IR-safe flavoured jet algorithms for the precision era

Fabrizio Caola, with R. Grabarczyk, M. Hutt, G. Salam, L. Scyboz and J. Thaler, arXiv:2306.07314

LoopFest XXI, SLAC, June 27 2023

Rudolf Peierls Centre for Theoretical Physics & Wadham College

- •More and more precise measurements
- •More and more accurate predictions
- Apple-to-apple comparison difficult without suitable definition of "jet flavour"

- •Experimentally: anti-kt, b-tagging
- •Theory:

- Experimentally: anti-kt, b-tagging
- •Theory:

- •Experimentally: anti-kt, b-tagging
- •Theory:

- Experimentally: anti-k_t, b-tagging
- •Theory:

 $d_{ij} = \min(p_{t,i}^{-2}, p_{t,j}^{-2})$ ΔR_{ij}^2 *R*2 $\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$ •Flavour contamination •Log sensitivity to **IR-unsafe at Olds** quark mass, ln(mq/pt,j) **2)** 2 In(mq^{lpt,j) sensitivity}

The "old" solution: flavour-kt Flavour-kt [Banfi, Salam, Zanderighi (2006)]:

modify d_{ij}, di_B to ensure that soft flavoured objects are clustered first

The "old" solution: flavour-kt Flavour-kt [Banfi, Salam, Zanderighi (2006)]:

modify d_{ij}, d_{iB} to ensure that soft flavoured objects are clustered first

◆ : remove the contamination

 X : different d_{ij} \rightarrow different $recombination \rightarrow different$ kinematics w.r.t. anti- $k_t!$

The "old" solution: flavour-kt

The "old" solution: flavour-kt

- Reconstructed Higgs pt, anti-kt jets, betallige van de verschieden van de verschieden van de verschieden van de verschieden van de ver
Sie verschieden van de verschieden $Flavour-k_t \neq anti-k_t$ For a long time: flavour-kt only option
- for higher-order (NNLO) calculations

VH, H→bb

 10^{-4}

sticanel in the boosted region! Precise calculations, but apples to oranges comparisons!

 $d\sigma/dp_t$ [pb/GeV]

GS $\operatorname{D}_\mathfrak{t}$

 10^{-6}

 \cup .

0.6

 0.5

 $anti-k_t$

ratio

 $p_{t, H(b\bar{b})}$ [GeV]

Recently: a flurry of activity

- •Caletti, Larkoski, Marzani, Reichelt (2022): "Practical jet flavour through NNLO" *Fix the problem at NNLO, ignoring higher-order issues*
- Czakon, Mitov, Poncelet [CMP] (2022): "Infrared-safe anti-kt jets" *All-orders, modify the anti-kt distance, but only close to "dangerous" configurations → similar kinematics to anti-kt*
- •Gauld, Huss, Stagnitto [GHS] (2022): "A dress of flavour to suit any jet" *All-orders, separate kinematics and flavour recombination*

Recently: a flurry of activity

- •Caletti, Larkoski, Marzani, Reichelt (2022): "Practical jet flavour through NNLO" *Fix the problem at NNLO, ignoring higher-order issues*
- Czakon, Mitov, Poncelet [CMP] (2022): "Infrared-safe anti-kt jets" *All-orders, modify the anti-kt distance, but only close to "dangerous" configurations → similar*

kinematics to anti-kt

•Gauld, Huss, Stagnitto [GHS] (2022): "A dress of flavour to suit any jet" *All-orders, separate kinematics and flavour recombination*

What are the features of an ideal flavoured-jet algorithm?

Flavoured-jet algorithms: wish-list

- - *•Flavour-kt:* ✘
	- *•CMP: ~*
	- *•GHS:* ✔︎
- allow for reliable jet substructure studies \rightarrow track the flavour along the clustering sequence, Cambridge/Aachen
- •be IR-safe to all-orders

A good jet flavour algorithm should:

Achieving this is more difficult than it may sound

• allow for reliable data-theory comparisons, at high precision \rightarrow exact anti-k_t kinematics

Our proposal: Interleaved Flavour Neutralisation (IFN)

keep the standard clustering procedure (anti- k_t , C/A), but modify flavourrecombination at each step of the clustering sequence

• at each stage of the recombination: IR-safe (sub)-jets \rightarrow substructure

- \cdot same identical kinematics of anti-k_t, C/A
- friendly

By construction then:

The main idea:

• soft flavoured object (2) about to kinematically cluster

1

2+3

- recombined per (anti-kt/CA...) \rightarrow trigge π a "flavour neutralisation" search \bar{q}
- look globally in the event for objects that should neutralise \rightarrow identify 1

- •soft flavoured object (2) about to kinematically
- recombined per (anti-k_t/CA...) \rightarrow trigger a "flavour neutralisation" search
- •look globally in the event for objects that should neutralise \rightarrow identify 1
- neutralise 1 and 2, then recombine
- Flavoured jets with anti-kt/CA kinematics

F_{avoured} iets with anti- $k_{\pm}/C\Delta$ kinematics. **de the pair (particles 1 and 2), and 2), and 2), and 2)** with $\frac{1}{2}$, we have all $\frac{1}{2}$, with $\frac{1}{2}$, and $\frac{1}{2}$, and Flavoured jets with anti-kt/CA kinematics

• making sure neutralising partner is not "stolen" from more suitable candidate (→recursion)

 C rucial for ID cafature and babaviour which is in the separate soft in the 2 separate soft in \mathcal{L} is used to neutralise the flavour of 1 i Crucial for IR-safety + good behaviour

- . proper choice of a "flavour distance" black dashed lines). Finally, in (d) the (now) flavourless pseudojet 2 is clustered with 3 into a pseudojet 2+3 with the ¯*q* flavour •proper choice of a "flavour distance"
	-

Integrated Flavour Neutralisation (IFN): a cartoon \mathbf{h} and \mathbf{h} Regialed Flavour Neutralisation (IFN*)*: a Carloon

The neutralisation distance $i = 1$ lisation distance

 1 ~ flavour-k_t, soft objects are close

> (7b)
(7b) - 1 Angular distance.

$$
u_{ik} \equiv [\max (p_{ti}, p_{tk})]^{\alpha} [\min (p_{ti}, p_{tk})]^{2-\alpha} \times \Omega_{ik}^2,
$$

where *yik* = *yⁱ y^k* and analogously for *ik*. Let us Critical: able to compare objects

start with the part related to the transverse momenta. event-wide → far apart

Integrated Flavour Neutralisation (IFN): a cartoon \mathbf{h} and \mathbf{h} Regialed Flavour Neutralisation (IFN*)*: a Carloon

The neutralisation distance $i = 1$ lisation distance

Integrated Flavour Neutralisation (IFN): a cartoon \mathbf{h} and \mathbf{h} Regialed Flavour Neutralisation (IFN*)*: a Carloon entries are still left in list and the still left in the still left in the state of the stat Neutralisation (IFN): a cartoon

The neutralisation distance $i = 1$ lisation distance

Testing IR safety

 $(1-z)$ $z_{\text{+}}$ Z_{2} 2^{2} + $(1-2)^{2}$ dz \times ω \neq ω \ge $\frac{dz}{z}$ \times z $\int d\xi = \frac{-\ell_1}{\ell_2}$ $S(l - l, -l,$

Configuration $\sqrt{6}, \frac{4}{3}$ $\frac{2}{5}$ $\frac{4}{4}$ Beam ^b 2,9³³

where $\overline{6}$, I is an initial-stite sputting, 23 is ^a wide angle soft pair and ⁴ is ^a hard gluon at wide scattering angle to the beam

Approximations

- emitted at large angle so ya $\omega \rightarrow 0$
- 1 is an initial-state collinear splitting G $E_1 \sim E_4$ but since $y_4 \ge 0$ then must have

$$
\rho_{\mathfrak{t}_1} \sim \rho_{\mathfrak{t}_1} \epsilon^{-|\mathcal{Y}_1|} \quad \Rightarrow \quad \mathfrak{t}_1 \sim \text{ln}\left(\frac{\rho_{\mathfrak{t}_1}}{\rho_{\mathfrak{t}_1}}\right)
$$

- \circ $\leq \varphi$ $\leq \pi$ in all cases so normally Δy map s approx $\Delta k_{ij} \sim \Delta y_{ij}$
- $y_1 \sim y_3$ as from same soft pair $\sim \Delta K_{\gamma q} \sim \Delta K_{\gamma q}$
 \sim 0(0) if gore containsaloon risk to 4 $O(R)$ if pore contamination risk to 4

 \Rightarrow $\Delta R_{12} = \Delta R_{14} - \Delta R_{24} \sim y_1$

Let $z = \frac{\sqrt{1+\frac{1}{2}}}{\sqrt{\frac{1}{2}}z}$ and $\frac{2\epsilon^{1/2}}{z}$ st 2 is 1sfter then 3

Cheteror for contravianian

\nTalle weashr
$$
U_{ij} = \left(\frac{mx(p_{i},p_{ij})}{m \dot{m} (p_{i},p_{ij})} \Delta k_{ij}\right)
$$

\n $U_{12} = \frac{max(p_{t1}, p_{t22})}{min(p_{t1}, p_{t22})} \Delta k_{12}$ and Δk_{13}

\n $= \frac{2 \rho_{t22}}{\rho_{t1}} \Delta k_{12} \sim \frac{2 \rho_{t23}}{\rho_{t1}} ln\left(\frac{p_{t2}}{p_{t1}}\right)$

\n $U_{23}^{1/2} = \frac{max(\Phi_{t23}, (1-\Phi_{t23}))}{min(\Phi_{t23}, (1-\Phi_{t23}))} \Delta k_{12} \sim \frac{2 \epsilon^{1/2}}{\epsilon^{1/2}}$

\n $= \frac{1-2}{2} \Delta k_{23} \sim \left(\frac{1}{2} - 1\right) O(R) \sim \frac{1}{2}$

\nAs $U_{12} \leq U_{12} \Rightarrow \frac{1}{2} \geq \frac{2 \rho_{t23}}{\rho_{t1}} ln\left(\frac{\rho_{t2}}{\rho_{t1}}\right)$

Cross-sec. for contamination

$$
\sigma \sim \int \frac{d\rho_{\text{tr}} d\rho_{\text{tr2}}}{\rho_{\text{tr}} \rho_{\text{tr3}}} \frac{d\theta}{\rho_{\text{tr3}}} \int \left(\frac{1}{t} > \frac{t \rho_{\text{tr3}}}{\rho_{\text{tr}}} 2n \left(\frac{\rho_{\text{tr4}}}{\rho_{\text{tr}}} \right) \right)
$$

where $z = \rho t_1 / \rho_{+23}$. Define $L = \ln \left(\frac{\rho_{t4}}{\rho_{t1}} \right)$ $l = \ln \left(\frac{\rho_{\text{t13}}}{\rho_{\text{t1}}} \right)$ Change variables

$$
J = \frac{\partial(L, L)}{\partial(\rho_{t}, \rho_{t2})} = \left| \begin{pmatrix} \frac{\partial L}{\partial \rho_1} & \frac{\partial L}{\partial \rho_2} \\ \frac{\partial L}{\partial \rho_1} & \frac{\partial L}{\partial \rho_2} \end{pmatrix} \right|
$$

$$
= \left| \begin{pmatrix} -1/\rho_1 & \delta \\ -1/\rho_1 & 1/\rho_{23} \end{pmatrix} \right|
$$

$$
= \left| \begin{pmatrix} -1/\rho_1 & \delta \\ -1/\rho_1 & 1/\rho_{23} \end{pmatrix} \right|
$$

$$
\Rightarrow \quad \sigma \sim \int dL \int dL \int dt \int dt \int \left(\frac{1}{2} \right) \frac{2e^{2}L}{2}
$$
\n
$$
\sim \int_{0}^{\infty} dL \int_{0}^{L} dL \int_{0}^{1/h} d\phi \int \left(\frac{1}{t^{2}} \right) e^{4}L
$$
\n
$$
\sim \int_{0}^{\infty} dL \int_{0}^{L} dL \int_{0}^{1/h} d\phi \int \left(\frac{1}{t^{2}} \right) e^{4}L
$$
\n
$$
\Rightarrow \frac{e^{2}/L}{2}
$$
\n
$$
\int_{0}^{L} d\phi \int (242e) = \begin{cases} L-a & , x_{0} > b \\ x_{0} - a & , x_{0} \in [a,b] \end{cases} \frac{1}{\sqrt{L}} \quad \begin{array}{l} (\text{for the phase are } -1.5, 0.5) \\ (\text{where } a) \neq 0.5 \end{array}
$$
\n
$$
e^{-2/L} = \int \frac{\mu_{2}^{3}}{2} \ln \left(\frac{\mu_{4}}{2}\right)^{-1/h}.
$$

$$
\Rightarrow \quad \sigma \sim \int dL \int dL
$$
\n
$$
\int_{0}^{L} d\varphi \int dL \int dL
$$
\n
$$
\int_{0}^{L} d\varphi \int dL \int dL
$$
\n
$$
\int_{0}^{L} d\varphi \int dL \int dL
$$
\n
$$
\int_{0}^{L} d\varphi \int dL \int dL
$$
\n
$$
\int_{0}^{L} d\varphi \int dL \int dL
$$
\n
$$
\int_{0}^{L} d\varphi \int dL \int dL
$$
\n
$$
\int_{0}^{L} d\varphi \int dL \int dL
$$
\n
$$
\int_{0}^{L} d\varphi \int dL \int dL
$$
\n
$$
\int_{0}^{L} d\varphi \int dL \int dL
$$
\n
$$
\int_{0}^{L} d\varphi \int dL \int dL
$$

$$
N_{\text{eff}} \times \rho_{\text{eff}} \times
$$

 \blacksquare $2\sqrt{2}$ $\begin{array}{c} \hline \end{array}$ $\frac{24}{7}$ - 1 finite \bigcirc

…

 $(1-z)$ z Z_{2} 2^{2} + $(1-2)^{2}$ $\int d\ell_i e^{-\ell_i} d\ell \ e^{-\ell_i}$

Configuration

$$
\frac{1}{6}, \frac{1}{2}
$$
\n
\n6, 2, 8, 4
\n6, 2, 3
\n6, 2, 3
\n6, 2, 3
\n6, 2, 3
\n6, 3

where \overline{b} , I is an initial-stite sputting, 23 is ^a wide angle soft pair and ⁴ is ^a hard gluon at wide scattering angle to the beam.

Approximations

- emitted at large angle so ya
- 1 is an initial-state collinear splitting G $E_1 \sim E_4$ but since ye so then must have

$$
p_{\mathfrak{t}_1} \sim p_{\mathfrak{t}_1} \epsilon^{-1} \mathfrak{t}_1^{1} \Rightarrow \gamma_1 \sim \ell \mathfrak{t}_1 \left(\frac{p_{\mathfrak{t}_1}}{p_{\mathfrak{t}_1}}\right)
$$

- \circ $\leq \varphi$ $\leq \tau$ in all cases so normally $\Delta y \gg \Delta \varphi$ $\text{S}_{3} \quad \text{as} \quad \$
- yr yr as from same soft pair AR y⁻²¹²zy 0° O(R) if pore contamination risk to 4.

 \Rightarrow $\Delta R_{12} = \Delta R_{14} - \Delta R_{24} \sim y_1$

Let $z = \frac{\sqrt{4t}}{2} \rho_{t23}$ and $z ¹/2$ st. 2 is often then 3

Chapter 6.4

\nExample 1.2

\n
$$
u_{12} = \frac{m \times (p_{11}, p_{121})}{m \times (p_{11}, p_{121})} = \frac{2 \int_{PU} f(z) \cdot p_{121}}{PU} = \frac{m \times (p_{11}, p_{121})}{m \times (p_{11}, p_{121})} = \frac{2 \int_{PU} f(z) \cdot p_{121} \cdot (1+z) \cdot p_{121}}{m \times (p_{121}, p_{121})} = \frac{1-2}{2} \Delta R_{22} \sim (\frac{1}{2})
$$
\n
$$
\Rightarrow u_{12} \le u_{12} \Rightarrow \frac{1}{2} \Rightarrow \frac{1}{2}
$$

GIVEN THE PACE OF TECHNOLOGY, I PROPOSE WE LEAVE MATH TO THE MACHINES AND GO PLAY OUTSIDE.

A framework for IR-safety tests A Iramework I

•Consider a hard underlying event

A II diffework i **A framework for IR-safety tests**

- •Consider a hard underlying event
- . Dress with •Dress with
- \cdot (IR) •(IR/FS) DS

I Impleme such a fixed-order framework to **A framework for IR-safety tests**

- •Consider a hard underlying event
- . Dress with •Dress with
- \cdot (IR/ •(IR/FS) DS
- · FS hard collinear (FHC) •FS hard collinear (FHC)

In die such a fixed-order framework: The fixed-order framewo **A framework for IR-safety tests**

- •Consider a hard underlying event
- · Dress with •Dress with
- \cdot (IR •(IR/FS) DS
- · FS hard collinear (FHC •FS hard collinear (FHC)
- . IS hard collinear (IHC •IS hard collinear (IHC)

In die such a fixed-order framework: The fixed-order framewo **A framework for IR-safety tests**

- •Consider a hard underlying event
- · Dress with •Dress with
- \cdot (IR •(IR/FS) DS
- · FS hard collinear (FHC •FS hard collinear (FHC)
- . IS hard collinear (IHC •IS hard collinear (IHC)
	- •Possibly nested

In die such a fixed-order framework: The fixed-order framewo **A framework for IR-safety tests**

- •Consider a hard underlying event
- · Dress with •Dress with
- \cdot (IR •(IR/FS) DS
- · FS hard collinear (FHC •FS hard collinear (FHC)
- . IS hard collinear (IHC •IS hard collinear (IHC)
	- •Possibly nested
	- •As extra radiation becomes unresolved: $Hard+IR \rightarrow Hard$

Example: plain anti-kt+DS

 $\int \Theta_{\text{fail}} |\mathcal{M}|^2 d\Phi$

Example: plain anti-kt+DS

extension GHS, which uses flavour-*k^t* distances) indicates marginal convergence, though one expects divergent behaviour at **I**s, up to

IR-safety tests: results

Pheno results: Pythia8, Hadron-level + MPI

Both IFN & CMP_Ω indistinguishable from plain anti-kt

Pheno results: Pythia8, Hadron-level + MPI

Pheno results: Pythia8, Hadron-level + MPI

Conclusions

- •A proper definition of jet flavour is non-trivial
- similar to anti- k_t . Subtle IR-safety issues
- •Our proposal: Interleaved Flavour Neutralisation
- •Definition of flavour interleaved but distinct from kinematics clustering
- •Kinematics unchanged, neutralisation based on suitable flavour distance
- •Passed non-trivial IR-safety tests
-

• Multiple attempt in the past to define IR-safe algorithms with kinematics identical or very

• Promising phenomenology \rightarrow interesting investigations ahead + experimental feasibility

Thank you very much for your attention!

Crucial for IR-safety + good behaviour •proper choice of a "flavour distance"

- making sure neutralising partner is not "stolen" from more suitable candidate
	- \cdot (34) recombination \rightarrow trigger neutralisation search
	- •find 2 as a potential candidate
	- if used: neutralised hard jet + soft flavoured jet \odot

Integrated Flavour Neutralisation (IFN): a cartoon Crucial for IR-safety + good behaviour •proper choice of a "flavour distance"

- making sure neutralising partner is not "stolen" from more suitable candidate
	- \cdot (34) recombination \rightarrow trigger neutralisation search
	- •find 2 as a potential candidate
	- way out: recursion
	- •before (23) neutralisation, look elsewhere to neutralise
	- $2 \rightarrow$ find 1 and neuralise
	- $\cdot \Longrightarrow$ Hard (34) flavour jet, soft (12) gluon jet \checkmark

FIG. 16. Failure rate of the flavour-*k^t* algorithm for the config-*Z*

$$
d_{ij}^{\text{flav-}k_t} = [\max(p_{ti}, p_{tj})]^{\alpha} [\min(p_{ti}, p_{tj})]^{2-\alpha} \frac{\Delta R_{ij}^2}{R^2},
$$

if softer of *i* and *j* is flavoured,

$$
d_{iB}^{\text{flav-}k_t} = [\max(p_{ti}, p_{tB}(y_i))]^{\alpha} [\min(p_{ti}, p_{tB}(y_i))]^{2-\alpha},
$$

Flavour-kt and CMP distances clustering distances relative to Eq. (1). Specifically, it is clustered to Eq. (1). Specifically, it is clear t
The extension of the exte modifies the standard **function of the soften the soften the soften the soften the soften the soften tensor of the soften tensor** \mathbf{r}_t *pt,*max ⌘ *pt,*global-max, where *pt,*global-max is the transverse As a result, the soft particles cluster first, resolving the original IRC safety issue of Fig. 1. Note that flavour-*k^t* a stances **in** α ing to an overall *^dij* ⇠ max(*p*²

 $\n *where*\n$ $\sqrt{11}$ where

 α *,* (5)

$$
d_{ij}^{\text{flav-anti-}k_t} = d_{ij}^{\text{anti-}k_t} \times S_{ij},
$$

if *i* and *j* are oppositely flavoured,

$$
S_{ij} = 1 - \Theta(1 - \kappa) \cos\left(\frac{\pi}{2}\kappa\right), \quad \kappa \equiv \frac{1}{a} \frac{p_{ti}^2 + p_{tj}^2}{2p_{t,\text{max}}^2},
$$

 ${\rm i} {\rm red}$,

*t,*max