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Two examples of sidestepping IR regularization through local cancellations in momentum
space

e Initial state: NNLO process-dependence in complex EW annihilation amplitudes.

e Final state: Local finiteness of IR safe weighted cross sections in leptonic annihilation to
hadrons.

Start with the initial state ...



Initial state: NNLO process-dependence in complex EW annihilation amplitudes

I'll assume, on good authority, that NNLO QCD amplitudes for EW annihilation processes
to 2, 3 or more EW bosons with fixed momenta, g7 = M? > Agcp:

a(p1)a(p2) = WH(q1) W (q2) Z(q3), g9 — H(q:) H(q2) H(qs) - ..

e are important, but complicated,

e and it might be nice to be able to compute them numerically efficiently,

e which would require momentum space integrals that are infrared finite locally.
(And UV convergent.)

e We'll work in Feynman gauge.



e I'll describe an approach, based on the IR factorization of these amplitudes:

Muasn(P1 +P2—=aq1+aq2+...,€) = J(p1,€) Iy (P2, €) Hugsn(P1,P2;91,92--+)

(We’ve absorbed the “soft function” into a definition of incoming jet subdiagrams J¢)

e with all dependence of the final state in

Muzsn(pr+pP2—>q1+q2+...,€)
Je(p1, €) J3(p2, €)

e All true infrared singularities are absorbed into the jet functions.

Ha&—)n(plap2; qi1,4q2 ... ) -

e The “hard” function H is complex and complicated, and includes dynamics of inter-
mediate states at momentum configurations that are not “soft” or “collinear”’. These
“threshold” momentum configurations are amenable to numerical analysis on deformed
momentum contours or by other means (see talk of Dario Kemanschah, shortly).

e For the process I'm talking about, this practical application is still in development.



e The essential point is that the singlet QCD form factor enjoys the same factorization
with the same jet subdiagrams (we’ll absorb H; into the Js):

Fa&—)l(pl _|‘ D2 — 1) — Ja(pla 6) Ja(p27 6) Had—)l(pla p2)

e The idea is to use this knowledge to simplify a procedure for IR subtraction

Mugsn(P1+DP2—>q1+q+ ...,€)
Foa1(p1 +p2 — 1)

Huin(P1,02;91,q2--.) =

e Just expand, each L = (a;/7)"L™), and then solve for H™

H.i n(P1,P2;q15q2- -+ ) Foas1(P1 +p2 = 1) = Mug1(P1 +P2 = q1+q2+...,€)

® or
HO — pO _— p@) g0
H®?® = p® — p) gt _ p@) g0



e This construction for the hard-scattering is surely true for the full functions, but we want
a result for the integrands, L = M, F, H.:

dPk dPk  dPl
Loaosn(P1,02:q1,q2...) = L£O / Lq(k L3P (k,1
—n(P1,P2; 91,92+ - ) + (2m)D 1(k) + (2m)D (27m)D (k, 1) +

e To be able to “give ‘H to a computer” what we want is to show is:

MO — FQ) 9400
HZ = MO - FO Q) _ F(2) 9400
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[
~

e To get these local relations at two loops it will be necessary to modify the integrand by
adding some IR “counterterms”.



o Let’s first loop look at what happens at one loop: H® = MO — FO 0O,

e IR singularities arise when £ — 0 and in the k o p; > collinear limits:
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e When k gets collinear to p;, singular behavior comes from

u(p1)y (P — F)

—n“” (p1—k)-p2 1 y
—u(p — k
ps - k k2 + ie

e Then in the collinear limit the gluon k is scalar-polarized and the “Feynman identity”
applies, producing lots of pairwise cancellations,
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e And all k-dependence separates from the EW bosons ...
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e This is an algebraic relation, which is automatic when we combine the diagrams of the

original amplitude. (The double line is ~ ps,/ps - k)

e The only k-dependent factor on the right equals the one-loop form factor in the k
— FM ) is confirmed locally. The same

collinear to p; region, and H() = MO

is true for the “soft” k& — 0 and collinear-p, limits.

e The single term F() (%) serves as a local IR subtraction for the full set of (5 for a VVV

final state) diagrams of the original amplitude.

e The same holds for any EW final state of heavy bosons with this initial state, like

qg — WTW-WTW ™, or more.



e Could something like this work for two loops? Well, with a little help ...

e Actually, when both gluons are collinear to either of the incoming quarks, or when one
or both are soft, everything works just as at one loop. For example:

(A T’ﬁib
A i in

is algebraic and hence completely local.

e A reflection of gauge invariance through the Ward, Taylor-Slavnov (BRST) identities.



e Things get a little complicated when we try to see how a “single-collinear” gluon sepa-
rates from the hard subdiagram at the integrand level,

e Compared to one loop, we encounter two qualitative complications, associated with an
extra loop, either in the jet or hard part:

1. “loop polarizations” when J*" is a one-loop vertex or self energy.
2. “shift mismatches”, when H,, has the extra loop, and the Ward identity requires a
shift in loop momentum.

e These complications are addressed by bespoke counterterms that integrate to zero, but
reorganize the integrand. I’ll give basic examples that illustrate the detailed approach
for our treatment of this region.



1. Collinear-singular loop polarizations occur in
j”(pla ka l) — t7l(p17 k)l# ‘|‘ jk:(pla l)k“ ‘|‘ Jpl(k7 l)p{f .

Loop momentum [# (vertex or self-energy) may be in any direction, and gives a nonfac-
torizable collinear singularity.

e The [* part goes away after integration,
J“(ph ka l) — Jk(ph l)kﬂ + Jpl(ka l)plf
so in the end it’s all factorizable. But how to make this happen locally?

e Strategy is to identify an IR counterterm at the integrand level that integrates to zero:

dP1
/(ZW)D 0T*(p1; ks1) = 0,

yet when added to J*# eliminates the unphysical loop polarizations:
ju(pla k? l) + 65“(1717 k? l) = jk(pla ka l)kﬂ + jpl(pla ka l)pﬁll + IR finite.
e And for a “quark jet” here it is:

2(1 —¢)
(p1+k+1)?

2° + pi + K 2(L4p1)* + k* 1t

OTH(Ek. ) =
Tk D) 12 (I 4 p1)? 2p1-m

where we can take 17; = p;. We just add this to the integrand before integrating.
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2. Shift mismatches and their counterterms.

e For simplicity, illustrate with the form factor itself.
The coiled-dashed line with an arrow represents

(pr—k)-p2 1
po - k k2 + 1€

and in the region k" collinear to p;, £ hard, the integrand behaves as

v
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B

e Again, the Ward identities are at the basis of factorization, but can we make it local?
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e What becomes of the “scalar-polarized” gluon — with the arrow? In QCD the Feynman
identity analog involves ghosts:
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K »
\\ //
ety Sl AN,
1L 1 I
! 1
| B .
L |

e Perhaps surprisingly, the ghost contributions factorize algebraically at two loops (in the
form factor and general amplitudes). It’s a little complicated, but all non-factoring

singular behavior cancells “automatically” when diagrams are added. No counterterms
required. (CA & GS, 2023)

e Let’s see what happens to the other two terms, the gluon analog of the Feynman identity
in QED.
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e Here's what we get for the rest, an “almost factorized” form, but needs a shift of loop
momentum. This is a reflection of the local nature of gauge invariance (QCD or QED).
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e A counterterm that integrates to zero, but cancels the singularities of the unwanted
terms locally — in both the k collinear to p; and p> regions
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e The same “exotic-color planar” counterterms apply to arbitrary EW state.
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Summary for “initial states in EW production”:

e There are more counterterms (including UV), but the ones we’ve seen illustrate the
method.

e With a limited number of counterterms (roughly one per diagram) we can derive a hard
function H? that is free of IR divergences at NNLO, and can be computed numerically
(the latter in progresss).

e In C. Anastasiou & GS (2023) this is demonstrated for quark-pair initiated processes.

e See talk by Julia Karlen at 2023 RadCor for glue-glue to multiple Higgs at two loops.

e Applications with color in the final state remain to be investigated,

e as well as the possibilities of N3LO extensions. These may require further insight.
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Final state: explicit IR finiteness in for leptonic annihilation to hadrons

e In this case, a simple EW initial state to a complex (but IR safe) set of QCD final states.

e We'll find cancellations without regularization in the final state.

e The total cross section is the imaginary part of a current-current correlator by the optical
theorem (unitarity):

>(Q)
nQ) = / d'e e=0% (0| T[T (0)T (2)]]0)

(Neglecting indices on currents J ... oy is lowest-order cross section.)

e Weighted cross sections:

S[f,Q] = ) F(N)(2m)'6*(Q — Pw) (0| T(0) IN)|*, ,

e For infrared safety (perturbative finiteness) we require:
fo(@us e Qe v s G515 8055 Gjgas - - - Qke) =
.fC’/j((Tla R (1 + S)q:w v o q'j—la ij—l—la oo (ch) ’
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e It’s usually a good thing to reduce the number of integrals.

e The advantages of doing energy integrals has been emphasized in the development of
“Loop-tree duality”
— S. Catani, T. Gleisberg, F. Krauss, G. Rodrigo and J.C. Winter, JHEP 09, 065 (2008)

[arXiv:0804.3170] ...
— Z. Capatti, V. Hirschi, D. Kermanschah, A. Pelloni and B. Ruijl, [arXiv:2009.05509]

and JHEP 04, 104 (2021) [arXiv:2010.01068 [hep-ph]].

e Here, let’s see of what we can say in “old-fashioned” time-ordered perturbation theory
(TOPT).
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e TOPT — schematically (but with all the detail we need) for the correlator:

Ne
1I(Q) = Z /dLG H 2o Z N[TG] WT@(QaLG)a
GeGr i=1 L v
Va—1 i
7"-7'(;(629 LG) — H

QXs — Y i, wj + i€’

s=1

where

— dL¢ is measure of spatial loop momenta
— the wjs are on-shell energies of lines «/ﬁ? + m?, with pjs linear in loop momenta

— 7 labels a time order of the N vertices — need all Ng! of them.
— N[1¢g] is a polynomial numerator factor.

— The A;s: Label ¢ as (J) vertex where momentum ¢ flows in, o, where it flows out:
As = 1, o>s8>1,
As = —1, 1>s8>0

= 0, otherwise.

17



e In a general cross section, states C' are weighted by a function f¢,

Ng

1
o) = LXY [ dte ¥ Ned [T 5, o010,

el 1=1 v

where the “energy denominators” occur as
Va—1 ’I,
o\ Jlf] = — fo(di - - - i)
s_]g—l—l Q o Zje.s Wj — 1€ ¢
Cc—1 i
X (2m)6 | Q — > w;

e For fc = 1 (total cross section), repeated use of

omd(z) = — ’

T+ 1€ x — 1€

gives the optical theorem: o(Q) = oy ImII(Q).

18

(1)



e For a general weighted cross section, we get (G.S., A. Venkata)

n+1 n+1 i
Z U(C) — (H E. — Z . fn—l—l
s=1 "5

jes Wi + 7€

n n+1 . C .
¢ )
+ > 1l —(fc — feu) [] |
&1 =G Bs = 2jes Wi — 1€ i1 Bs — 2 jeswi + i€
o —J1 ] -
s=1 Es — Zjes Wj; — 1€

e First and final terms are free of pinches in momentum contours.

e For remaining terms, cancellations at all “pinch surfaces” from

1. vanishing of fc — fc.1 term by term when states C' and C' + 1 are pinched

2. by summing over C' when intermediate states are off-shell in “renormalization parts”

e When the terms are combined before integration, their sum becomes integrable, and
amenable to numerical evaluation.
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e Important aside: As a practical matter, in its standard form, TOPT suffers from denom-
inators with “pseudo-physical” states.

e An example shows how they occur, and how they cancel:
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e Unphysical singularity at Q = 2?21 w;, but . ..

1 1 :
0 — i] = 0
—Ww) — Wy — w3 + 1€ +Q—w4—w5—|-i€] (Q ;w>

e This cancellation is completely general. See W.J. Torres Bobadilla, JHEP 04, 183 (2021)
[arXiv:2102.05048], Z. Capatti, Phys. Rev. D107 (2023) 5, L051902 (2211.09653) and
Venkata & GS, to appear.
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Summary: final state cancellations

e In TOPT, unitarity is realized locally in spatial momenta. Sums over final states are
integrals over loop momenta.

e To eliminate unphysical TOPT singularities, reformulate simple “Time-ordered” (TOPT)
to “Partial time-ordered” (PTOPT) using poset formalism (A. Venkata and GS, to
appear). Up to orders of integrals, equivalent to results in Z. Capatti, Phys. Rev. D107.

e Also closely related to “flow ordering” introduced in M. Borinsky, Z. Capatti, E. Laenen
and A. Salas-Bernardez, JHEP 01, 172 (2023) [arXiv:2210.05532 [hep-th]].
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In conclusion

e Local initial-state IR factorization & final state cancellations have the potential to add
another tool for improving precision in Standard Model calculations, complementing
analytic methodes.

e Combining final state cancellations (unitarity) and initial-state IR factorization (causality)
may open additional doors.
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