
such as the fractions of quark v. gluon jets. In particu-
lar, knowledge of the quark v. gluon fractions in a given
sample is important when assessing the performance of
approaches that attempt to distinguish quark v. gluon-
induced jets from jet substructure and energy flow ob-
servables [48]. To do so we study pp ! Z + j events.
We focus here on the Z(! µ

+
µ
�) + q final state, where

we require exactly two muons to reconstruct a high-pt Z
candidate:

|⌘µ| < 2.4 , ptµ > 20GeV , (15a)

pt,µ+µ� > 1TeV , mµ+µ� 2 [80, 102]GeV . (15b)

We find qualitatively consistent results for the Z+g case.
We use Pythia 8.306 with the Monash13 tune to gen-

erate the events, and specifically consider its pp ! Z + q

process. We cluster the events with a given jet algorithm,
and examine the flavour of the leading-pt jet. At leading

order, we expect the hard recoiling jet to always carry
the flavour of the underlying quark or antiquark, and the
question that we examine is that of how often the leading
jet in the full showered sample has a flavour other than
that of a single quark or anti-quark.

Schematically, it is useful to think of two mechanisms
that can cause the flavour to di↵er. One is that the
quark can split to q + g with a separation �Rqg > R.
If the gluon carries more energy than the quark, then
the leading jet will actually be a gluon jet. The rate for
this to happen is logarithmically enhanced in the small-
R limit [49]. The second mechanism to keep in mind
is the contamination of the flavour of a hard quark jet
from a soft g ! qq̄ splitting (i.e. the issue of Fig. 1,
which flavoured jet algorithms are supposed to miti-
gate against). This can have two e↵ects: if the soft
qq̄ pair’s flavour coincides with that of the jet, then it
can cancel the jet’s flavour; much more often, a fraction
⇠ 1� 1/(2nf ) of the time, it will lead to a multi-flavour
jet. To a first approximation, this e↵ect is expected to
grow with increasing jet radius. We show results both
with and without multi-parton interactions (MPI), and
we expect the flavour contamination to be worsened by
MPI, insofar as it adds significant numbers of additional
low-pt qq̄ pairs.

In Fig. 10, we show the fraction of leading-pt jets that
are flavourless (green), singly-flavoured (quark or anti-

Pheno results: Pythia8, Hadron-level + MPI
Semileptonic tt

Inclusive b-jet pt

Plain anti-kt, at least 1 b-tag

Plain anti-kt, net flavour ≈ IFN

•IFN behaves very well 

•Less than 5% off w.r.t. proxy 
for current analysis → unfold?
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Pheno results: Z+q results
20

FIG. 10. Stress-tests of the performance of the plain anti-kt algorithm (with net flavour summation, left column), the flavour-
kt,⌦ algorithm (middle left column), and the anti-kt algorithm with flavour neutralisation (with ↵ = 1, middle right column,
and ↵ = 2, right column). The stress-tests are performed in pp ! Z + q collisions with ptZ > 1TeV, as simulated with
Pythia 8.3 at parton level with multi-parton interactions disabled (enabled) on the upper row (lower row). As a function of
the jet radius parameter R, the plots show the fraction of leading jets that are multi-flavoured, i.e. whose flavour is neither
that of a gluon nor a single quark or anti-quark (red band), singly flavoured (blue band) and flavourless (green band). The key
observation is the large fraction of multi-flavoured jets with the standard anti-kt algorithm, which occur due to contamination
of the hard jet flavour from low-momentum particles. With the flavour-kt,⌦ algorithm, we see some reduction, while anti-kt
with IFN shows a further reduced rate, especially for ↵ = 2.

quark, blue) or multi-flavoured (neither flavourless or
singly-flavoured, red), as a function of the jet radius pa-
rameter R used in the clustering. We perform this com-
parison with Pythia at parton level, where the underlying
event is turned o↵ (upper row), and with MPI turned on
(lower row). From left to right, the columns show results
with the standard anti-kt algorithm, flavour-kt,⌦ (↵ = 2),
and anti-kt with our IFN algorithm for two values of
↵ = {1, 2} (and ! = 3�↵). A first point to observe is the
large multi-flavoured contribution for the plain anti-kt al-
gorithm, about 14% at R = 0.4 without MPI, increasing
to 19% with MPI. Increasing R substantially worsens the
situation with over 40% multi-flavoured jets for R = 1
when MPI is on.

Flavour-kt,⌦ improves the situation somewhat, giving
a multi-flavoured contribution of 5% (10%) with MPI o↵
(on) at R = 0.4. The anti-kt algorithm with IFN brings
a more substantial improvement, yielding 2% (4%) for
↵ = 1 and 1.5% (3%) for ↵ = 2.16

Examining instead the unflavoured (“gluon”) jet frac-
tions, we find that all flavour algorithms give a ⇠ 4%

16 For the CMP⌦ algorithm there is freedom in how one extends
it to multi-flavoured events, and accordingly we defer study of
multi-flavoured events with that algorithm to future work.

gluon-jet fraction at R = 0.4, relatively una↵ected by
the presence of MPI. This figure is important to keep
in mind for quark/gluon discrimination studies [48]: the
fact that a jet was initiated by a quark in Pythia does not
mean that the corresponding jet observed after showering
is always a quark jet. In particular, Fig. 10 implies that if
one is attempting to tag gluon-jets and reject quark-jets,
and one is using Pythia’s Z + q and Z + g samples as
the sources of quark and gluon jets, then even a perfect
gluon tagger will still show an acceptance of about 4%
on the Z + q sample.

Ultimately, we would argue that the “truth” flavour
labels should be derived not from the generation pro-
cess, but by running a jet flavour algorithm such as anti-
kt+IFN. Nevertheless the anti-kt+IFN labelling remains
subject to some ambiguities, and the multi-flavoured jet
fraction discussed above is probably a good measure of
those ambiguities. As a future direction, one might wish
to investigate whether one can develop jet flavour algo-
rithms that further reduce the multi-flavoured jet frac-
tion, while maintaining other good properties.

Single-flavour

Multi-flavour

Flavourless

Plain anti-kt Flav-kt,Ω IFN
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Conclusions

•A proper definition of jet flavour is non-trivial 

•Multiple attempt in the past to define IR-safe algorithms with kinematics identical or very 
similar to anti-kt. Subtle IR-safety issues 

•Our proposal: Interleaved Flavour Neutralisation  
•Definition of flavour interleaved but distinct from kinematics clustering 
•Kinematics unchanged, neutralisation based on suitable flavour distance 

•Passed non-trivial IR-safety tests 

•Promising phenomenology → interesting investigations ahead + experimental feasibility



Thank you very much for your attention!

KEEP



Integrated Flavour Neutralisation (IFN): a cartoon
Crucial for IR-safety + good behaviour 
•proper choice of a “flavour distance” 
•making sure neutralising partner is not “stolen” from more suitable candidate8
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FIG. 3. NNLO contribution to the pp ! Z+jet process, that
helps illustrate the origin of the condition, Eq. (9), on the !

parameter in the angular part of the uij distance, Eq. (7a). It
involves a hard jet with a final-state splitting (where the jet
constituents, q and a gluon, are labelled 2 and 3 respectively),
as well as an initial-state collinear splitting (g ! qq̄, with the
q̄ labelled 1). When ↵+! < 2, the initial-state collinear q̄ (1)
neutralises the flavour of the q (2).

limit of small �yik and small ��ik, ⌦2
ik

reduces to the
standard �R

2
ik

= �y
2
ik
+��

2
ik
. The reason for using ⌦2

ik

rather than the standard �R
2 is to ensure IRC safety

as concerns the interplay between collinear initial-state
splittings and splittings elsewhere in the event. This is
best explained with the help of Fig. 3. In the anti-kt
and C/A algorithms, particles 2 and 3 will cluster first.8

When pt2 < pt3, the 2 + 3 clustering triggers a flavour
neutralisation search. The only candidate for flavour neu-
tralisation is particle 1 and one should compare the u12

and u23 distances. We will suppose that particles 2 and 3
have similar pt’s and are at central rapidity. The initial-
state collinear splitting that creates particle 1 typically
results in y1 = ln pt3/pt1+O(1). Neglecting O(1) factors,
we then have

u12 ⇠ p
↵

t2p
2�↵

t1

✓
pt3

pt1

◆!

⇠ p
(↵+!)
t3 p

(2�↵�!)
t1 , (8a)

u23 ⇠ p
↵

t3p
2�↵

t2 �R
2
23 ⇠ p

2
t3�R

2
23 . (8b)

where in the rightmost part of each equation we have
exploited pt2 ⇠ pt3. One immediately observes that if
↵+ ! < 2, then in the initial-state collinear limit, where
pt1 ⌧ pt3, one has u12 ⌧ u23. This causes particle 1
to neutralise the flavour of particle 2, even when 1 is
arbitrarily collinear, resulting in a flavourless hard jet.
In contrast, when the initial-state splitting is absent, the
hard jet will be flavoured. Thus, the algorithm would be

8 This would not be the case for the kt algorithm, and an investi-
gation of the interplay of kt clustering with IFN is left to future
work.
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FIG. 4. N3LO contribution to the Z+jet process that helps
illustrate the need for recursion in step N4 of the flavour neu-
tralisation search. It involves a hard jet with a non-collinear
splitting (flavoured 3 and flavourless 4) and a flavoured initial-
state double-soft pair (labelled 1 and 2). Without recursion,
particle 2 can end up neutralising the flavour of 3.

unsafe with respect to initial-state collinear splittings.
On the other hand, if we take

↵+ ! > 2 , (9)

then u12 will always be parametrically larger than u23 in
the limit pt1 ! 0, thus e↵ectively forbidding neutralisa-
tion of 1 and 2; see App. B 1 for further discussion.9 In
practice, we will nearly always take

default: ! = 3� ↵ , (10)

and where not explicitly stated in plots, this will be the
choice that we adopt.
IRC-safety subtleties connected with the large �yij

behaviour of normal �R
2
ij

distances are relevant for all
flavour algorithms, though sometimes the issues appear
only at orders beyond ↵

2
s
. Further discussion of this point

is provided in Apps. B 1, C 1 and C3. Note also that the
original formulation of the kt algorithm for hadron col-
liders [4] foresaw the possibility of an angular distance
⌦2

ik
with ! = 1, though this does not have IRC safety

implications for the kinematic aspects of normal jet clus-
tering.

9 We have also explored the border case of ↵+! = 2 and find that
it diverges. This is relevant in particular to the case of ↵ = 1 and
! = 1, for which uik coincides with the ik squared invariant mass
when i and k are massless, i.e. a JADE-like distance [29, 30].
An issue to be aware of with an invariant-mass distance in a
hadron collider context is that the invariant mass between an
energetic initial-state collinear emission and a hard final-state
particle is commensurate with that between two well separated
hard final-state particles. Furthermore, a potential solution to
this issue, i.e. clustering initial-state collinear emissions early, via
their small invariant mass with the beam, involves ambiguities
in the identification of the beam energy.

•(34) recombination → trigger neutralisation search 

•find 2 as a potential candidate 

•if used: neutralised hard jet + soft flavoured jet 😟
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as concerns the interplay between collinear initial-state
splittings and splittings elsewhere in the event. This is
best explained with the help of Fig. 3. In the anti-kt
and C/A algorithms, particles 2 and 3 will cluster first.8

When pt2 < pt3, the 2 + 3 clustering triggers a flavour
neutralisation search. The only candidate for flavour neu-
tralisation is particle 1 and one should compare the u12

and u23 distances. We will suppose that particles 2 and 3
have similar pt’s and are at central rapidity. The initial-
state collinear splitting that creates particle 1 typically
results in y1 = ln pt3/pt1+O(1). Neglecting O(1) factors,
we then have

u12 ⇠ p
↵

t2p
2�↵

t1

✓
pt3

pt1

◆!

⇠ p
(↵+!)
t3 p

(2�↵�!)
t1 , (8a)

u23 ⇠ p
↵

t3p
2�↵

t2 �R
2
23 ⇠ p

2
t3�R

2
23 . (8b)

where in the rightmost part of each equation we have
exploited pt2 ⇠ pt3. One immediately observes that if
↵+ ! < 2, then in the initial-state collinear limit, where
pt1 ⌧ pt3, one has u12 ⌧ u23. This causes particle 1
to neutralise the flavour of particle 2, even when 1 is
arbitrarily collinear, resulting in a flavourless hard jet.
In contrast, when the initial-state splitting is absent, the
hard jet will be flavoured. Thus, the algorithm would be

8 This would not be the case for the kt algorithm, and an investi-
gation of the interplay of kt clustering with IFN is left to future
work.
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FIG. 4. N3LO contribution to the Z+jet process that helps
illustrate the need for recursion in step N4 of the flavour neu-
tralisation search. It involves a hard jet with a non-collinear
splitting (flavoured 3 and flavourless 4) and a flavoured initial-
state double-soft pair (labelled 1 and 2). Without recursion,
particle 2 can end up neutralising the flavour of 3.

unsafe with respect to initial-state collinear splittings.
On the other hand, if we take

↵+ ! > 2 , (9)

then u12 will always be parametrically larger than u23 in
the limit pt1 ! 0, thus e↵ectively forbidding neutralisa-
tion of 1 and 2; see App. B 1 for further discussion.9 In
practice, we will nearly always take

default: ! = 3� ↵ , (10)

and where not explicitly stated in plots, this will be the
choice that we adopt.
IRC-safety subtleties connected with the large �yij

behaviour of normal �R
2
ij

distances are relevant for all
flavour algorithms, though sometimes the issues appear
only at orders beyond ↵

2
s
. Further discussion of this point

is provided in Apps. B 1, C 1 and C3. Note also that the
original formulation of the kt algorithm for hadron col-
liders [4] foresaw the possibility of an angular distance
⌦2

ik
with ! = 1, though this does not have IRC safety

implications for the kinematic aspects of normal jet clus-
tering.

9 We have also explored the border case of ↵+! = 2 and find that
it diverges. This is relevant in particular to the case of ↵ = 1 and
! = 1, for which uik coincides with the ik squared invariant mass
when i and k are massless, i.e. a JADE-like distance [29, 30].
An issue to be aware of with an invariant-mass distance in a
hadron collider context is that the invariant mass between an
energetic initial-state collinear emission and a hard final-state
particle is commensurate with that between two well separated
hard final-state particles. Furthermore, a potential solution to
this issue, i.e. clustering initial-state collinear emissions early, via
their small invariant mass with the beam, involves ambiguities
in the identification of the beam energy.

•(34) recombination → trigger neutralisation search 

•find 2 as a potential candidate 

•way out: recursion 

•before (23) neutralisation, look elsewhere to neutralise 
2 → find 1and neuralise 

•⟹ Hard (34) flavour jet, soft (12) gluon jet ✔
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would be declared as beam jets and so be removed from
further consideration early in the clustering sequence.

3. IHC⇥IDS issue at ↵
3
s for CMP

The subtlety from Sec. C 1 for the flavour-kt and GHS
algorithms has an interesting manifestation in the CMP
algorithm. We consider again the scenario of Fig. 15,
with the same set of variables and in a configuration
where pt4 ⌧ pt2. We will concentrate on the two dis-
tances that are smallest, which, neglecting O(1) factors,
read

d23 ⇠
p
2
t2

z
2
23p

4
t1

, d24 ⇠
p
2
t2

p
4
t1

y
2
4 . (C21)

As before, the probability for a 2+4 recombination must
be finite for IRC safety. The 2+4 recombination will
occur if

z23 . 1

y4
=

1

`14 + ln 2z41
. (C22)

We neglect the ln 2z41 term in the denominator (and take
the z41 integral to give a constant), integrate over all pt4
values, over pt2 > pt4 and over the allowed z23 range
(with the same constant splitting function approximation
as in App. C 1). We then obtain the probability for a 2+4
clustering

N24 ⇠ ↵
3
s

Z 1

0
d`14

Z
`14

0
d`24

Z 1/`14

0
dz23, (C23)

which is divergent. If we regulate the upper integration
region of the `14 integral with 1 ! ln 1

✏
, the probability

scales as

N24 ⇠ ↵
3
s
ln

1

✏
. (C24)

As with the other occurrences of this kind of issue, the
replacement Eq. (11) solves the problem, as can be seen
from the numerical IRC safety tests for this configuration
shown in Fig. 19.

4. FHC2 issue at ↵
2
s for GHS

For the discussion here and in App. C 5, we assume a
version of the GHS algorithm with an ⌦2

ij
style angular

distance in the dressing (flavour-kt-like) phase, since we
know from Sec. C 1 that this is required for the flavour-kt
algorithm, which is the basis of the algorithm’s dressing
step. To make this clear, in plots where this modification
is used, we refer to the algorithm as GHS⌦.

Let us consider a hard event as that in Fig. 20. The
event has four particles, which we will call g1, q, q̄ and
g2, starting from the left. We will work through the
algorithm to see what happens if a hard, but collinear

FIG. 19. Failure rate of the CMP algorithm for the config-
uration of Fig. 15, both for the original formulation and our
modification, Eq. (11), showing a divergence for the former
and none for the latter.

q
0
q̄
0

q q̄

g1 g2

g

j1 j2

FIG. 20. Example O(↵2
s) configuration that yields an issue

for the GHS algorithm. There are four hard particles (that
one can imagine recoiling against a hard gluon or electroweak
system on the other side of the event), a collinear emission
of a hard gluon g from one of the flavoured particles (the q),
which then splits collinearly to a flavoured pair q0q̄0.

gluon g, is emitted from the q, and splits collinearly to
q
0
q̄
0 (with �Rq0q̄0 ⌧ 1 much smaller than any other scale

in the problem).
Focusing on the hard event first (i.e. without the emis-

sion of the hard collinear gluon g), we assume that the
anti-kt algorithm clusters the four particles into two jets
(j1 and j2), as indicated in the figure. We can further as-
sume that �Rg1q,�Rg2q̄ > Rcut ⇠ 0.1, so that the hard
gluons g1 and g2 are not accumulated into q and q̄ in that
phase of the algorithm.
First we will consider the case ↵ < 2. For any angular

structure of the event satisfying the above limits, we take
the momenta of g1, g2, q and q̄ such that the event without
the g ! q

0
q̄
0 emission has the following properties

dqj1 > dqq̄ > dq̄j2 , (C25a)

ptq < ptq̄ . (C25b)

As a result, the first dressing step is for the q̄ flavour
to be assigned to jet j2, followed by the q flavour being
assigned to jet j1. Thus both j1 and j2 are flavoured.
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g

1(q)
2(q̄)

3(q)
4(q̄)

FIG. 22. An FDS⇥IDS kinematic configuration that causes
problems for GHS algorithms for ↵� � 2.

5. IDS⇥FDS issue at ↵
4
s for GHS

The GHS algorithm exhibits an interesting interplay
between initial-state and final-state double-soft emissions
at order ↵4

s
if ↵� � 2. The configuration that we consider

here is that represented in Fig. 22, involving a hard Born
event with one or more unflavoured jets. That event is
then supplemented with a double-soft pair (1,2) that is
collinear to an (originally) unflavoured jet and an addi-
tional large-angle double-soft pair (3,4) outside the jet.

We are specifically interested in the situation where

✓1g . {✓2g, ✓12} ⌧ 1 , (C30a)

pt1 ⇠ pt2 ⌧ ptg , (C30b)

pt3 ⇠ pt4 ⌧ ptg , (C30c)

✓23 ⇠ ✓34 ⇠ 1 . (C30d)

During the accumulation step, there is a possibility that
1 clusters with g, giving a hard cg1 flavour cluster, leaving
an unclustered, much softer 2̂ flavour cluster. If during
the subsequent dressing phase, 2̂ goes on to annihilate
with 3̂ rather than with cg1, then the resulting hard jet
will be flavoured.

The SoftDrop condition for 1 to cluster with g is given
by

pt1

ptg
> ✓

�

1g , (C31)

where throughout our discussion here we neglect factors
of order 1 (e.g. Rcut and zcut). There is no further ac-
cumulation since all particles are now flavoured and the
flavoured clusters will be cg1, 2̂, 3̂ and 4̂. The angle be-
tween the cg1 and the jet direction will be given by

✓
jcg1 ⇠

pt2

ptg
✓2g . (C32)

FIG. 23. Failure rate of the GHS algorithm for the ↵
4
s

FDS⇥IDS configuration of Fig. 22, illustrating the cubic di-
vergence for parameter choices involving ↵� > 2, the linear
divergence for ↵� = 2 and convergence for ↵� < 2. In its
dressing stage, the GHS implementation for these runs uses an
⌦2

ij angular distance instead of �R
2
ij , where ! = 3�↵. Other

parameters are Rcut = 0.1, zcut = 0.1 and pt,cut = 100GeV.

Without loss of generality we can consider the case where
d2̂3̂ < d2̂4̂, and then the distances to take into account
during the dressing phase are

d
jcg1 ⇠ p

2
t2✓

2
2g , (C33a)

dcg12̂ ⇠ d
j2̂ ⇠ p

2
tg

✓
pt2

ptg

◆2�↵

✓
2
2g , (C33b)

d2̂3̂ ⇠ max(pt2, pt3)
↵ min(pt2, pt3)

2�↵
, (C33c)

d3̂4̂ ⇠ p
2
t3, (C33d)

where, again we have ignored factors of order 1, e.g. from
angular distances. The hard jet will acquire a flavour if
the SoftDrop condition of Eq. (C31) is satisfied and if ad-
ditionally 2̂ fails to annihilate the flavour of thecg1 cluster.
This will occur if d23 < d34 and d23 < d

j2̂ ' dcg12.
19 In

determining whether these conditions are satisfied, it is
helpful to introduce shorthands

`i = ln
ptg

pti
, (C34a)

`✓ = ln
1

✓2g
, (C34b)

and to observe that in the SoftDrop condition Eq. (C31),
we can replace 1 ! 2, since this only a↵ects O(1) terms.

19 Note that the d23 < d34 condition implies that pt2 cannot be sub-
stantially larger than pt3, which leads to d

jcg1 being the smallest

of all the distances. Consequently, the first step of the dressing
is that the flavour of cg1 is assigned to the jet and the cg1 cluster
is removed from consideration.
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FIG. 16. Failure rate of the flavour-kt algorithm for the config-
uration of Fig. 15, in particular illustrating results for ↵ = 2
(magenta points) that are qualitatively consistent with the
expected 1/ ln pt,max behaviour (dashed line). Also shown are
results for ↵ = 1, as well as the results for flavour-kt,⌦, i.e.
the adaptation with an ⌦ij angular distance, illustrating the
much faster drop of the failure rate.

In particular, if one places an upper limit pt4 > ✏, the
result converges as (ln 1/✏)�1, which is consistent also
with what we find in our numerical tests, cf. the magenta
(↵ = 2) points in Fig. 16. While this is strictly IRC safe
at this order, one should worry that at the next order
there may be logarithmic enhancements proportional to
`14 (for example from running-coupling e↵ects), which
would be su�cient to make the integral diverge. Accord-
ingly, it would seem wise for future uses of the flavour-kt
algorithm to adopt the same kind of �R

2
ij
! ⌦2

ij
replace-

ment as used in our IFN algorithm, and similarly for any
other algorithms that make use of similarly defined dis-
tances, e.g. the GHS flavour-dressing algorithm.

A final comment concerns the ↵ = 1 case. The anal-
ysis is somewhat more involved than for ↵ = 2, and it
is also clear from Fig. 16 that the issue is reduced with
↵ = 1. Our investigations are consistent with a 1/ lnp ✏
scaling, with a larger value of p than for the ↵ = 2 case.
One might wish to investigate this point further, how-
ever it would anyway seem wise to use the �R

2
ij

! ⌦2
ij

replacement also for ↵ = 1.

2. IHC2 issue at ↵
2
s for CMP

An issue arises in the CMP algorithm at order ↵2
s
for a

configuration like the one shown in Fig. 17. We consider
two initial-state hard-collinear emissions, a q and a q̄ (la-
belled 1 and 2), from the forward and backward beams
respectively, and additionally one hard large-angle par-
ticle (numbered 3 in the figure). The initial-state hard-
collinear emissions have a very small transverse momen-
tum (pt1, pt2 ⌧ pt3) but large energies (E1, E2 ⇠ E3).
Let us assume pt3 = E3 = 1, and particle 3 is simply

Z

q
1

q̄
2

q

3

FIG. 17. Example O(↵2
s) configuration that yields an issue

for the CMP algorithm. There are two oppositely-flavoured
initial-state hard-collinear splittings (b and b̄, labelled 1 and
2), and a hard particle 3 at central rapidity.

aligned along the x-axis. Then we have that y1 ⇠ � ln pt1
and y2 ⇠ ln pt2 in the hard-collinear limit. For simplicity,
we will work with R = 1.

The CMP algorithm will strongly favour clustering 1
and 2 together first. The global scale (pt,global-max in
Eq. (5)) is set by the pt of the hardest pseudojet currently
available, pt3, so the value of 12 is small,

12 =
1

2a

p
2
t1 + p

2
t2

p
2
t3

⌧ 1 , (C14)

and the distance between the oppositely-flavoured parti-
cles 1 and 2 is thus given by

d12 =
1

max(p2
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2
t2)
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2
t2)
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4
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, (C15d)

where�R12 is dominated by the large rapidity di↵erence.
The other distances are

diB =
1

p
2
ti

, i = {1, 2, 3} , (C16a)

di3 ⇠
y
2
i

p
2
t3

, i = {1, 2} . (C16b)

When pt1, pt2 ⌧ pt3, it is straightforward to see that
d12 < d1B , d2B and d12 < d13, d23 (the logarithms in
Eq. (C15d) have no impact on this). Therefore the first
step of the algorithm will be to cluster particles 1 and
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gerous configuration is that presented in Fig. 3. In that
diagram, two partons (one flavoured, one flavourless) at
central rapidity are clustered together by the anti-kt algo-
rithm. In our IFN algorithms, the IRC safety issue arises
from an initial-state hard-collinear splitting, which can
act as a possible neutralisation partner for the flavoured
“hard” particle. As argued in Eq. (9), the condition
↵ + ! > 2 ensures that such a neutralisation does not
happen.

To test this argument numerically, we integrate uni-
formly over the momentum of each of a central hard
quark and hard gluon (each in the range 1GeV to 1TeV)
and sample an IHC emission as described in Sec. IVA.
The results are presented in Fig. 13, for various values
of the parameters ↵ and !. As expected, in cases where
↵ + ! < 2, as well as for IFN variants that use a �R

2
ij

type angular distance instead of our ⌦2
ij
, the failure rate

typically diverges for pt,max ! 0, and conversely falls o↵
as a power law when ↵+ ! > 2 (green and blue curves).
We observe numerically that the border cases, ↵+! = 2,
are all unsafe.

Let us see analytically why ↵+! = 2 is problematic for
the specific case of ↵ = 2 (and ! = 0). We note that in
the limit where ! ! 0, the angular factor ⌦2

ik
in Eq. (7b)

di↵ers from �R
2
ik

at most by a factor of O(1), which we
can typically neglect in the discussions below. We take
the configuration shown in Fig. 3 with pt2 = z2pt3 with
z2 ⌧ 1, pt3 = 1. There are two competing distances in
the neutralisation step,

u12 = z
2
2�y

2
12 ' z

2
2 ln

2 1/pt1 , (B1a)

u23 = �R
2
23 ⇠ 1 . (B1b)

The IFN algorithm will neutralise the flavours of 1 and
2 when z2 ln 1/pt1 < �R23. If we integrate over the mo-
mentum of 2 and assume a dz2 distribution (see e.g. [51])
for finite �R23 and take z2 ! 0, then the resulting in-

tegral is given by
R
d ln pt1

R 1/ ln pt1

0 dz2, which diverges.
The analytic argument shown here does not apply to
generic values of ↵ and !, but as mentioned above, we
find numerically that all cases that we have tested with
↵+ ! = 2 diverge.

2. Recursive v. non-recursive

In Sec. IIID, we presented an analytic argument to
explain why the IFN algorithms need a recursion step.
Fig. 14 shows the failure rate events with two hard par-
tons and one IDS pair, which includes configurations such
as that of Fig. 4. It clearly shows that without recursion,
the algorithm shows a growing failure rate for pt,max ! 0,
while the failure vanishes for pt,max ! 0 with the re-
cursive step turned on. The side-figures help illustrate
that the failure rate goes as ln2 pt,max for ↵ = 1 and as
ln pt,max for ↵ = 2. The stronger power for ↵ = 1 arises
because failures can happen even when the IDS pair is
collinear to the beams.

FIG. 14. IRC safety test of anti-kt+IFN for variants with and
without the recursion step. The tested events consist of two
hard partons supplemented with one initial-state double soft
pair, as in Fig. 4.

Z

1(q)

4(q̄)

2(q)
3(q̄)

R

FIG. 15. Example configuration to illustrate issues that arise
across multiple algorithms when using a standard �R type
angular measure in inter-particle distances.

Appendix C: IRC-unsafe configurations

In this appendix, we analyse the specific IRC-unsafe
configurations identified in Sec. IVD for the flavour-kt,
CMP and GHS algorithms. For each of the configura-
tions that we have identified, we present both analytic
and numerical results to demonstrate why they are prob-
lematic. Throughout this section we define pti . ptj to
mean that pti < ptj but that they are of similar orders
of magnitude.

1. IHC⇥IDS subtlety at ↵
3
s for flavour-kt

The flavour-kt (and GHS) algorithms encounter a
problematic configuration at order ↵3

s
, shown in Fig. 15,

associated with the choice of angular measure. There
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C. Existing flavoured jet algorithms

We now review three jet-flavour definitions that aim
to achieve all-order IRC safety (see Refs. [8, 9, 28] for
alternative definitions of jet flavour).

1. Flavour-kt

The flavour-kt [1] algorithm took the approach of using
a net or modulo-2 flavour scheme, while modifying the
clustering distances relative to Eq. (1). Specifically, it
modifies the standard kt (p = 1) distance when the softer
of i and j is flavoured

d
flav-kt
ij

= [max(pti, ptj)]
↵[min(pti, ptj)]

2�↵
�R

2
ij

R2
,

if softer of i and j is flavoured , (2)

with the parameter ↵ usually taken to be 1 or 2.4 This
has the consequence that the dij for the clustering of a
soft flavoured particle with a significantly harder particle
is much larger than the dij for two similarly soft particles.
As a result, the soft particles cluster first, resolving the
original IRC safety issue of Fig. 1. Note that flavour-kt
also uses a modified diB distance for flavoured particles.
The details are best obtained from the original article,
however the essence of the modified beam distance is that
one uses the same kind of construction as in Eq. (2),
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with ptB(y) a rapidity-dependent hardness scale. In the
central region, ptB(y) is of the same order as the overall
event hardness.

Relative to the standard kt algorithm, the flavour-kt
algorithm can significantly alter the kinematics of the
clustering of hard flavoured jets. For example in the pres-
ence of a hard bb̄ pair, the flavour-kt algorithm can cluster
them even when �R

bb̄
> R, as observed e.g. in Ref. [31]

(see also the discussion in Sec. VA).

2. Flavour anti-kt (“CMP”)

The algorithm of Ref. [10], there called “flavour anti-
kt”, will be referred to here as CMP, to avoid ambiguity
with other flavour anti-kt algorithms. As in the flavour-kt
algorithm, it is to be used with net-flavour or modulo-2

4 The ↵ = 1 variant evokes a longitudinally-invariant extension
of the classic JADE (squared invariant mass) clustering dis-
tance [29, 30]. The well-known drawback of the JADE distance,
namely that early in the sequence it can cluster soft pairs go-
ing in opposite directions, is precisely the behaviour needed to
resolve the classic jet-flavour IRC safety issue of Fig. 1.
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and pt,max would typically be a hard scale (see Ref. [10]
for further details). Throughout this paper, we use
pt,max ⌘ pt,global-max, where pt,global-max is the transverse
momentum of the hardest pseudojet across the event at
the given stage of the clustering.5 In addition to the
jet radius, the algorithm has one parameter, a, taken in
the range 0.01�0.5 in the original publication [10]. Un-
like the flavour-kt algorithm, the CMP algorithm uses a
beam distance that is identical to that of the plain anti-kt
algorithm.
The CMP algorithm resolves the problem in Fig. 1 be-

cause when particles 1 and 2 are both soft,  is very small.
Specifically, taking dimensions such that pt,global-max = 1,
a soft ij quark pair has Sij ⇠ 
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smaller than the anti-kt clustering distance of a soft quark
with a hard parton, which is of order �R
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. As a result

the soft qq̄ pair clusters first and there is no IRC-safety
issue in Fig. 1. Note that when one or other of i and
j is hard, the use of a small value for the parameter a

results in  being large and thus Sij = 1. As a result,
the CMP algorithm behaves like the anti-kt algorithm
for hard particles. For a ! 0, the algorithm reduces to
anti-kt. However, for finite a, the algorithm does some-
times yield jets whose kinematics di↵er from those of the
anti-kt algorithm.

3. Flavour dressing (“GHS”)

The algorithm of Ref. [11], there called “flavour dress-
ing”, will be referred to here as GHS. This algorithm in-
volves three stages: a standard clustering stage in which
flavour is not considered, an “accumulation” stage in
which flavoured particles accumulate momentum from
non-flavoured ones, and a “dressing” stage, which assigns
the flavour to the original anti-kt jets. Here, we limit our-
selves to sketching the main features of each of the steps,
and refer the reader to the original reference for the full
details.
In the first step, the event is clustered with the stan-

dard anti-kt algorithm. In this step, one also applies

5 We are grateful to the authors of Ref. [10] for discussions on this
point.
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