IR-safe flavoured jet algorithms for the precision era

Fabrizio Caola, with R. Grabarczyk, M. Hutt, G. Salam, L. Scyboz and J. Thaler, arXiv:2306.07314

Rudolf Peierls Centre for Theoretical Physics & Wadham College

LoopFest XXI, SLAC, June 27 2023

- More and more precise measurements
- More and more accurate predictions
- Apple-to-apple comparison difficult without suitable definition of "jet flavour"

- Experimentally: anti-k_t, b-tagging
- Theory:

 $d_{ij} = \min(p_{t,i}^{-2}, p_{t,j}^{-2}) \frac{\Delta R_{ij}^2}{R^2} \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$ $d_{iB} = p_{t,i}^{-2}$ IR-unsafe at O(0.s²) IR-unsafe at O(0.s²) sensitivity e. 0.s² ln(mq/pt.j) Flavour contamination Log sensitivity to quark mass, ln(m_q/p_{t,j})

The "old" solution: flavour-kt Flavour-kt [Banfi, Salam, Zanderighi (2006)]:

modify d_{ij} , d_{iB} to ensure that soft flavoured objects are clustered first

The "old" solution: flavour-kt Flavour-k_t [Banfi, Salam, Zanderighi (2006)]:

modify d_{ii}, d_{iB} to ensure that soft flavoured objects are clustered first

: remove the contamination

X: different $d_{ij} \rightarrow different$ recombination \rightarrow different kinematics w.r.t. anti-k_t!

The "old" solution: flavour-kt

The "old" solution: flavour-kt

 10^{-4}

do/dpt [pb/GeV]

 10^{-6}

U.,

0.6

0.5

anti-k_t

ratio

*p*_{t, H(bb)} [GeV]

 $Flavour-k_t \neq anti-k_t$ For a long time: flavour-kt only option for higher-order (NNLO) calculations

Precise calculations, but apples to oranges comparisons!

gs p_t

Recently: a flurry of activity

- Caletti, Larkoski, Marzani, Reichelt (2022): "Practical jet flavour through NNLO" Fix the problem at NNLO, ignoring higher-order issues
- Czakon, Mitov, Poncelet [CMP] (2022): "Infrared-safe anti-kt jets" All-orders, modify the anti-k_t distance, but only close to "dangerous" configurations \rightarrow similar kinematics to anti-k_t
- Gauld, Huss, Stagnitto [GHS] (2022): "A dress of flavour to suit any jet" All-orders, separate kinematics and flavour recombination

Recently: a flurry of activity

- Caletti, Larkoski, Marzani, Reichelt (2022): "Practical jet flavour through NNLO" Fix the problem at NNLO, ignoring higher-order issues
- Czakon, Mitov, Poncelet [CMP] (2022): "Infrared-safe anti-kt jets" All-orders, modify the anti-k_t distance, but only close to "dangerous" configurations \rightarrow similar

Gauld, Huss, Stagnitto [GHS] (2022): "A dress of flavour to suit any jet"

kinematics to anti-k_t

All-orders, separate kinematics and flavour recombination

- What are the features of an ideal flavoured-jet algorithm?

Flavoured-jet algorithms: wish-list

A good jet flavour algorithm should:

- - •Flavour-k_t: X
 - CMP: ~
 - GHS: 🗸
- allow for reliable jet substructure studies \rightarrow track the flavour along the clustering sequence, Cambridge/Aachen
- be IR-safe to all-orders

Achieving this is more difficult than it may sound

• allow for reliable data-theory comparisons, at high precision \rightarrow exact anti-k_t kinematics

Our proposal: Interleaved Flavour Neutralisation (IFN)

By construction then:

- same identical kinematics of anti- k_t , C/A
- friendly

The main idea:

keep the standard clustering procedure (anti-k_t, C/A), but modify flavourrecombination at each step of the clustering sequence

• at each stage of the recombination: IR-safe (sub)-jets \rightarrow substructure

- soft flavoured object (2) about to kinematically
- recombined per (anti- $k_t/CA...$) \rightarrow trigger a "flavour neutralisation" search
- look globally in the event for objects that should neutralise \rightarrow identify 1

10

2 + 3

- soft flavoured object (2) about to kinematically
- recombined per (anti- k_t /CA...) \rightarrow trigger a "flavour neutralisation" search
- look globally in the event for objects that should neutralise \rightarrow identify 1
- neutralise 1 and 2, then recombine
- Flavoured jets with anti-k_t/CA kinematics

Flavoured jets with anti-k_t/CA kinematics

Crucial for IR-safety + good behaviour

- proper choice of a "flavour distance"

• making sure neutralising partner is not "stolen" from more suitable candidate (\rightarrow recursion)

The neutralisation distance

$$u_{ik} \equiv [\max(p_{ti}, p_{tk})]^{\alpha} [\min(p_{ti}, p_{tk})]^{2-\alpha} \times \Omega_{ik}^2,$$

~ flavour-k_t, soft objects are close

Angular distance.

Critical: able to compare objects

event-wide \rightarrow far apart

The neutralisation distance

The neutralisation distance

9 Fri 4 Dec	Your			
(1-2) (1-2) e 2, 70		re viewing Gavin Salam's scre	en View Options 🗸	 ♪ ? ?
$z^{2} + (1-z)^{2}$ $\int dl_{1}e^{-l_{1}} dl$	e-lz	dz» S(l-)	$a = \frac{d^2}{dz} = \frac{d^2}{z} = \frac{d^2}{z}$	2
	L, l		$-\chi_2$	
	Participants Chat	Share Screen Reco	ord Reactions	

Testing IR safety

Configuration E 9,4 īb, 1 b, 2 x 5,3

5,1 is an initial-state sputting, 23 is a wide-angle soft pair and 4 is a hord gluon at wide scattering angle to the beam

Approximations

- emitted at large angle so ye =0 ° 4 's
- · 1 is an initial-state collinear splitting is E1~Eq but since yy = > then must have

$$p_{t_1} \sim p_{t_1} e^{-iy_1 l} \Rightarrow y_1 \sim ln\left(\frac{p_{t_1}}{p_{t_1}}\right)$$

- · ap s to in all cases so wormely ay >> ap
- So approx. $\Delta R_{ij} \sim \Delta y_{ij}$. $y_2 \sim y_3$ as from some soft pair $\Delta R_{24} \sim \Delta R_{74}$ $\sim O(R)$ if pore contamination risk to 4.

 $\Rightarrow \Delta R_{12} = \Delta R_{14} - \Delta R_{24} \sim y_1$

Let 2= \$t2/ptrs and 2012 sit. 2 is rofter then 3.

Criterion for contamination: Take measure
$$U_{ij} = \left(\frac{\max(p_{ij}, p_{ij})}{\min(p_{ij}, p_{ij})}\right) C_{ij}$$

 $U_{12}^{1/2} = \frac{\max(p_{ij}, \pm p_{\pm 22})}{\min(p_{ij}, \pm p_{\pm 32})} O_{k_{12}}$ or p_{ij} is exponentially
 $= \frac{2}{r} \frac{p_{\pm 22}}{p_{\pm i}} O_{k_{12}} \sim \frac{\pm p_{\pm 23}}{p_{\pm i}} O_{k_{12}} \left(\frac{p_{\pm 4}}{p_{\pm 4}}\right)$
 $U_{23}^{1/2} = \frac{\max(\pm p_{\pm 22}, (1-\pm)p_{\pm 23})}{\min(\pm p_{\pm 22}, (1-\pm)p_{\pm 23})} O_{k_{22}} O_{k_{22}} O_{k_{23}} = \frac{1-2}{2} O_{k_{23}} \sim \left(\frac{1}{2}-1\right) O_{k_{12}} \sim \frac{1}{2}$
 $\Rightarrow U_{12} \leftarrow U_{123} \Rightarrow \frac{1}{2} > \frac{2p_{\pm 32}}{p_{\pm 1}} O_{k_{12}} \left(\frac{p_{\pm 4}}{p_{\pm 1}}\right)$

Cross-sec. for contamination

$$\sigma \sim \int \frac{d\rho_{t_1} d\rho_{t_2} dt}{\rho_{t_1} \rho_{t_2}} \Theta\left(\frac{1}{2} > \frac{2\rho_{t_2}}{\rho_{t_1}} l_n\left(\frac{\rho_{t_4}}{\rho_{t_1}}\right)\right)$$

where z = p + 2/p + 23. Define $L = ln \left(\frac{p + 4}{p + 1} \right)$, l = ln (Ptr3/pt1). Change voriables

$$J = \frac{\partial(L,L)}{\partial(p_{L_1},p_{L23})} = \left| \begin{pmatrix} \partial L/\partial \rho_1 & \partial L/\partial \rho_2 \\ \partial L/\partial \rho_1 & \partial L/\partial \rho_2 \end{pmatrix} \right|$$
$$= \left| \begin{pmatrix} -1/\rho_1 & 0 \\ -1/\rho_1 & 1/\rho_{23} \end{pmatrix} \right|$$
$$= 0 |J| = \frac{1}{\rho_1 \rho_{12}}$$

$$= 0 \quad \nabla \sim \int dL$$

$$\sim \int_{0}^{\infty} dL$$

$$\int_{0}^{\infty} d \geq \theta (\geq \langle \geq \rangle) =$$

$$\frac{e^{-l/L}}{JU} = \begin{bmatrix} \frac{\beta_{12}}{\beta_{H}} \\ lu \\ \frac{e^{-l/L}}{JU} \end{bmatrix}$$
Note p_{11} is explained as $e^{-l/L}$

$$= 0 \quad \nabla \sim \int_{0}^{\infty} d$$

$$\int \mathcal{L} \int dt \Theta \left(\frac{1}{2} > 2e^{L}\right)$$

$$\int \mathcal{L} \int dt \Theta \left(\frac{1}{2} > 2e^{L}\right)$$

$$\int \mathcal{L} \int dt \Theta \left(\frac{1}{2} + 2e^{L}\right)$$

$$= 2e^{-2/2} \quad (\text{for the Solutions of } 200).$$

$$\int \mathcal{L} = 2e^{-2/2} \quad (\text{for the Solutions of } 200).$$

$$\int \mathcal{L} = 2e^{-2/2} \quad (\text{for the Solutions of } 200).$$

$$\int \mathcal{L} = 2e^{-2/2} \quad (\text{for the Solutions of } 200).$$

$$\int \mathcal{L} = 2e^{-2/2} \quad (\text{for the Solutions of } 200).$$

$$\int \mathcal{L} = 2e^{-2/2} \quad (\text{for the Solutions of } 200).$$

$$\int \mathcal{L} = 2e^{-2/2} \quad (\text{for the Solutions of } 200).$$

$$\int \mathcal{L} = 2e^{-2/2} \quad (\text{for the Solutions of } 200).$$

$$\int \mathcal{L} = 2e^{-2/2} \quad (\text{for the Solutions of } 200).$$

$$\int \mathcal{L} = 2e^{-2/2} \quad (\text{for the Solutions of } 200).$$

$$\int \mathcal{L} = 2e^{-2/2} \quad (\text{for the Solutions of } 200).$$

$$\frac{e^{-L/2}}{\sqrt{L}} = \int_{0}^{\infty} \frac{dL}{\sqrt{L}} \left(1 - e^{-L/2}\right)$$

$$= 2J2 \cdot \left(\frac{2J\pi}{\Gamma(3/4)} \right)$$

. . .

Man a server a server

MM

 \sim

 $\overline{)}$

- 2

(1-2) 21 Z_2 $2^{1} + (1-2)^{2}$ dl, e-l, dle

Configuration

where 6,1 is an united-state sputting, 22 is a wide-angle soft pair and 4 is a hard gluon at wide scattering angle to the beam.

Approximations

- 4 is consted at large angle so ye = 0
- · 1 is an initial-state allinear splitting a E, ~ Eq but since y₄ = 0 then must have

$$p_{t_1} \sim p_{t_1} e^{-iy_1} \Rightarrow y_1 \sim \ln\left(\frac{p_{t_1}}{p_{t_1}}\right)$$

- · 69 5 Th in all cases so wormely by >> 40 so approx. $\Delta R_{ij} \sim \Delta y_{ij}$.
- · y2~y3 as from same soft pair : $\Delta R_{24} \sim \Delta R_{34}$ ~ O(R) if pore contamination risk to 4.

 $\Rightarrow \Delta R_{12} = \Delta R_{14} - \Delta R_{24} \sim y_1$

Let 2 = \$t2/pt23 and 221/2 sit 2 is softer then 3.

Criterion for contamination: Take

$$u_{12}^{1/2} = \frac{\max(p_{U1}, tp_{12})}{\min(p_{U1}, tp_{12})} Z$$

$$= \frac{2p_{U2}}{p_{U1}} \otimes R_{12} \sim 2p_{U2}$$

$$u_{23}^{1/2} = \frac{\max(tp_{U2}, (l-t))p_{U2}}{\min(tp_{U2}, (l-t))p_{U2}}$$

$$= \frac{l-2}{2} \Delta R_{23} \sim (\frac{1}{2})$$

$$\Rightarrow U_{12} \leq U_{12} \Rightarrow \frac{1}{2} > \frac{2p}{p_{U2}}$$

$$Cross-Sec. for contamination:$$

$$\sigma \sim \int \frac{dp_{U1}}{p_{U1}} \frac{dp_{U2}}{dp_{U2}} \frac{dp_{U2}}{dt} = 0$$

$$U = ln (\frac{p_{U2}}{p_{U1}}) = l(\frac{p_{U2}}{p_{U2}})$$

$$J = \frac{\partial(L, R)}{\partial(p_{U1}, p_{U2})} = l(\frac{p_{U2}}{p_{U2}})$$

GIVEN THE PACE OF TECHNOLOGY, I PROPOSE WE LEAVE MATH TO THE MACHINES AND GO PLAY OUTSIDE.

Consider a hard underlying event

- Consider a hard underlying event
- Dress with
 - (IR/FS) DS

- Consider a hard underlying event
- Dress with
 - (IR/FS) DS
 - FS hard collinear (FHC)

- Consider a hard underlying event
- Dress with
 - (IR/FS) DS
 - FS hard collinear (FHC)
- IS hard collinear (IHC)

- Consider a hard underlying event
- Dress with
- (IR/FS) DS
- FS hard collinear (FHC)
- IS hard collinear (IHC)
- Possibly nested

- Consider a hard underlying event
- Dress with
 - (IR/FS) DS
- FS hard collinear (FHC)
- IS hard collinear (IHC)
- Possibly nested
- As extra radiation becomes unresolved: Hard+IR \rightarrow Hard

Example: plain anti-k_t+DS

 $\int \Theta_{fail} |\mathcal{M}|^2 d\Phi$

Example: plain anti-k_t+DS

IR-safety tests: results

			$ $ flav- k_t		$ \text{GHS}_{\alpha,\beta}$	anti-		
order r	elative to Born	anti- k_t	$\left (\alpha = 2) \right $	CMP	(2,2)	$k_t + \mathrm{IFN}_{\alpha}$	$C/A+IFN_{\alpha}$	
$lpha_s$	FHC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	IHC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$lpha_s^2$	FDS	×IIB	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	IDS	\times_{IIB}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	FHC×IHC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	IHC^2	\checkmark	\checkmark	\times_{C2}	\checkmark	\checkmark	\checkmark	
	FHC^2	\checkmark	\checkmark	\checkmark	\times_{C4}	\checkmark	\checkmark	
$lpha_s^3$	IHC×IDS		$\sim_{\rm C1}$	×C3	$\sim_{\rm C1}$	\checkmark	\checkmark	
	rest					\checkmark	\checkmark	
$lpha_s^4$	IDS×FDS				×c5	\checkmark	\checkmark	
	rest					\checkmark	\checkmark	
$lpha_s^5$						\checkmark	\checkmark	
α_s^6						\checkmark	\checkmark	
IFN naccoc IR-cafoty tocte un								
Easy to fix					highest order we were able to prob			

s, up to highest order we were able to probe

Pheno results: Pythia8, Hadron-level + MPI

Both IFN & CMP $_{\Omega}$ indistinguishable from plain anti-kt

Pheno results: Pythia8, Hadron-level + MPI

Pheno results: Pythia8, Hadron-level + MPI

Conclusions

- A proper definition of jet flavour is non-trivial
- similar to anti-k_t. Subtle IR-safety issues
- Our proposal: Interleaved Flavour Neutralisation
- Definition of flavour interleaved but distinct from kinematics clustering
- Kinematics unchanged, neutralisation based on suitable flavour distance
- Passed non-trivial IR-safety tests

Multiple attempt in the past to define IR-safe algorithms with kinematics identical or very

• Promising phenomenology \rightarrow interesting investigations ahead + experimental feasibility

Thank you very much for your attention!

Crucial for IR-safety + good behaviour proper choice of a "flavour distance"

- making sure neutralising partner is not "stolen" from more suitable candidate
 - (34) recombination \rightarrow trigger neutralisation search
 - find 2 as a potential candidate
 - if used: neutralised hard jet + soft flavoured jet 😔

Integrated Flavour Neutralisation (IFN): a cartoon Crucial for IR-safety + good behaviour proper choice of a "flavour distance"

- making sure neutralising partner is not "stolen" from more suitable candidate
 - (34) recombination \rightarrow trigger neutralisation search
 - find 2 as a potential candidate
 - way out: <u>recursion</u>
 - before (23) neutralisation, look elsewhere to neutralise
 - $2 \rightarrow$ find 1 and neuralise
 - \Rightarrow Hard (34) flavour jet, soft (12) gluon jet \checkmark

Flavour-kt and CMP distances

$$d_{ij}^{\text{flav-}k_t} = [\max(p_{ti}, p_{tj})]^{\alpha} [\min(p_{ti}, p_{tj})]^{2-\alpha} \frac{\Delta R_{ij}^2}{R^2},$$

if softer of *i* and *j* is flavoured,
$$d_{iB}^{\text{flav-}k_t} = [\max(p_{ti}, p_{tB}(y_i))]^{\alpha} [\min(p_{ti}, p_{tB}(y_i))]^{\alpha}$$

$$d_{ij}^{\text{flav-anti-}k_t} = d_{ij}^{\text{anti-}k_t} \times S_{ij},$$

if *i* and *j* are oppositely flavou

where

$$S_{ij} = 1 - \Theta(1 - \kappa) \cos\left(\frac{\pi}{2}\kappa\right), \quad \kappa \equiv \frac{1}{a} \frac{p_{ti}^2 + p_{tj}^2}{2p_{t,\max}^2}$$

 $(i))]^{2-\alpha},$

ured,

ıax