

Beautiful and Charming Energy Correlators

Loopfest 2023 - SLAC

Bianka Meçaj - Yale University

Based on 2210.09311 and ongoing work

Evan Craft

Kyle Lee

Ian Moult

QCD at Hadron Colliders

Almost every LHC event contains jets

Jets are reconstructed using jet algorithms (anti- k_T)

How can we learn the most about underlying physics from the reconstructed jets?

Jets at the LHC

Jet substructure

QCD precision tests

New Physics

Both precision measurements and New Physics searches require precise description of jet cross sections.

Jets at the LHC

Jet substructure and heavy quarks

Many interesting processes include heavy quark effects: $h \to b \bar b, h \to c \bar c$

Can we probe intrinsic mass effects with jet substructure?

Jet substructure

Study the internal structure of a jet

Any physics dynamics will be imprinted in the energy distributions inside the jet.

Well-defined in QFT!

 Distribution of energy inside the jet is described by correlation functions of the energy flow operators ⇒energy correlators.

$$\langle \Psi \mid \varepsilon(\vec{n}_1)\varepsilon(\vec{n}_2)\dots\varepsilon(\vec{n}_n) \mid \Psi \rangle$$

[Basham, Brown, Ellis, Love]

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} \int\limits_0^\infty dt \ r^2 n^i T_{0i}(t, r\vec{n})$$

5

Energy correlators for jet substructure at LHC

Outline

- Scaling behavior
- Spectrum of the jet
- Heavy quark jets

Scaling behavior

Scaling behavior

We will study energy correlators inside high energy jets at the LHC: small angle behavior

• Energy correlators admit an OPE

$$\langle \Psi \mid \varepsilon(\vec{n}_1) \varepsilon(\vec{n}_2) \mid \Psi \rangle \sim \sum \theta^{\gamma_i} \mathcal{O}_i(\vec{n}_1)$$

 Universal scaling behavior in QFT as operators are brought together!

Light-Ray OPE

The light-ray OPE

- The leading scaling behavior at the LHC is described by the leading terms in the OPE: **twist two light-ray operators**.
- Light-ray OPE is a rigorous and convergent expansion in CFT.

$$\varepsilon\left(\vec{n}_{1}\right)\varepsilon\left(\vec{n}_{2}\right)=\sum c_{i}\theta^{\tau_{i}-4}\mathbb{O}_{i}\left(\vec{n}_{1}\right)$$

[Hofman, Maldacena] [Chang, Kologlu, Kravchuk, Simmons Duffin, Zhiboedov]

The light-ray **OPE**

- The leading scaling behavior at the LHC is described by the leading terms in the OPE: **twist two light-ray operators**.
- Light-ray OPE is a rigorous and convergent expansion in CFT.

[Hofman, Maldacena] [Chang, Kologlu, Kravchuk, Simmons Duffin, Zhiboedov]

Energy Correlators at the LHC

Factorization Formula

Two-point energy correlator

The simplest jet substructure observable

- The complicated LHC environment is described by a simple observable!
- Probe the OPE structure of $\langle \varepsilon(\vec{n}_1)\varepsilon(\vec{n}_2)\rangle$

$$\langle \Psi \mid \varepsilon(\vec{n}_1)\varepsilon(\vec{n}_2) \mid \Psi \rangle \sim \sum \theta^{\gamma_i} \mathcal{O}_i(\vec{n}_1)$$

 A jet substructure observable that can test quantum scaling behavior of operators.

[Lee, Mecaj, Moult]

Jet Spectrum

The jet spectrum

Higher-point correlators

Asymptotic energy flux directly probes the spectrum of (twist-2) lightray operators at the quantum level!

The jet spectrum

Higher-point correlators

- Can be observed at the high energies at the LHC at high precision
- Ratio of the higher-point correlators with the two-point isolates anomalous scaling!
- The anomalous scaling behavior depends on N (slope increases with N)

 \Downarrow

- First hand probe of the anomalous dimensions of QCD operators.
- Non-perturbative effects cancel in the ratio

Heavy quark jets

Energy Correlators on heavy jets

Introduce an additional scale

- At the LHC energies there is access to the transition phase from massless to massive behaviour ⇒ more complexity
- Also very interesting!
 - Can probe intrinsic mass effects of quarks before confinement into hadrons

Factorization theorem

Can compute any higher point correlators on massive quarks at LHC at NLL

Heavy quark jet function

Result

$$\begin{split} J_{q}^{\text{bare}}(z,\mu) = & \delta(z) + \frac{\alpha_{s}C_{F}}{4\pi} \left[\delta(z) \left(-\frac{3}{\epsilon_{\text{UV}}} - \frac{37}{3} \right) + 3 \frac{Q^{2}}{\mu^{2}} \mathcal{L}_{0} \left(\frac{Q^{2}}{\mu^{2}} z \right) \right] \\ = & \delta(z) + \frac{\alpha_{s}C_{F}}{4\pi} \left[\delta(z) \left(-\left(\gamma_{qq}^{(0)}(3) + \gamma_{gq}^{(0)}(3) \right) \frac{1}{\epsilon_{\text{UV}}} - \frac{37}{3} \right) + 3 \frac{Q^{2}}{\mu^{2}} \mathcal{L}_{0} \left(\frac{Q^{2}}{\mu^{2}} z \right) \right] \end{split}$$

Projected energy correlators

Resolve the UV scaling behaviour

- Ratios of higher point correlators with the two point EEC are independent of IR effects, including quark mass.
- The exact behavior as the massless case.
- Non-trivial cross check of the factorization theorem!
- Anomalous dimensions should not be affected by the IR physics.

Massive jets

Massive Energy Correlator Jet Function

$$\Sigma^{[N]}\left(R_L,p_T^2,m_Q,\mu\right) = \int_0^1 dx x^N \vec{J}^{[N]}\left(R_L,x,m_Q,\mu\right) \cdot \overrightarrow{H}\left(x,p_T^2,\mu\right) + \operatorname{Hard function}$$

Virtuality $\sim p_T R_L + m_O^2$

- Formation time changes with the mass of the quark.
- Can clearly see this from the two-point EEC.

Massive two point correlator

First massive jet substructure observable at NLL

- Scaling behaviour identical to massless case for larger scales.
- A turn-over for $R_L o m_Q/p_T$
- The change in the slope is perturbative effect contrary to massless jets: $R_L \to \Lambda_{QCD}/p_T$
- The turn-over region is of interest for improving heavy quark description is parton shower.

Intrinsic mass effects

Dead-cone effect

- · Ratios of the massive and massless EEC isolate mass (IR) effects.
- · A transition region related to the quark mass, which is perturbatively calculable.
- · Excellent agreement with MC.
- Small angle suppression can be interpreted as a dead-cone effect.

Conclusions

• Can probe a universal scaling behavior of QFT in the complicated LHC environment.

 Higher-point correlators are calculated for LHC and are a direct probe of anomalous scaling dimension of QCD operators.

• Energy Correlators for heavy quark jets probe intrinsic mass effects of elementary particles.

What is next?

Experimental Measurements for both light and heavy quark energy correlators.

Exciting experimental results!

Talk by N.Sahoo and A.Tamis at HARD PROBES-March 2023

• STAR collaboration $\sqrt{s} = 200 GeV$

Normalized EEC =
$$\frac{1}{\sum_{i \in ts} \sum_{i \neq j} \frac{E_i E_j}{p_{t, st}^2}} \frac{d(\sum_{j \in ts} \sum_{i \neq j} \frac{E_i E_j}{p_{t, st}^2})}{d(\Delta R)}$$

Direct observation of the transition from free hadrons to quarks/gluons at a universal scaling!

Talk by J.Mulligan and R.Cruz-Torres at HARD PROBES-March 2023

• ALICE collaboration $\sqrt{s} = 5TeV$

Universal behavior of the transition region.

Exciting experimental results!

STAF

Talk by N.Sahoo and A.Tamis at HARD PROBES-March 2023

Talk by J.Mulligan and R.Cruz-Torres at HARD PROBES-March 2023

• STAR collaboration $\sqrt{s} = 200 GeV$

• ALICE collaboration $\sqrt{s} = 5TeV$

Direct observation of the transition from free hadrons to quarks/gluons at a universal scaling!

Universal behavior of the transition region.

