

Based on work:

- Flavor
 - The Importance of Flavor in SMEFT Electroweak Precision Fits (Bellafronte, Dawson, Giardino), <u>2304.00029</u>
 - *Flavorful Electroweak Precision Observables in the SMEFT* (Dawson and Giardino), <u>2201.09887</u>
- Double Insertions
 - Double Insertions of SMEFT Operators in Gluon Fusion Higgs Boson Production (Asteriadis, Dawson, and Fontes), <u>2212.03258</u>

SMEFT (Also Known As): *Is it the SM?*

- If there are no new light particles discovered, EFTs can help
- SMEFT predicts observables as a power series in a high scale
- SMEFT assumes the Higgs is in an SU(2) doublet and constructs SU(3) x SU(2) x U(1) gauge invariant operators

$$L = L_{SM} + \Sigma C_i^6 \frac{O_i^6}{\Lambda^2} + \dots$$

- SMEFT is model independent, but....
- In general, too many operators to be practical
 - Power is connection between Higgs, di-boson, EWPO, top data
 - Hidden assumptions

From far away, SMEFT is model independent

• Relies on large separation of scales

Top-down vs Bottoms-up

 Bottoms-up: Fit to multiple observables at EW scale and try to find out the UV model from patterns of coefficients ATLAS Preliminary

ATLAS, 2301.03212

Best Fit

Higgs

Using the SMEFT

- Need accurate SM and EFT predictions
- EFTs give shape changes in tails (need theory precision!)

Zanderhigi Higgs2022

Not this

Flavor and the SMEFT

• Flavor is poorly understood in the SM

 $L_{YUK} = -\overline{q}_L V^{\dagger} Y_u \tilde{H} u_R - \overline{q}_L Y_d H d_R - \overline{l}_L Y_e H e_R + h.c$

- Large hierarchy of masses: Y_u , Y_d , Y_e
- Approximate alignment of CKM matrix:

 $V_{CKM} \sim \begin{pmatrix} 1 & .2 & (.2)^3 \\ .2 & 1 & (.2)^2 \\ (.2)^3 & (.2)^2 & 1 \end{pmatrix}$

- Do SMEFT operators follow a similar flavor pattern?
- Imposing global flavor symmetries reduces number of operators

Strong constraints on flavor violation in SMEFT from low energy measurements

European Strategy, 1910.11775

Is SMEFT flavor violation at the TeV scale allowed?

No evidence for new physics in EWPOs

- Electroweak precision observables (EWPOs) provide strong evidence for SM at EW scale
- Comparison between EWPOs and SMEFT theory predictions strongly constrains new physics
- At NLO SMEFT, new 2-fermion and 4-fermion contributions to EWPOs from operators that do not arise at LO

Measurement	Experiment	"Best" theory		
$\Gamma_Z(\text{GeV})$	2.4955 ± 0.0023	2.4943 ± 0.0006 [62–64]		
Re	20.804 ± 0.05	20.732 ± 0.009 [62–64]		
R_{μ}	20.784 ± 0.034	20.732 ± 0.009 [62–64]		
R_{τ}	20.764 ± 0.045	20.779 ± 0.009 [62–64]		
R_b	0.21629 ± 0.00066	0.2159 ± 0.0001 [62–64]		
R _c	0.1721 ± 0.0030	$0.1722 \pm 0.00005[62-64]$		
$\sigma_{\rm h}$	41.481 ± 0.033	$41.492 \pm 0.008[62-64]$		
A_e (from A_{LR} had	0.15138 ± 0.00216	0.1469 ± 0.0004 [64, 65]		
A_e (from A_{LR} lep)	0.1544 ± 0.0060	0.1469 ± 0.0004 64, 65		
A _c (from Bhabba pol)	0.1498 ± 0.0049	0.1469 ± 0.0004 [64, 65]		
A_{μ}	0.142 ± 0.015	0.1469 ± 0.0004 [64, 65]		
A_{τ} (from SLD)	0.136 ± 0.015	0.1469 ± 0.0004 [64, 65]		
$A_{\tau}(\tau \text{ pol})$	0.1439 ± 0.0043	0.1469 ± 0.0004 [64, 65]		
A_c	0.670 ± 0.027	$0.66773 \pm 0.0002[64, 65]$		
A_b	0.923 ± 0.020	$0.92694 \pm 0.00006[64-66]$		
As	0.895 ± 0.091	$0.93563 \pm 0.00004[64, 65]$		
$A_{e,PB}$	0.0145 ± 0.0025	0.0162 ± 0.0001 [64, 65]		
$A_{\mu,FB}$	0.0169 ± 0.0013	0.0162 ± 0.0001 [64, 65]		
Ar.FB	0.0188 ± 0.0017	0.0162 ± 0.0001 [64, 65]		
ALLEB	0.0996 ± 0.0016	0.1021 ± 0.0003 [64–66]		
Ac,FB	0.0707 ± 0.0035	0.0736 ± 0.0003 [64, 65]		
A _{s.FB}	0.0976 ± 0.0114	0.10308 ± 0.0003 [64, 65]		
M_W (GeV) PDG World Ave	80.377 ± 0.012	$80.357 \pm 0.006[67, 68]$		
$\Gamma_W(\text{GeV})$	2.085 ± 0.042	2.0903 ± 0.0003 69		

https://doi.org/10.1007/JHEP05(2023)208

W and Z pole observables

- Fit to 24 data points—inputs are $\text{G}_{\mu \prime}$ M_{Z} , α

 $M_W, \Gamma_W, \Gamma_Z, \sigma_h, A_{l,FB}, A_{b,FB}, A_{c,FB}, A_b, A_c, A_l, R_l, R_b, R_c$

• Tree level expressions depend on (in Warsaw basis)

 $C_{ll}, C_{HWB}, C_{Hu}, C_{Hq}^{(3)}, C_{Hq}^{(1)}, C_{Hl}^{(3)}, C_{Hl}^{(1)}, C_{He}, C_{HD}, C_{Hd}$

• Tree level observables depend on 8 combinations of operators parameterized as:

 $M_W, \delta g_L^{Zu}, \delta g_L^{Zd}, \delta g_L^{Z\nu}, \delta g_L^{Ze}, \delta g_R^{Zu}, \delta g_R^{Zd}, \delta g_R^{Ze}$

 \Rightarrow 2 blind directions (resolved by other measurements)

Fits are straightforward

- Compute observables in SMEFT including all NLO QCD and EW contributions:
 - $O_i = O_{i,SM} + \delta O_{i,SMEFT}$
- Use most accurate SM theory
- Do χ^2 fit to data
- Operators contributing to EWPOs at tree level strongly restricted
- At NLO, many new operators contribute

Previous study assumed no flavor structure in 4-fermion operators

Coefficients constrained at tree level

Dawson, Giardino 2201.09887

Include Flavor Structure

- Consider CKM diagonal, which implies specific flavor structures
- In Warsaw basis:
 - 4-fermion operators

 $(\overline{f}_i \gamma^{\mu} f_j) (\overline{f}_k \gamma_{\mu} f_l)$

Not all combinations of flavor indices arise in EWPOs

• 2-fermion operators

$$(H^{\dagger}i\overrightarrow{D}_{\mu}H)(\overline{q}_{i}\gamma^{\mu}q_{j}) \to C_{X}[ij] = E_{X}\delta_{ij}$$

- Bosonic operators
- Most general case: NLO EWPO calculation involves 178 independent coefficients (6 from bosonic, 23 from 2-fermion, 149 from 4-fermion)

Enhancement of diagrams with internal top quarks

What about flavor assumptions?

- Global fits often done assuming flavor universality
- SM has U(3)⁵ global symmetry that is broken only by Yukawas
 - $(q_L)^T = (u_L, d_L), \ (l_L)^T = (\nu_L, e_L), \ u_R, \ d_R, \ e_R$
- 3rd generation is different
 - Do fits with U(2)⁵ global symmetry
- MFV assumption assumes top Yukawa is only source breaking U(3)⁵ symmetry (since we assume all other fermions are massless)
- Do fits assuming new physics only couples to 3rd generation
- Do fits assuming new physics doesn't couple to 3rd generation

Do flavor assumptions make significant differences to SMEFT fits?

Flavor assumptions reduce possibilities

[Operator	$U(3)^{5}$	MFV	$U(2)^{5}$	3 rd gen specific	3^{rd} gen phobic	3^{rd} gen phobic + $U(2)^5$	Flavorless
2-fermion 4-fermion with identical representations Remaining 4-fermion	Class A	7	12	16	9	14	7	9
	Class B	11	17	27	5	23	11	6
	Class C	11	21	44	11	44	11	11
	Total	29	50	87	25	81	29	26

Operators that contribute to EWPO at NLO

- NLO SMEFT EW fits done with coefficients evaluated at M_z
- Input parameter dependence? Results use G_F , M_Z , α
- After separating out dominant scheme independent contributions, residual scheme dependent contributions similar in commonly used schemes [Biekotter, Pecjak, Scott, Smith, <u>2305.03763</u>]

Flavor matters!

- Take-away: Neglecting flavor gives overly aggressive limits
- Strong correlations in flavor space
- NLO can have large effects

Note difference in NLO/LO shapes in MFV scenario

* Coefficients are related by flavor assumptions

Flavor matters

Flavorless assumption yields more stringent bounds than flavor scenarios

Can also limit these coefficients with fits to LHC dijets. More stringent limits for gens 1 and 2 from dijets (tree level process) [Bruggisser, Westhoff: <u>2212.02532</u>]

U(3)⁵ results more constrained than MFV

Flavor matters!

Consider 1 operator type at a time and marginalize over flavor structures not shown

How to tame the SMEFT expansion?

- Various terminations of the expansion possible
 - $A \sim A_{SM} + C_i^6 \frac{A_i^6}{\Lambda^2} + C_i^6 C_j^6 \frac{A_{ij}}{\Lambda^4} + C_i^8 \frac{A_i^8}{\Lambda^4}$
- Linear: (Not guaranteed to be positive definite!)

$$\sigma_{lin} = |A_{SM}|^2 + \frac{C_i^0}{\Lambda^2} A_{SM} A_i^6$$

Flavor results obtained in linear scenario

- Quadratic: (Why does it make sense to neglect dim-8 and double insertions?) $\sigma_{quad} = |A_{SM} + \frac{C_i^6}{\Lambda^2} A_i^6|^2$
- Dimension-8 + double insertions

$$\sigma_8 \sim |A_{SM} + \frac{C_i^6}{\Lambda^2} A_i^6|^2 + \frac{A_{SM}}{\Lambda^4} \left(C_i^6 C_j^6 A_{ij} + C_8 A^8 \right)$$

- Proliferation of operators is a problem for studies of the impact of dimension-8
- Ignoring flavor, but including CP violation: 84 dim-6 ops and 993 dim-8 ops

Bottom up approach: Double Insertions

• For tree level processes, it is straightforward to include as many insertions of SMEFT operators as you like (included in standard SMEFT codes)

$$\sigma_{quad'} = |A_{SM} + \frac{C_i^6}{\Lambda^2} A_i^6|^2 + \frac{A_{SM}}{\Lambda^4} \left(C_i^6 C_j^6 \right)$$

Small effects for well constrained coefficients

Baglio et al, 2003.07862

Double Insertions for loop processes

 $^*A_{Tree}$ and A_{SM} are same order in loop expansion in $M_t \rightarrow \infty$ limit

Double Insertions without C_{Hg}

- C_{Hg} not generated at tree level by new color singlet scalars or gauge bosons
- Simplest model to generate $\rm C_{Hg}$ is colored vector-like quark, but this arises at 1-loop
- Ignore C_{Hg}: remaining dim-6 operators contribute at one-loop and SMEFT amplitudes can be expanded around SM top loop result
- Compute amplitude consistently to $1/(16\pi^2\Lambda^4)$
- Compute SMEFT relations between Lagrangian parameters and physical parameters to O(1/ Λ^4)
- UV divergences absorbed by renormalization of dim-8 term:

 $L \sim \frac{C^8}{\Lambda^4} (H^{\dagger} H)^2 G^A_{\mu\nu} G^{\mu\nu,A}$

Double insertions

- Effects irrelevant when compared to global fit limits!
- Plot regions where μ_{ggH} is within 5% of measured value

Conclusions

- SMEFT fits have many uncertainities baked in
- Studies of flavor effects in EWPOs show that neglecting the flavor structure of 4-fermion operators leads to overly optimistic results
- Preliminary study of double insertions of dimension-6 operators to gluon fusion demonstrates that for the operators studied, these effects can be ignored

Thanks to the loopfest organizers!