ANALYTIC PROPERTIES OF THE S-MATRIX

Hofie Sigridar Hannesdottir

Institute for Advanced Study

Based on work and work in progress with Sebastian Mizera, Andrew McLeod, Giulio Salvatori, Matthew Schwartz, Cristian Vergu

MOTIVATION

How can we exploit the analyticity properties of Feynman integrals?

- Dispersion relations
- On-shell recursion relations
- Perturbative & non-perturbative bootstrap

- Generalized unitarity
- Differential equations
- Boostrap Feynman integrals

WHAT ARE THE CONSTRAINTS FOR FEYNMAN-INTEGRAL BOOTSTRAP?

(i) Location and types of singularities \rightarrow *letters*

(ii) Physical-sheet constraints $\rightarrow 1st \ entry \ conditions$

(iii) Asymptotic expansions \rightarrow last entry conditions

(iv) Discontinuities, Steinmann, extended Steinmann: \rightarrow adjacency of letters

SIMPLE EXAMPLE: MASSLESS 6D BOX

- Symmetric in s and t u = -s t- Potential singularities at $s, t, u \in \{0, \infty\}$
- Polylogarithmic, weight at most 3

$$-\lim_{s\to 0} I = \frac{\log^2(s)}{2t}$$

- u = 0 is not a singularity of I (but potentially of DiscI)
- Depends only on $x = \frac{s}{t}$ up to an overall mass scale

The function becomes
$$I = \frac{\log^2\left(\frac{s}{t}\right) + \pi^2}{2(s+t)}$$

SIMPLE EXAMPLE: MASSLESS 6D BOX

- Symmetric in s and t
- Symmetric in s and t u = -s t
 Potential singularities at s, t, u ∈ {0,∞}
- Polylogarithmic, weight at most 3

$$- \lim_{s \to 0} I = \frac{\log^2(s)}{2t}$$

- u = 0 is not a singularity of I (but potentially of DiscI)
- Depends only on $x = \frac{s}{t}$ up to an overall mass scale 1 - 2(s) - 2

The function becomes
$$I = \frac{\log(\frac{1}{t}) + \pi}{2(s+t)}$$

HOW TO ENCODE THE INFORMATION?

Also a multiple polylogarithm

Multiple polylogarithms F: functions s.t. $dF = \sum_i F^{s_i} d\log s_i$

Symbol: upgrade differential to a tensor product: $\mathcal{S}(F) = \sum_i \mathcal{S}(F^{s_i}) \otimes s_i$

Examples:

$$\operatorname{Li}_{1}(z) = -\log(1-z), \quad \operatorname{Li}_{m}(z) = \int_{0}^{z} \frac{\operatorname{Li}_{m-1}(t)}{t} dt$$

 $\mathcal{S}(\operatorname{Li}_{m}(z)) = -(1-z) \otimes z \otimes \cdots \otimes z$

[Goncharov, Spradlin, Vergu, Volovich 2010] [See talk by Tancredi]

ANALYTIC STRUCTURE: SYMBOL

Symbol makes sequential-discontinuity structure manifest

 $\operatorname{Li}_2(z) \to -(1-z) \otimes z$

[Goncharov, Spradlin, Vergu, Volovich 2010]

CONSTRAINTS ON THE SYMBOL

(i) Landau singularities restrict **letters** $a_i(p)$

(ii) From the **front**: Physical sheet restricts first entries $a_1(p)$

(iii) From the **back**: Asymptotic expansions restrict last entries $a_n(p)$, $a_{n-1}(p)$, ...

(iv) In the middle: Sequential discontinuities restrict adjacent entries

OUTLINE

1. Singularities of amplitudes

 $\begin{array}{l} 5. \quad Symptotic \ expansions \end{array}$

Two-Loop Hexa-Box Integrals for Non-Planar Five-Point One-Mass Processes

va,12.3 Harald Ita,4 Bon Page,3 Wadimir Tachernow

Theoretical Physics Department, CERN, Geneva, Switzerland Mani L. Bhaunik Institute for Theoretical Physics, Department of Physics and Astronomy, UCLA, Los Augeles, CA \$5095, USA Higgs Centre for Theoretical Planics, School of Planics and Astronomy, ⁴Physikalisches Institut, Albert-Leabeigs-Universitäl Freiburg, D-79103 Freiburg, Germony

2. Physical-sheet constraints

4. Sequential discontinuities

5. Bootstrapping

Feynman integrals

OUTLINE

1. Singularities of amplitudes

 $\begin{array}{l} 5. \\ S. \\ Asymptotic expansions \end{array}^{{}_{D_{5}}} = (s_{12}s_{15} - s_{12}s_{23} - s_{15}s_{45} + s_{34}s_{45} + s_{23}s_{34})^{2} - 4s_{23}s_{34}s_{45}(s_{34} - s_{12} - s_{15})} \end{array}$

Two-Loop Hexa-Box Integrals for Non-Planar Five-Point One-Mass Processes

Samuel Abreu, 12.3 Hatald Ita,4 Ben Page,3 Wadimir Tacharnow

¹Theoretical Popular Department, CRRN, Grann, Schulmeid Mark, J. Answah Mallach for Theoretical Physics, Dipartment of Physics and Advecserup, UGLA, Los Angeles, CA 50095, USA ¹Bigg: Centra for Theoretical Physics, Sobiel of Physics and Advecserup, The Currently of Educing, Loboltwy, Edu VD, Sachada, US ¹Papalation Justical, Albert-Labolty-Universitäl Probang, D-2018J Printing, Correstory.

2. Physical-sheet constraints

4. Sequential discontinuities

5. Bootstrapping

Feynman integrals

s -

FIND BRANCH POINTS: LANDAU EQUATIONS

$$\mathcal{A} \propto \int_0^\infty \mathrm{d}^E \alpha_e \int_{\Gamma} \mathrm{d}^{Ld} k \, N \exp\left[\sum \alpha_e (q_e^2 - m_e^2)\right]$$

Saddle-point analysis \rightarrow branch points when

$$\alpha_e(q_e^2 - m_e^2) = 0,$$
 and $\sum_{\text{loop}} \alpha_e q_e^\mu = 0$

Solutions give codimension ≥ 1 constraints on *external* kinematics (As opposed to UV/IR singularities, for any kinematics)

[Bjorken 1959; Landau 1959; Nakanishi 1959; Brown 2009, Mühlbauer 2020; Klausen 2021; Mizera, Telen 2021]

TYPES OF SINGULARITIES OF FEYNMAN INTEGRALS

For massless box integral, get Landau singularities at s = 0, t = 0

Infrared singularity Kinematic/Landau singularities

LANDAU EQUATIONS IN MOMENTUM SPACE

For bubble integral,

$$k^{2} = m_{1}^{2}$$
 $(p-k)^{2} = m_{2}^{2}$ $\alpha_{1}k^{\mu} + \alpha_{2}(k-p)^{\mu} = 0$

Solutions are codimension ≥ 1 constraints on *external* kinematics:

$$s = (m_1 + m_2)^2$$
 $s = (m_1 - m_2)^2$

LANDAU DIAGRAMS

Correspond to any subdiagrams of original diagram, where lines are on shell

Box singularity: Bubble singularities: $st(st - 4sm^{2} - 4tm^{2} + 16M^{2}m^{2} - 4M^{4}) = 0 \qquad s(s - 4m^{2}) = 0, \quad t(t - 4m^{2}) = 0$ Triangle singularities: $s(s - 4M^2m^2 + M^4) = 0, \quad t(t - 4M^2m^2 + M^4) = 0$

LANDAU DIAGRAMS

Correspond to any subdiagrams of original diagram, where lines are on shell

MASSLESS LANDAU EQUATIONS

For massless particles, use Newton polytope to approach the integration boundaries in Schwinger-parameter space Solve the Landau equations at every boundary $f(x,y) = x^2 + x + y^2$

[Klausen 2021; Fevola, Mizera, Telen]

Letters \leftrightarrow Landau singularities

Conjecture letters of the form
$$a_i = \frac{P + \sqrt{Q}}{P - \sqrt{Q}}$$

Logarithmic $(P^2 - Q)$ and **algebraic** (Q) branch points are solutions to the Landau equations

Galois symmetry: $\sqrt{\bullet} \rightarrow -\sqrt{\bullet}$

[Manteuffel, Tancredi 2017; Heller, Manteuffel, Schabinger 2019]

Letters \leftrightarrow Landau singularities

[See Abreu, Ita, Page, Tschernow 2021]

Adding a mass gives a **new letter** at the Landau-equation solution

OUTLINE

1. Singularities of amplitudes

 $\begin{array}{l} 5. \\ \begin{array}{c} \Sigma_5 = (s_{12}s_{15} - s_{12}s_{23} - s_{15}s_{45} + s_{44}s_{45} + s_{23}s_{44})^2 - 4s_{24}s_{44}s_{45}(s_{34} - s_{12} - s_{15}) \\ \end{array} \end{array}$

Two-Loop Hexa-Box Integrals for Non-Planar Five-Point One-Mass Processes

reu,^{1,2,2} Harald Ita,⁴ Ben Page,² Wladimir Tuchernow

Theoretical Physics Department, CERN, Geneva, Solitoriland Mani L. Bhaunik Institute for Theoretical Physics, Department of Physics and Astronomy, ECL4, Las Anacles, CA \$1995, USA Higgs Centre for Theoretical Planics, School of Planics and Astronomy, ⁴Physikalisches Institut, Albert-Leabeigs-Universitäl Freiburg, D-79103 Freiburg, Germony

2. Physical-sheet constraints

4. Sequential discontinuities

5. Bootstrapping

Feynman integrals

LANDAU SINGULARITIES AND PHYSICAL SHEET

[Figure from HSH, Mizera '22]

$$\mathcal{A} \propto \int_0^\infty \mathrm{d}^E \alpha_e \int_{\Gamma} \mathrm{d}^{Ld} k \, N \exp\left[\sum \alpha_e (q_e^2 - m_e^2)\right]$$

Singularities on **physical sheet** special: Only for solutions with $\alpha_e \geq 0$

LANDAU SINGULARITIES AND PHYSICAL SHEET

First entry condition: α -positive solutions only ones that can appear for Feynman integrals

OUTLINE

1. Singularities of amplitudes

Two-Loop Hexa-Box Integrals for Non-Planar Five-Point One-Mass Processes

Samuel Abreu,12.3 Harald Ita,4 Bon Page,1 Wadimir Tachomow

 $p_1 \longrightarrow p_4$ $p_4 \xrightarrow{1 \text{-limits } R_{\text{point}} \text{ prior limits } R_{\text{point}} \text{ limits } R_{\text{point}} R_{\text{point}} R_{\text{point}} R_{\text{point}} R_{\text{point}} R_{\text{point}} R_{\text{point}} R_{\text{point}} R_{\text{point} R_{\text{point}} R_{\text{point} R_$

2. Physical sheet constraints

4. Sequential-discontinuities

5. Bootstrapping

Feynman integrals

s -

EXPANSION OF SYMBOL ENTRIES

We can expand polylogarithms around branch points ${\rm Li}_{q+1}(1-\varphi)\to \varphi^q\log\varphi$

More generally, for a symbol term of the form

$$\mathcal{S}(\mathcal{A}) \supset a_1 \otimes \cdots \otimes a_k \otimes \varphi \otimes b_1 \otimes \cdots \otimes b_q,$$

the leading non-analytic behavior is

 $\mathcal{A} \sim \varphi^q \log \varphi$

ASYMPTOTIC EXPANSIONS

For sufficiently generic masses, we can do the asymptotic expansion:

$$\mathcal{A} \sim \begin{cases} \varphi^{\gamma} \log \varphi & \text{for } \gamma \in \mathbb{Z}_{+} \cup \{0\} \end{cases} \xrightarrow[]{\text{Assume isolated Landau curves}} \\ \varphi^{\gamma} & \text{otherwise} \end{cases}$$

with branch point at
$$\varphi = 0$$
 (e.g. $\varphi = s - 4m^2$)

$$\gamma = \frac{Ld - E - 1}{2}$$

L: number of loops d: dimensions E: number of edges in Landau diagram

COROLLARY ON TRANSCENDENTAL WEIGHT

For polylogarithmic Feynman integrals with sufficiently generic masses,

$$\mathcal{A} \sim \varphi^{\gamma} \log \varphi, \qquad \text{with } \gamma = \frac{Ld - E - 1}{2},$$

$$\mathcal{S}(\mathcal{A}) \supset a_1 \otimes \cdots \otimes a_k \otimes \varphi_0 \otimes b_1 \otimes \cdots \otimes b_q$$

Bound on transcendental weight: $\left\lfloor \frac{Ld}{2} \right\rfloor$

[HSH, McLeod, Schwartz, Vergu 2021]

SADDLE-POINT EXPANSION

Example: expansion around **two-particle threshold** for polygons with sufficiently generic masses:

ASYMPTOTIC EXPANSIONS

More generally: - solve the Landau equations for kinematics and α

- use method of regions or direct expansions

around the singular surfaces

Landau singularity

[work in progress with G. Salvatori]

 $\blacktriangleright \alpha_i$

[See also Binoth, Heinrich 2000, Jantzen, Smirnov, Smirnov 2011, Heinrich, Jahn, Jones, Kerner, Langer, Magerya, Poldaru, Schlenk, Villa 2021]

GENERAL STRATEGY FOR MASSLESS INTEGRALS

Study behavior of symbol near branch points Study behavior of Feynman integral near branch points

 $\mathcal{A} \xrightarrow[\varphi \to 0]{} \varphi^{\gamma} \log^{l} \varphi$

 $\mathcal{S}(\mathcal{A}) \supset a_1 \otimes \cdots \otimes a_k \otimes \varphi_0 \otimes \cdots \otimes \varphi_0 \otimes b_1 \otimes \cdots \otimes b_q$ j instances $\xrightarrow[\varphi \to 0]{} \varphi^q \log^j \varphi$ Constrain symbol

OUTLINE

1. Singularities of amplitudes

 $\begin{array}{l} 5. \\ \begin{array}{c} \Sigma_5 = (s_{12}s_{15} - s_{12}s_{23} - s_{15}s_{45} + s_{44}s_{45} + s_{23}s_{44})^2 - 4s_{24}s_{44}s_{45}(s_{34} - s_{12} - s_{15}) \\ \end{array} \end{array}$

Two-Loop Hexa-Box Integrals for Non-Planar Five-Point One-Mass Processes

va,12.3 Harald Ita,4 Bon Page,3 Wadimir Tachernow

Theoretical Physics Department, CERN, Geneva, Switzerland Mani L. Bhaunik Institute for Theoretical Physics, Department of Physics and Astronomy, UCLA, Los Augeles, CA \$5095, USA Higgs Centre for Theoretical Planics, School of Planics and Astronomy, ⁴Physikalisches Institut, Albert-Leabeigs-Universitäl Freiburg, D-79103 Freiburg, Germony

2. Physical-sheet constraints

4. Sequential discontinuities

5. Bootstrapping

Feynman integrals

SIMPLE EXAMPLE: MASSLESS TRIANGLE

 $\text{Disc}_{z=1}\text{Li}_2(z) = 2\pi i \int_1^z \frac{1}{x} dx = 2\pi i \ln(z)$

Logarithm $\ln(z) = \int_1^z \frac{1}{x} dx$ has a branch cut for z < 0: $\operatorname{Disc}_{z=0} \ln(z) = 2\pi i$

KEY POINT ON SEQUENTIAL DISCONTINUITIES

Whenever Landau singularities do not intersect in *integration space*, the sequential discontinuity is zero

Sequential discontinuities restrict adjacent symbol letters

[Fotiadi, Froissart, Lascoux and Pham 1965; HSH, McLeod, Schwartz, Vergu 2022; Berghoff, Panzer 2022]

SPECIAL CASE: STEINMANN RELATIONS

No sequential discontinuities in partially overlapping channels in the physical region

[Steinmann 1960]

Here: \mathcal{A} cannot have a term of the form $\log(s - 4m^2) \log(t - 4m^2)$

Important constraint in $\mathcal{N} = 4$ bootstrap program

[Caron-Huot, Dixon, McLeod, von Hippel 2016]

OUTLINE

1. Singularities of amplitudes

 $\begin{array}{l} 5. \\ \begin{array}{c} \Sigma_5 = (s_{12}s_{15} - s_{12}s_{23} - s_{15}s_{45} + s_{44}s_{45} + s_{23}s_{44})^2 - 4s_{24}s_{44}s_{45}(s_{34} - s_{12} - s_{15}) \\ \end{array} \end{array}$

Two-Loop Hexa-Box Integrals for Non-Planar Five-Point One-Mass Processes

Samuel Abreu,12.3 Harald Ita,4 Bon Page,1 Wadimir Tachomow

¹Deverties Physics Department, CERN, Gronn, Schuttweid ¹Marc, J. Ansenh Matthalis, für Thermital Hysics, Department of Physics and Astronomy, ICGL for Angeles, CA 5000; ICM ²Biggs Centre for Theretical Physics, School of Physics and Astronomy, The Grownow of School, School and Physics and Astronomy, The Grownow of School, School and Physics Research, UK ¹Physical School, Joshich, Albert Landon-Universitäl Probany, D. 2019 (Iroling, Correson y)

2. Physical sheet constraints

4. Sequential-discontinuities

WHAT ARE THE CONSTRAINTS FOR FEYNMAN-INTEGRAL BOOTSTRAP?

(i) Location and types of singularities \rightarrow *letters*

(ii) Physical-sheet constraints $\rightarrow 1st \ entry \ conditions$

(iii) Asymptotic expansions \rightarrow last entry conditions

(iv) Discontinuities, Steinmann, extended Steinmann: \rightarrow adjacency of letters

[See Caron-Huot, Chicherin, Dixon, Drummond, Dulat, Foster, Gürdoğan, Henn, von Hippel, Mitev, McLeod, Liu, Papathanasiou, Wilhelm, ...]

BOOTSTRAPPING THE DOUBLE BOX W/MASSIVE RUNG [Caron-Huot, Henn 2014]

١,

1

Letters formed using Landau singularities at

$$s = 0$$
, $s = 4m^2$, $t = 0$, $t = 4m^2$, $m^2 = 0$,
 $s + t = 0$, $st + 4sm^2 + 4tm^2 = 0$
 $L_1 = u$, $L_2 = v$, $L_3 = 1 + u$, $L_4 = 1 + v$, $L_5 = u + v$,
 $L_6 = \frac{\beta_u - 1}{\beta_u + 1}$, $L_7 = \frac{\beta_v - 1}{\beta_v + 1}$, $L_8 = \frac{\beta_{uv} - 1}{\beta_{uv} + 1}$, $L_9 = \frac{\beta_{uv} - \beta_u}{\beta_{uv} + \beta_u}$, $L_{10} = \frac{\beta_{uv} - \beta_v}{\beta_{uv} + \beta_v}$,
 $u = -\frac{4m^2}{s}$, $v = -\frac{4m^2}{t}$, $\beta_u = \sqrt{1 + u}$, $\beta_v = \sqrt{1 + v}$, $\beta_{uv} = \sqrt{1 + u + v}$

ANSATZ

$$\begin{split} & L_1 = u, \qquad L_2 = v, \qquad L_3 = 1 + u, \qquad L_4 = 1 + v, \qquad L_5 = u + v, \\ & L_6 = \frac{\beta_u - 1}{\beta_u + 1}, \qquad L_7 = \frac{\beta_v - 1}{\beta_v + 1}, \qquad L_8 = \frac{\beta_{uv} - 1}{\beta_{uv} + 1}, \qquad L_9 = \frac{\beta_{uv} - \beta_u}{\beta_{uv} + \beta_u}, \qquad L_{10} = \frac{\beta_{uv} - \beta_v}{\beta_{uv} + \beta_v}, \end{split}$$

$$u = -\frac{4m^2}{s}, \quad v = -\frac{4m^2}{t}, \qquad \beta_u = \sqrt{1+u}, \quad \beta_v = \sqrt{1+v}, \quad \beta_{uv} = \sqrt{1+u+v}$$

BOOTSTRAPPING THE DOUBLE BOX

integrable weight four symbols	2597
Galois symmetry	
vanishing $s \to 0$ limit	284
only L1, L3, L6, L9, L10 in second entry after L6 $$	230
only L2, L4, L7, L9, L10 in the second entry after L7 $$	213
only L1, L3, L6, L9, L10 in second entry after L3	182
only L2, L4, L7, L9, L10 in the second entry after L4 $$	
without L2 or L3 in last entry	
without L7 or L10 in last entry	
without L7 or L10 in second-to-last entry	
no L1, L2, L5, L8, or L9 in the first entry	

BOOTSTRAPPING THE DOUBLE BOX

	integrable weight four symbols	2597
$ \sqrt{\bullet} \rightarrow -\sqrt{\bullet} $ $ \alpha \text{-positive} $ $ constraints $	Galois symmetry	306
	vanishing $s \to 0$ limit	284
	only L1, L3, L6, L9, L10 in second entry after L6 $$	230
Steinmann constraints	only L2, L4, L7, L9, L10 in the second entry after L7 $$	213
	only L1, L3, L6, L9, L10 in second entry after L3 $$	182
	only L2, L4, L7, L9, L10 in the second entry after L4 $$	160
Expansion constraints	without L2 or L3 in last entry	102
	without L7 or L10 in last entry	83
	without L7 or L10 in second-to-last entry	73
α -positive	no L1, L2, L5, L8, or L9 in the first entry	1

BOOTSTRAPPING THE DOUBLE BOX

Takeaway point: We can bootstrap Feynman integrals, but

What is the simplest set of constraints needed?

Takeaway point: We can bootstrap Feynman integrals, but

What is the simplest set of constraints needed?

(don't need expansions around all singularities, adjacency constraints for every letter, ...)

CONCLUSIONS & OUTLOOK

We can use **constraints on analytic structure** to determine polylogarithmic Feynman integrals (Location and types of singularities, Physical-sheet constraints, Asymptotic expansions, Sequential Discontinuities/Steinmann)

- How to extend to dimensional regularization?
 - How to implement for **elliptic integrals**?
 - How to incorporate numerators?

THANKS!