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The LHC: A messy environment
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Anatomy of an LHC collision

courtesy M. van Beekveld
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DESY Theory Seminar, June 2022Gavin P. Salam

selected collider-QCD accuracy milestones
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(many of today’s widely-used showers only LL@leading-colour)
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A Parton Shower in a nutshell
In one line: A Parton Shower is an iterative stochastic algorithm that takes n particles and maps
them to to n+1 particles.

In order to do so one needs:

• A kinematic ordering variable, v, so that every phase space point is only reached once (and a
cut-off vcut ∼ΛQCD)

→ Standard dipole showers take v ∼ kT but many sensible choices exists

• A recoil map {pn}→ {pn+1} to ensure momentum conservation and on-shellness of final-state
particles

→ Typically either local (only splitting dipole takes recoil) or global (all partons take recoil)

• An evolution equation governing the probability for a splitting ĩj̃ → ijk to take place

dPĩj̃→ijk ∼
αS

π
d lnvdη̄

dϕ
2π

[
g(η̄)ziPik(zi)+g(−η̄)zjPjk(zj)

]
(1)

! Governed by LO collinear splitting kernels.
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A Parton Shower in a nutshell

courtesy G. Salam
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Accuracy of Parton Showers
How do you even define the accuracy of an algorithm as described above?
When applying perturbation theory to total cross sections, it is easy to talk
about the accuracy (LO, NLO, NNLO, ...)

σ=
∑

n
cnα

n
S (2)

Similarly for logarithmically enhanced observables we may talk about their
logarithmical accuracy (LL, NLL, NNLL, ...)

σ(O< eL) = σtot exp
[

1
αS

g1(αSL)+g2(αSL)+αSg3(αSL)+ · · ·
]

(3)

when αS << 1, αSL ∼−1.
But both of these equations are observable dependent.
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Accuracy of Parton Showers
At colliders we can ask arbitrary questions about an event. The same is true
for parton showers ( + hadronisation), e.g.

• Number (multiplicity) of particles in event (or jet)
• Energy in detector slice
• Angular distributions inside jets
• Even if we don’t ask, machine learning might...

We therefore need to establish how to determine the logarithmic accuracy
with which a parton shower can make predictions.
To do so we need to introduce the Lund Plane (B. Andersson et al (1989) & F.
Dreyer et al. [1807.04758])
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The Lund Plane

[1807.04758]

• Cluster the event with the Cam-
bridge/Aachen algorithm, producing an
angular ordered clustering sequence.

• Decluster the last clustering and record the
transverse momentum and the opening angle
of the declustering (plus other kinematics).

• Iterate along the hardest branch after each
declustering to produce the primary Lund
Plane.

• Following the softer branch produces the sec-
ondary, tertiary, etc Lund Plane.

• One can impose cuts easily on the decluster-
ings (e.g. that they satisfy z > zcut)
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Logarithms in the Lund Plane

[1807.04758]

• The emission probability in the Lund Plane is
then

dρ ∼αS d lnkT d lnθ

• Hence emissions that are well-separated in
both directions are associated with double log-
arithms of the form αn

S L2n

• Emissions separated along one direction are
associated with single logarithms of the form
αn

S Ln

• Emissions that are close in the Lund Plane are
associated with a factor αn

S

• We are now ready to state the PanScales NLL
criteria for Parton Showers
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All-orders validation of the PanScales showers

(a) (b)

Figure 5: Ratio of the cumulative distribution for the colour-singlet transverse momentum

to the NLL analytic result, in the ↵s ! 0 limit, for (a) qq̄ ! Z and (b) gg ! H events. The

results are shown for Dipole-kt with local (red dashed line) and global recoil (green dotted

line), PanGlobal with �PS = 0 (blue solid line) and �PS = 0.5 (blue circles), and PanLocal

with �PS = 0.5, both for the antenna (black triangles) and dipole (black squares) variants.

For clarity, the PanLocal antenna (dipole) points have been slightly shifted towards the

left (right), with respect to the values actually used, which coincide with the PanGlobal

�ps = 0.5 ones.

It is useful to recall the structure of the standard b-space result for the resummation

of the transverse-momentum distribution [15, 59, 60],

d⌃

dp2
tX

=

Z 1

0

db

2
bJ0(bptX)⌃V (b0/b) , (5.1)

with b0 = 2e��E , ⌃V the b-space resummed distribution, and J0 the Bessel function of

the first kind and order 0. Observe that for ptX ! 0 the result tends to a non-zero

constant, whose value can be straightforwardly obtained by replacing J0(bptX) ! 1 in

Eq. (5.1). Fig. 6a shows the small-ptX behaviour of the distribution for Z production, in

four showers. Three of them, PanGlobal, PanLocal and Dipole-kt(global), indeed tend to

a non-zero constant. In contrast the variant of Dipole-kt with local recoil for IF dipoles

tends to zero in this limit, i.e. it has the wrong scaling behaviour. This is because, after

the first emission, the event consists of two IF dipoles, and from that point onwards, no

further transverse recoil is taken by the Z boson. Therefore the only mechanism for ptZ to

be small is Sudakov suppression of the first emission, which is a much stronger suppression

than the vector cancellation.13

13For processes such as gg ! H with two II dipoles, one does recover the correct power-dependence of

the scaling (i.e. the plateau), because the Higgs recoil induced by an emission o↵ one II dipole can have a

vector cancellation with recoil induced by an emission o↵ the other II dipole. However the normalisation

of the plateau is still expected to be wrong, as is the whole shape of the distribution for ↵sL ⇠ 1.
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Figure 4: Summary of deviations from NLL for several global observables for the process

qq̄ ! Z and � = �0.5. Red squares denote a clear NLL failure; amber triangles indicate a

NLL fixed-order failure that is masked at all orders; green circles are used when the shower

passed both the numerical NLL tests and the fixed-order recoil tests. The ↵s ! 0 result is

obtained by quadratically extrapolating the shower results at ↵s = 0.00625, 0.003125 and

0.0015625, and includes a systematic error that is evaluated as the change in the ↵s ! 0

extrapolation when one uses ↵s = 0.0125 instead of ↵s = 0.003125. The showers include a

dynamic cuto↵ � = 18, which functions as discussed in our earlier e+e� tests [8, 11].

and the PanScales showers, so as to concentrate on the impact of recoil. In contrast,

standard dipole showers choose the colour factor according to whether the emitting dipole

end that is closer (in the dipole centre-of-mass frame) is a gluon (CA/2) or a quark (CF ).

This results in incorrect terms already at LL, in analogy with the final-state discussion in

Ref. [10]. The numerical impact will be the same as in the all-order final-state study [8].

5 The transverse momentum of the colour-singlet system

The next observable that we discuss is the cumulative distribution for the transverse mo-

mentum of a massive colour singlet (here, Z or H boson) produced in proton collisions. It

has wide relevance for LHC phenomenology, and for example its understanding is critical

for W mass extractions [40–42].10 It is also widely used in matching showers and fixed-order

calculations [44, 54–56].

10One should keep in mind, that in many applications parton showers are reweighted so that the colour-

singlet transverse momentum distribution agrees with high-order matched resummed and fixed order predic-

tions, such as [43–53]. Still, even if such a procedure results in a correct colour-singlet transverse momentum

distribution for the reweighted shower, it will not in general correctly account for correlations between the

colour singlet and the full pattern of hadronic energy deposition. We leave the detailed study of such

questions to future, more phenomenological work.
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Figure 8: Extrapolation of Nshower�NNDL
NNDL�NDL

to ↵s = 0 at a fixed value of ⇠ = ↵sL
2 for all

showers, two di↵erent energies (
p

s = 5mX , left, and
p

s = 1000mX , right), and the two

processes under study, i.e. pp ! Z and pp ! H.

⌃ rather than ln⌃. The analogue of Eq. (4.1) for such non-exponentiating observables is

⌃(L) = h1(↵sL
2) +

p
↵sh2(↵sL

2) + . . . , (7.1)

where the NkDL function ↵
k/2
s hk+1(↵sL

2) resums terms of ↵n
s L2n�k. That is, the function

h1 captures the double logarithmic (DL) enhancement, h2 the next-to-double-logarithmic

(NDL) contribution and so on. In the multiplicity case, the logarithm that needs to be

resummed is L = ln(kt,cut/mX), where, up to NDL accuracy, kt,cut may be either a shower

transverse momentum cuto↵ (for particle multiplicities) or a jet algorithm transverse mo-

mentum cut for a suitably defined subjet multiplicity.

Recently, the subjet multiplicity in colour singlet production has been computed up

to NDL accuracy [69] (earlier calculations gave similar structures [70–72]). In a shower

context, up to NDL, it applies equally well to the number of particles in the event (Nshower)

when one sets the strong coupling to zero below a given value of kt,cut.

To test the NDL terms in Eq. (7.1), we compute the following ratio

Nshower � NNDL

NNDL � NDL
, (7.2)

which vanishes in the ↵s ! 0 limit if the shower is correct at NDL accuracy.16 The result

of computing Eq. (7.2) with all showers, at two di↵erent energies and for two di↵erent hard

processes (pp ! Z and pp ! H) is shown in Fig. 8. We observe that all showers are con-

sistent with the full-colour NDL expectation, within the small statistical errors. Relative

16Practically, we run the shower for di↵erent values of kt,cut, i.e. ln kt,cut = {�31.25,�62.5,�125,�1000},

keeping ⇠ ⌘ ↵sL
2 = 5 fixed (L = ln kt,cut/mX) and use all four points to perform a cubic polynomial

extrapolation down to ↵s ! 0. The error that we quote on Nshower is purely statistical.

– 19 –

NLL event shapes  
& Z/H pt

single-logs 
(PDFs, non-global, spin)

 NLL showers at LC: 2002.11114  
Colour in  2011.10054 and in  2205.02237  

Spin in  2103.16526, 2111.01161  and in  2205.02237  
All-orders tests for  2207.09467  

DIS NLL tests 2305.08645  
 

e+e−
e+e− pp

e+e− pp
pp

fixed order (kinematics, spin, colour)

NDL multiplicities

27
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Going beyond NLL
• In order to go beyond NLL we have to be able to describe configurations in the

Lund Plane, where at most two emissions are close to each other.
• This in particular includes when an emission is close to the top of the Lund

Plane (where the initial “hard” parton sits), but it also includes
configurations with for instance two commensurate energy wide-angle
emissions.

• Before thinking about NNLL we should first think about NLO matching as it
is the “simplest” correction needed.

• And in particular if we want to think of uncertainties in a particular shower,
we should probably think of all these contributions on a similar footing.
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NLO Matching - a solved problem?
• Event generators with NLO accuracy have become the de facto tool for

particle collision simulations.
• There are a number of solutions available, going back more than 20 years,

but by far the two most widely used are MC@NLO [Frixione, Webber ’02] and
POWHEG [Nason ’04, Frixione, Nason, Oleari ’07].

• Matching meant to ensure that the shower reproduces the terms cn of

σ=
∑

n
cnα

n
S

correctly by incorporating full virtual and real corrections.
• Non-trivial but today fully automated at NLO and possible for simpler

processes at NNLO (see talk by Riccardo)
• How does matching impact the logarithmic accuracy?
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NLO Matching - revisited
• To understand the interplay between matching and logarithmic accuracy, it is

instructive to discuss the example of event shapes, for which the probability
of some observable O to have a value below eL is given by

Σ(O < eL) = (1+C1αs + . . .)eα
−1
s g1(αsL)+g2(αsL)+αsg3(αsL)+..., L ≪−1 .

• Here g1 is responsible for LL terms (αn
s Ln+1), g2 for NLL terms (αn

s Ln) and C1
and g3 for NNLL terms (αn

s Ln−1).
• Σ can also be written in terms of a double-logarithmic expansion

Σ(O < eL) = h1(αSL2)+
√
αS h2(αSL2)+αSh3(αSL2)+ . . . , |L|≫ 1 ,

• with h1 responsible for DL terms (αn
S L2n), h2 for NDL (αn

S L2n−1), and h3 for
NNDL terms (αn

S L2n−2).
• In analytic resummation C1 is typically obtained through NLO matching,

and its inclusion is enough to achieve NNDL for event shapes.
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NLO Matching - revisited
• Hence, for event shapes there is an obvious logarithmic correspondence with

NLO matching: A good NLO matching scheme should augment an NLL
shower to NNDL.

• However, this is not the case in general.
• As is know from analytic resummation NLO matching is a necessary

ingredients to achieve NNLL accuracy in general, since a term αs contributes
to the αn

s Ln−1 logarithmic tower.
• So instead of thinking of NLO matching as a way of achieving better fixed

order accuracy we can think of it as a step towards having NNLL accurate
event generators.
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Matching in a nut-shell
• Multiplicative: Modify the shower’s first emission through a veto on

Pexact/Pshower, which itself is expected to go to 1 in the infrared/collinear
limit.

• MC@NLO: Supplement the shower events with a set of hard events,
Pexact −Pshower, which vanish in the infrared/collinear limit.

• POWHEG: Handle the hardest emission generation with a special Hardest
Emission Generator (HEG) that acheives NLO acuracy for the hardest
emission.

• There is also KrkNLO which is similar in spirit to multiplicative matching
and MAcNLOPS which is multiplicative when Pexact < Pshower and MCNLO
otherwise.

• Here I will mainly discuss POWHEG, as both Multiplicative and MC@NLO
matching achieves NNDL without any furhter considerations.
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POWHEGβ

• One can however fairly easily modify the POWHEG ordering variable to
have the necessary β dependence such that it coincides with the PanScales
showers in the simultaneously soft and collinear limit

η̄=−lntan
(arccosy

2

)
, lnv = ln

√
s

2
+ lnsin

[
2arctane−η̄

]
+ lnξ−β|η̄| .

• Inside the PanScales framework we call this POWHEGβ.
• Even so there can still be mismatches in both the hard-collinear and soft

wide-angle regions of the Lund Plane.
• This is something that has been known for some time [Corke, Sjöstrand ’10], and is

connected to the question of under-/double-counting in matching. It is
mostly solved by the usual veto

• To address the logarithmic impact we again return to the Lund Plane...
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POWHEGβ and NNDL accuracy
ln kt

η

HEG

Showerlnv
=

L

lnv
=

(1 +
β
ps )L

ln kobs
t = L

ηc =
L−lnvps

βps
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POWHEGβ and NNDL accuracy
• At DL accuracy the answer we are after is

given by

Σ(O < eL) = e−ᾱL2
, ᾱ=

2CFαS

π

• If the shower and HEG contours line up every-
where, we would get that answer. If they dis-
agree in the hard-collinear region, we instead
get (neglecting terms beyond NNDL)

Σ(O < eL) = e−ᾱL2
[
1+2

(
e−ᾱβL2

−1
)
ᾱ∆

]

(4)

• ∆ is the effective area of one shaded green re-
gion, which for PanLocal and γ→ qq̄ is given
by

ᾱ∆=
2CFαS

π
· 4π2 −15

24
.

• Since ∆ is O(1) this gives rise to a tower ∝
αS(ᾱSL2)n in eq. (4), which breaks NNDL.
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NLL
• While breaking of NNDL is not desirable, one could take the view that as

long as NLL is not broken, the matching still achieved its goal.
• Eq. (4) gives the impression that NLL is not broken, as the term ∝ αS(αSL2)n

vanishes when αS → 0.
• However, if we take the logarithm of eq. (4) we get

lnΣ=−ᾱL2 −

∞∑
n=2

2βn−1∆

(n−1)!
· ᾱnL2n−2 +O(ᾱnL2n−3) .

which fails to satisfy the exponentiation criterion, that there are no terms
αn

S Lm in lnΣ with m > n+1 (starting at O(α4
S)).

• Alternatively one can view these terms as spurious super-leading logarithms
induced by the matching.
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NLL - so what?
• Okay, we broke NLL, but in a very technical way. Maybe this breaking will not be very relevant

for phenomenology, since the NLL breaking starts at O(α4
S) and the NNDL breaking a relative

O(αS) in Σ?

• Hard to say without running the code, but one needs to keep in mind that there are other
observables than event shapes, and that some of these could potentially be more sensitive to the
problem.

• One such is the mass of the first SoftDrop (β= 0) splitting, which is sensitive to the
hard-collinear region by construction, and does not have double-logarithmic terms. It has the
following single-logarithmic structure

∂LΣSD(L) = ᾱceᾱcL

• Taking the shower/HEG mismatch into account, one instead finds

∂LΣSD(L) = ᾱceᾱcL−ᾱ∆−2ᾱLe−ᾱL2
(1− e−ᾱ∆) ,

• This again gives rise to terms αn
S L2n−2 in the logarithm, but more importantly when αSL2 ∼ 1 the

second term is only suppressed by a relative O(
√
αS) compared to the first one, which is

parametrically larger than the O(αS) effect for event shapes.
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Showers without matching are not NNDL accurate

2 0
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HEG-matching without a veto is not NNDL accurate
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Proper HEG-matching achieves NNDL accuracy

1 0 1
C-parameter

Thrust
maxu = 1

i

u = 1
i

FC1
2

maxu = 1
2

i

u = 1
2

i

FC1
maxu = 0

i

u = 0
i

BW

BT

y23

PanGlobal + PanLocal
( PS = 1

2 ,ant.)

1 0 1

Powheg  + PanGlobal
( PS = 0)

1 0 1

Powheg  + PanGlobal
( PS = 1

2 )

1 0 1

Powheg  + PanLocal
( PS = 1

2 )

* qq, sL2 = 1.296 (HEG matching)

lim
s 0

PS NNDL
s DL

s
=

0.
1

N
2
,N

{3
,4

,5
},

 li
ne

ar

Slide 25/27 — Alexander Karlberg — PanScales NNDL



L O O P F E S T X X I

No matching vs multiplicative vs no veto
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• Large effect of matching, with good agreement between showers after
matching

• Omitting the veto in POWHEG leads to sizable effects in SD (expected),
moderate effects in thrust (surprising as it is β= 1) and little effect in

√y23
(disappointing as it is β= 0).
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Conclusions
• Parton showers with controlled logarithmic accuracy are emerging.1

• Such a program is mandatory for precision QCD studies at the LHC and
future colliders.

• With logaritmic control we can also assign meaningful uncertainties to
shower predictions, thereby making them real predictions.

• First steps towards NNLL showers (logarithmically aware NLO matching)
are being taken, which will pave the way for unprecedented accuracy in
event generator simulations.

• Still many developments to come...

1See also recent work by Forshaw, Holguin, Plätzer (CVolver), Nagy, Soper (Deductor), Herren,
Höche, Krauss, Reichelt, Schönherr (Alaric)
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BACKUP
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The precision era of the LHC
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Status: July 2018

ATLAS Preliminary

Run 1,2
√
s = 7,8,13 TeV

Theory

LHC pp
√

s = 7 TeV

Data 4.5 − 4.9 fb−1

LHC pp
√

s = 8 TeV

Data 20.2 − 20.3 fb−1

LHC pp
√

s = 13 TeV

Data 3.2 − 79.8 fb−1

Standard Model Production Cross Section Measurements
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The precision era of the LHC
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The ubiquitous Parton Shower

Parton Showers enter one way or another in almost 95% of all ATLAS and CMS
analyses. Collider physics would not be the same without them.
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The ubiquitous Parton Shower
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Differences matter!
Jet energy calibration uncertainties feed in to all jet analyses at the LHC

Differences amongst MC generators is the dominant uncertainty
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Consider measurement of W boson mass

mW = 80354 ± 23stat ± 10exp ± 17theory ± 9PDF MeV

But differences matter…

Melissa van Beekveld22

[2109.01113]

Measurements of  in 
 decays used to 

validate the MC predictions for 

pZ
T

Z/γ* → l+l−
pW

T

[1009.1580]ϕ* = tan((π − Δϕ)/2)
cosh(Δη/2) ∼ pZ

T

mll

Different parton-
shower models

Analytic prediction
Different PDF

The envelope of shifts in  
originating from differences in these 
shower predictions is the dominant 

theory uncertainty (11 MeV)

mW
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Machine learning and jet sub-structure

[1511.05190]

Machine learning might learn un-physical “features” from MC → can
significantly impact the potential of new physics searches.
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selected collider-QCD accuracy milestones

19

DGLAP splitting functions
LO NLO NNLO [parts of N3LO]

1980 1990 2000 2010 20201970

Drell-Yan (γ/Ζ) & Higgs production at hadron colliders
NLOLO NNLO[……………….] N3LO

transverse-momentum resummation (DY&Higgs)
NLL[……]LL NNLL[…] N3LL

fixed-order matching of parton showers
LO NLO NNLO [N3LO]

parton showers
[parts of NLL…………………………………………..]LL

(many of today’s widely-used showers only LL@leading-colour)
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NLL accurate Parton Showers
Fixed Order Matrix Element Condition
• Shower must reproduce fixed order n-particle matrix elements when

emissions are well-separated in the Lund Plane, ie when the cross section is
logarithmically enhanced.

• Supplement this with unitarity, 2-loop running and correct cusp anomalous
dimension

Resummation Condition
• Shower must reproduce known NLL analytical resummations
• Global event shapes
• Multiplicity
• Non-global observables (slice observables), technically at leading single log

(SL).

[1805.09327] & [2002.11114]
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NLL accurate Parton Showers
Fixed Order Matrix Element Condition
• Fairly straightforward. Generate n emissions with your shower and compare

to either factorised matrix elements (numerically very stable) or a full matrix
element in some kinematic limit.

• Be careful to cover the collinear/soft phase space.
Resummation Condition
• This in general is trickier for 2 reasons:
• Requires the existence of NLL analytical results.
• Can’t just compare

ΣPS(αSL)
ΣNLL(αSL)

=
ΣPS(αSL)

σtot exp
[

1
αS

g1(αSL)+g2(αSL)
]

as the shower in general induces spurious higher order terms.
• How do we disentangle spurious “NNLL” terms from genuine NLL

violations?
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NLL tests

[2002.11114 ]

• Run the full shower with a specific (finite)
value of αS = αS(Q) and measure your
favourite observable (that you can resum to
NLL)

• Take the ratio to NLL and see that it is not flat.

• To see if there is an NLL mistake reduce
αS while keeping αSL fixed, ie include more
collinear and soft emissions.

• Genuine NLL effects are (αSL)n and are there-
fore unchanged. NNLL on the other hand
goes as αS(αSL)n and should therefore van-
ish.

• Go as small in αS as possible and extract αS →
0.

• Now is it flat?
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NLL tests

[2002.11114 ]
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• Take the ratio to NLL and see that it is not flat.

• To see if there is an NLL mistake reduce
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• Genuine NLL effects are (αSL)n and are there-
fore unchanged. NNLL on the other hand
goes as αS(αSL)n and should therefore van-
ish.

• Go as small in αS as possible and extract αS →
0.

• Now is it flat?
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Let’s match!
• The first matching procedure we consider is multiplicative matching (also

often called Matrix Element Corrections). The hardest emission cross section
can be written as

dσmult = B̄(ΦB)

[
SPS(vPS

Φ,ΦB)×
RPS(Φ)

B0(ΦB)
dΦ⊗ R(Φ)

RPS(Φ)

]
× IPS(vPS

Φ,Φ) .

• With the parton shower Sudakov given by

SPS(v,ΦB) = exp

[
−

∫
vPS
Φ>v

RPS(Φ)

B0(ΦB)
dΦrad

]
,

• and the NLO normalisation factor written as

B̄(ΦB) = B0(ΦB)+V(ΦB)+

∫
R(Φ)dΦrad ,
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Multiplicative matching
• In practice the multiplicative matching can only work if R(Φ)⩽ RPS(Φ) in

order for the first emission probability to be bounded by 1.
• Since R(Φ) and RPS(Φ) agree in the soft/collinear limits, the matching has no

impact in these limits, and from a logarithmic point of view we therefore
expect NLL accuracy to be retained.

• This type of matching has to be implemented directly inside the relevant
shower code, and cannot be achieved with external tools.
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MC@NLO matching
• In the MC@NLO scheme the hardest emission cross section takes the form

dσMC@NLO = B̄PS(ΦB)SPS(vPS
Φ,ΦB)×

RPS(Φ)

B0(ΦB)
dΦ× IPS(vPS

Φ,Φ)+

+[R(Φ)−RPS(Φ)]dΦ× IPS(vmax,Φ) ,

• with
B̄PS(ΦB) = B0(ΦB)+V(ΦB)+

∫
RPS(Φ)dΦrad .

• Interpretation: Generate events with the shower (modifying the
normalisation) and supplement these with a set of finite hard events.

• Specifically, this ensures that the shower is preserved in the infrared and
collinear regions.
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POWHEGβ

• Let us consider a simple version of POWHEG matching given by

dσPOWHEG-simple = B̄(ΦB)SHEG(vHEG
Φ ,ΦB)×

RHEG(Φ)

B0(ΦB)
dΦ× IPS(vHEG

Φ ,Φ) .

• In this variant of POWHEG the HEG generates an event at a scale vHEG
Φ that is

then handed over to the shower, which continues showering starting at the
same scale.

• In order to preserve leading logarithmic accuracy, the ordering variable of
the HEG and the shower need to coincide in the simulatneously soft and
collinear limit.

• This is for instance the case in standard transverse-momentum ordered
POWHEG-BOX+Pythia8 usage.

• It would however not be the case if one were to use a β= 1/2 variant of one
of the PanScales showers.
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Further subtleties
• Even when the contours are fully aligned there

are issues associated with how dipole showers
partition the g → gg(qq̄) splitting function.

• In PanScales we use

1
2!

Pasym
gg (ζ) = CA

[
1+ζ3

1−ζ
+(2ζ−1)wgg

]
,

such that Pasym
gg (ζ)+Pasym

gg (1−ζ) = 2Pgg(ζ)

• This partitioning takes place to isolate the two
soft divergences in the splitting function (ζ→
0 and ζ → 1), but there is some freedom in
how one handles the non-singular part.

• Similarly, in the HEG one needs to handle this
issue, and in general if the shower and the
HEG do not agree on this procedure, one can
induce similar NNDL breaking to what was
seen above.
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Solution to the problem
• The solution to the problem is actually well-known and already applied in

typical POWHEG usage.
• After the HEG hands over the hardest emission, the shower should not start

from vHEG
Φ but rather from the maximum scale, and then veto all emissions

with a hardness scale above vHEG
Φ .

• We can write this procedure as

dσPOWHEG-veto = B̄(ΦB)SHEG(vHEG
Φ ,ΦB)×

RHEG(Φ)

B0(ΦB)
dΦ× IPS(vmax,Φ|vHEG

i < vHEG
Φ ) ,

• As we shall see, this will be enough to restore NNDL accuracy, with a
proviso having to do with gluon splittings...
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Multiplicative matching achieves NNDL accuracy
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MC@NLO matching achieves NNDL accuracy
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HEG-matching with wHEG! = wPS is not NNDL accurate
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Phenomenological considerations
• Now that we have improved the logarithmic accuracy of our showers, we also want to assess the

impact on phenomenology.

• However, in order to make a fair comparison, we need to understand their uncertainty.

• To this effect we include scale compensation, for an emission carrying away a momentum
fraction z, given by2

αS(µR)

(
1+

KαS(µR)

2π
+

2(1− z)β0αS(µR)

2π
ln(xR)

)
, µR = xRµ

central
R .

where the factor 1− z ensures that we only apply the scale compensation in the soft limit, and
not the hard, where the shower includes all the necessary ingredients. For showers that are not
NLL we include the term proportional to K (CMW scheme) but omit the 1− z term.

• In order to assess missing terms in the hard matching region we take the emission strengt
proportional to (unless matching that emission)

Psplitting(xhard) = P(default)
splitting ×

[
1+(xhard −1)min

(
4κ2

⊥
Q2 ,1

)]
,

2Inspired by [Mrenna, Skands ’16]
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Summary for thrust
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Summary for SD
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